1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Decl subclasses. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/Decl.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/ASTMutationListener.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/PrettyPrinter.h" 25 #include "clang/AST/Stmt.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/Basic/Builtins.h" 28 #include "clang/Basic/IdentifierTable.h" 29 #include "clang/Basic/Module.h" 30 #include "clang/Basic/Specifiers.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Frontend/FrontendDiagnostic.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include <algorithm> 35 36 using namespace clang; 37 38 Decl *clang::getPrimaryMergedDecl(Decl *D) { 39 return D->getASTContext().getPrimaryMergedDecl(D); 40 } 41 42 // Defined here so that it can be inlined into its direct callers. 43 bool Decl::isOutOfLine() const { 44 return !getLexicalDeclContext()->Equals(getDeclContext()); 45 } 46 47 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 48 : Decl(TranslationUnit, nullptr, SourceLocation()), 49 DeclContext(TranslationUnit), Ctx(ctx), AnonymousNamespace(nullptr) { 50 Hidden = Ctx.getLangOpts().ModulesLocalVisibility; 51 } 52 53 //===----------------------------------------------------------------------===// 54 // NamedDecl Implementation 55 //===----------------------------------------------------------------------===// 56 57 // Visibility rules aren't rigorously externally specified, but here 58 // are the basic principles behind what we implement: 59 // 60 // 1. An explicit visibility attribute is generally a direct expression 61 // of the user's intent and should be honored. Only the innermost 62 // visibility attribute applies. If no visibility attribute applies, 63 // global visibility settings are considered. 64 // 65 // 2. There is one caveat to the above: on or in a template pattern, 66 // an explicit visibility attribute is just a default rule, and 67 // visibility can be decreased by the visibility of template 68 // arguments. But this, too, has an exception: an attribute on an 69 // explicit specialization or instantiation causes all the visibility 70 // restrictions of the template arguments to be ignored. 71 // 72 // 3. A variable that does not otherwise have explicit visibility can 73 // be restricted by the visibility of its type. 74 // 75 // 4. A visibility restriction is explicit if it comes from an 76 // attribute (or something like it), not a global visibility setting. 77 // When emitting a reference to an external symbol, visibility 78 // restrictions are ignored unless they are explicit. 79 // 80 // 5. When computing the visibility of a non-type, including a 81 // non-type member of a class, only non-type visibility restrictions 82 // are considered: the 'visibility' attribute, global value-visibility 83 // settings, and a few special cases like __private_extern. 84 // 85 // 6. When computing the visibility of a type, including a type member 86 // of a class, only type visibility restrictions are considered: 87 // the 'type_visibility' attribute and global type-visibility settings. 88 // However, a 'visibility' attribute counts as a 'type_visibility' 89 // attribute on any declaration that only has the former. 90 // 91 // The visibility of a "secondary" entity, like a template argument, 92 // is computed using the kind of that entity, not the kind of the 93 // primary entity for which we are computing visibility. For example, 94 // the visibility of a specialization of either of these templates: 95 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 96 // template <class T, bool (&compare)(T, X)> class matcher; 97 // is restricted according to the type visibility of the argument 'T', 98 // the type visibility of 'bool(&)(T,X)', and the value visibility of 99 // the argument function 'compare'. That 'has_match' is a value 100 // and 'matcher' is a type only matters when looking for attributes 101 // and settings from the immediate context. 102 103 const unsigned IgnoreExplicitVisibilityBit = 2; 104 const unsigned IgnoreAllVisibilityBit = 4; 105 106 /// Kinds of LV computation. The linkage side of the computation is 107 /// always the same, but different things can change how visibility is 108 /// computed. 109 enum LVComputationKind { 110 /// Do an LV computation for, ultimately, a type. 111 /// Visibility may be restricted by type visibility settings and 112 /// the visibility of template arguments. 113 LVForType = NamedDecl::VisibilityForType, 114 115 /// Do an LV computation for, ultimately, a non-type declaration. 116 /// Visibility may be restricted by value visibility settings and 117 /// the visibility of template arguments. 118 LVForValue = NamedDecl::VisibilityForValue, 119 120 /// Do an LV computation for, ultimately, a type that already has 121 /// some sort of explicit visibility. Visibility may only be 122 /// restricted by the visibility of template arguments. 123 LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit), 124 125 /// Do an LV computation for, ultimately, a non-type declaration 126 /// that already has some sort of explicit visibility. Visibility 127 /// may only be restricted by the visibility of template arguments. 128 LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit), 129 130 /// Do an LV computation when we only care about the linkage. 131 LVForLinkageOnly = 132 LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit 133 }; 134 135 /// Does this computation kind permit us to consider additional 136 /// visibility settings from attributes and the like? 137 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 138 return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0); 139 } 140 141 /// Given an LVComputationKind, return one of the same type/value sort 142 /// that records that it already has explicit visibility. 143 static LVComputationKind 144 withExplicitVisibilityAlready(LVComputationKind oldKind) { 145 LVComputationKind newKind = 146 static_cast<LVComputationKind>(unsigned(oldKind) | 147 IgnoreExplicitVisibilityBit); 148 assert(oldKind != LVForType || newKind == LVForExplicitType); 149 assert(oldKind != LVForValue || newKind == LVForExplicitValue); 150 assert(oldKind != LVForExplicitType || newKind == LVForExplicitType); 151 assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue); 152 return newKind; 153 } 154 155 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, 156 LVComputationKind kind) { 157 assert(!hasExplicitVisibilityAlready(kind) && 158 "asking for explicit visibility when we shouldn't be"); 159 return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind); 160 } 161 162 /// Is the given declaration a "type" or a "value" for the purposes of 163 /// visibility computation? 164 static bool usesTypeVisibility(const NamedDecl *D) { 165 return isa<TypeDecl>(D) || 166 isa<ClassTemplateDecl>(D) || 167 isa<ObjCInterfaceDecl>(D); 168 } 169 170 /// Does the given declaration have member specialization information, 171 /// and if so, is it an explicit specialization? 172 template <class T> static typename 173 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type 174 isExplicitMemberSpecialization(const T *D) { 175 if (const MemberSpecializationInfo *member = 176 D->getMemberSpecializationInfo()) { 177 return member->isExplicitSpecialization(); 178 } 179 return false; 180 } 181 182 /// For templates, this question is easier: a member template can't be 183 /// explicitly instantiated, so there's a single bit indicating whether 184 /// or not this is an explicit member specialization. 185 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 186 return D->isMemberSpecialization(); 187 } 188 189 /// Given a visibility attribute, return the explicit visibility 190 /// associated with it. 191 template <class T> 192 static Visibility getVisibilityFromAttr(const T *attr) { 193 switch (attr->getVisibility()) { 194 case T::Default: 195 return DefaultVisibility; 196 case T::Hidden: 197 return HiddenVisibility; 198 case T::Protected: 199 return ProtectedVisibility; 200 } 201 llvm_unreachable("bad visibility kind"); 202 } 203 204 /// Return the explicit visibility of the given declaration. 205 static Optional<Visibility> getVisibilityOf(const NamedDecl *D, 206 NamedDecl::ExplicitVisibilityKind kind) { 207 // If we're ultimately computing the visibility of a type, look for 208 // a 'type_visibility' attribute before looking for 'visibility'. 209 if (kind == NamedDecl::VisibilityForType) { 210 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 211 return getVisibilityFromAttr(A); 212 } 213 } 214 215 // If this declaration has an explicit visibility attribute, use it. 216 if (const auto *A = D->getAttr<VisibilityAttr>()) { 217 return getVisibilityFromAttr(A); 218 } 219 220 // If we're on Mac OS X, an 'availability' for Mac OS X attribute 221 // implies visibility(default). 222 if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) { 223 for (const auto *A : D->specific_attrs<AvailabilityAttr>()) 224 if (A->getPlatform()->getName().equals("macosx")) 225 return DefaultVisibility; 226 } 227 228 return None; 229 } 230 231 static LinkageInfo 232 getLVForType(const Type &T, LVComputationKind computation) { 233 if (computation == LVForLinkageOnly) 234 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 235 return T.getLinkageAndVisibility(); 236 } 237 238 /// \brief Get the most restrictive linkage for the types in the given 239 /// template parameter list. For visibility purposes, template 240 /// parameters are part of the signature of a template. 241 static LinkageInfo 242 getLVForTemplateParameterList(const TemplateParameterList *Params, 243 LVComputationKind computation) { 244 LinkageInfo LV; 245 for (const NamedDecl *P : *Params) { 246 // Template type parameters are the most common and never 247 // contribute to visibility, pack or not. 248 if (isa<TemplateTypeParmDecl>(P)) 249 continue; 250 251 // Non-type template parameters can be restricted by the value type, e.g. 252 // template <enum X> class A { ... }; 253 // We have to be careful here, though, because we can be dealing with 254 // dependent types. 255 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 256 // Handle the non-pack case first. 257 if (!NTTP->isExpandedParameterPack()) { 258 if (!NTTP->getType()->isDependentType()) { 259 LV.merge(getLVForType(*NTTP->getType(), computation)); 260 } 261 continue; 262 } 263 264 // Look at all the types in an expanded pack. 265 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 266 QualType type = NTTP->getExpansionType(i); 267 if (!type->isDependentType()) 268 LV.merge(type->getLinkageAndVisibility()); 269 } 270 continue; 271 } 272 273 // Template template parameters can be restricted by their 274 // template parameters, recursively. 275 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 276 277 // Handle the non-pack case first. 278 if (!TTP->isExpandedParameterPack()) { 279 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 280 computation)); 281 continue; 282 } 283 284 // Look at all expansions in an expanded pack. 285 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 286 i != n; ++i) { 287 LV.merge(getLVForTemplateParameterList( 288 TTP->getExpansionTemplateParameters(i), computation)); 289 } 290 } 291 292 return LV; 293 } 294 295 /// getLVForDecl - Get the linkage and visibility for the given declaration. 296 static LinkageInfo getLVForDecl(const NamedDecl *D, 297 LVComputationKind computation); 298 299 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 300 const Decl *Ret = nullptr; 301 const DeclContext *DC = D->getDeclContext(); 302 while (DC->getDeclKind() != Decl::TranslationUnit) { 303 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 304 Ret = cast<Decl>(DC); 305 DC = DC->getParent(); 306 } 307 return Ret; 308 } 309 310 /// \brief Get the most restrictive linkage for the types and 311 /// declarations in the given template argument list. 312 /// 313 /// Note that we don't take an LVComputationKind because we always 314 /// want to honor the visibility of template arguments in the same way. 315 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 316 LVComputationKind computation) { 317 LinkageInfo LV; 318 319 for (const TemplateArgument &Arg : Args) { 320 switch (Arg.getKind()) { 321 case TemplateArgument::Null: 322 case TemplateArgument::Integral: 323 case TemplateArgument::Expression: 324 continue; 325 326 case TemplateArgument::Type: 327 LV.merge(getLVForType(*Arg.getAsType(), computation)); 328 continue; 329 330 case TemplateArgument::Declaration: 331 if (const auto *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) { 332 assert(!usesTypeVisibility(ND)); 333 LV.merge(getLVForDecl(ND, computation)); 334 } 335 continue; 336 337 case TemplateArgument::NullPtr: 338 LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility()); 339 continue; 340 341 case TemplateArgument::Template: 342 case TemplateArgument::TemplateExpansion: 343 if (TemplateDecl *Template = 344 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 345 LV.merge(getLVForDecl(Template, computation)); 346 continue; 347 348 case TemplateArgument::Pack: 349 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 350 continue; 351 } 352 llvm_unreachable("bad template argument kind"); 353 } 354 355 return LV; 356 } 357 358 static LinkageInfo 359 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 360 LVComputationKind computation) { 361 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 362 } 363 364 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 365 const FunctionTemplateSpecializationInfo *specInfo) { 366 // Include visibility from the template parameters and arguments 367 // only if this is not an explicit instantiation or specialization 368 // with direct explicit visibility. (Implicit instantiations won't 369 // have a direct attribute.) 370 if (!specInfo->isExplicitInstantiationOrSpecialization()) 371 return true; 372 373 return !fn->hasAttr<VisibilityAttr>(); 374 } 375 376 /// Merge in template-related linkage and visibility for the given 377 /// function template specialization. 378 /// 379 /// We don't need a computation kind here because we can assume 380 /// LVForValue. 381 /// 382 /// \param[out] LV the computation to use for the parent 383 static void 384 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn, 385 const FunctionTemplateSpecializationInfo *specInfo, 386 LVComputationKind computation) { 387 bool considerVisibility = 388 shouldConsiderTemplateVisibility(fn, specInfo); 389 390 // Merge information from the template parameters. 391 FunctionTemplateDecl *temp = specInfo->getTemplate(); 392 LinkageInfo tempLV = 393 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 394 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 395 396 // Merge information from the template arguments. 397 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 398 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 399 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 400 } 401 402 /// Does the given declaration have a direct visibility attribute 403 /// that would match the given rules? 404 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 405 LVComputationKind computation) { 406 switch (computation) { 407 case LVForType: 408 case LVForExplicitType: 409 if (D->hasAttr<TypeVisibilityAttr>()) 410 return true; 411 // fallthrough 412 case LVForValue: 413 case LVForExplicitValue: 414 if (D->hasAttr<VisibilityAttr>()) 415 return true; 416 return false; 417 case LVForLinkageOnly: 418 return false; 419 } 420 llvm_unreachable("bad visibility computation kind"); 421 } 422 423 /// Should we consider visibility associated with the template 424 /// arguments and parameters of the given class template specialization? 425 static bool shouldConsiderTemplateVisibility( 426 const ClassTemplateSpecializationDecl *spec, 427 LVComputationKind computation) { 428 // Include visibility from the template parameters and arguments 429 // only if this is not an explicit instantiation or specialization 430 // with direct explicit visibility (and note that implicit 431 // instantiations won't have a direct attribute). 432 // 433 // Furthermore, we want to ignore template parameters and arguments 434 // for an explicit specialization when computing the visibility of a 435 // member thereof with explicit visibility. 436 // 437 // This is a bit complex; let's unpack it. 438 // 439 // An explicit class specialization is an independent, top-level 440 // declaration. As such, if it or any of its members has an 441 // explicit visibility attribute, that must directly express the 442 // user's intent, and we should honor it. The same logic applies to 443 // an explicit instantiation of a member of such a thing. 444 445 // Fast path: if this is not an explicit instantiation or 446 // specialization, we always want to consider template-related 447 // visibility restrictions. 448 if (!spec->isExplicitInstantiationOrSpecialization()) 449 return true; 450 451 // This is the 'member thereof' check. 452 if (spec->isExplicitSpecialization() && 453 hasExplicitVisibilityAlready(computation)) 454 return false; 455 456 return !hasDirectVisibilityAttribute(spec, computation); 457 } 458 459 /// Merge in template-related linkage and visibility for the given 460 /// class template specialization. 461 static void mergeTemplateLV(LinkageInfo &LV, 462 const ClassTemplateSpecializationDecl *spec, 463 LVComputationKind computation) { 464 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 465 466 // Merge information from the template parameters, but ignore 467 // visibility if we're only considering template arguments. 468 469 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 470 LinkageInfo tempLV = 471 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 472 LV.mergeMaybeWithVisibility(tempLV, 473 considerVisibility && !hasExplicitVisibilityAlready(computation)); 474 475 // Merge information from the template arguments. We ignore 476 // template-argument visibility if we've got an explicit 477 // instantiation with a visibility attribute. 478 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 479 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 480 if (considerVisibility) 481 LV.mergeVisibility(argsLV); 482 LV.mergeExternalVisibility(argsLV); 483 } 484 485 /// Should we consider visibility associated with the template 486 /// arguments and parameters of the given variable template 487 /// specialization? As usual, follow class template specialization 488 /// logic up to initialization. 489 static bool shouldConsiderTemplateVisibility( 490 const VarTemplateSpecializationDecl *spec, 491 LVComputationKind computation) { 492 // Include visibility from the template parameters and arguments 493 // only if this is not an explicit instantiation or specialization 494 // with direct explicit visibility (and note that implicit 495 // instantiations won't have a direct attribute). 496 if (!spec->isExplicitInstantiationOrSpecialization()) 497 return true; 498 499 // An explicit variable specialization is an independent, top-level 500 // declaration. As such, if it has an explicit visibility attribute, 501 // that must directly express the user's intent, and we should honor 502 // it. 503 if (spec->isExplicitSpecialization() && 504 hasExplicitVisibilityAlready(computation)) 505 return false; 506 507 return !hasDirectVisibilityAttribute(spec, computation); 508 } 509 510 /// Merge in template-related linkage and visibility for the given 511 /// variable template specialization. As usual, follow class template 512 /// specialization logic up to initialization. 513 static void mergeTemplateLV(LinkageInfo &LV, 514 const VarTemplateSpecializationDecl *spec, 515 LVComputationKind computation) { 516 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 517 518 // Merge information from the template parameters, but ignore 519 // visibility if we're only considering template arguments. 520 521 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 522 LinkageInfo tempLV = 523 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 524 LV.mergeMaybeWithVisibility(tempLV, 525 considerVisibility && !hasExplicitVisibilityAlready(computation)); 526 527 // Merge information from the template arguments. We ignore 528 // template-argument visibility if we've got an explicit 529 // instantiation with a visibility attribute. 530 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 531 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 532 if (considerVisibility) 533 LV.mergeVisibility(argsLV); 534 LV.mergeExternalVisibility(argsLV); 535 } 536 537 static bool useInlineVisibilityHidden(const NamedDecl *D) { 538 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 539 const LangOptions &Opts = D->getASTContext().getLangOpts(); 540 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 541 return false; 542 543 const auto *FD = dyn_cast<FunctionDecl>(D); 544 if (!FD) 545 return false; 546 547 TemplateSpecializationKind TSK = TSK_Undeclared; 548 if (FunctionTemplateSpecializationInfo *spec 549 = FD->getTemplateSpecializationInfo()) { 550 TSK = spec->getTemplateSpecializationKind(); 551 } else if (MemberSpecializationInfo *MSI = 552 FD->getMemberSpecializationInfo()) { 553 TSK = MSI->getTemplateSpecializationKind(); 554 } 555 556 const FunctionDecl *Def = nullptr; 557 // InlineVisibilityHidden only applies to definitions, and 558 // isInlined() only gives meaningful answers on definitions 559 // anyway. 560 return TSK != TSK_ExplicitInstantiationDeclaration && 561 TSK != TSK_ExplicitInstantiationDefinition && 562 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 563 } 564 565 template <typename T> static bool isFirstInExternCContext(T *D) { 566 const T *First = D->getFirstDecl(); 567 return First->isInExternCContext(); 568 } 569 570 static bool isSingleLineLanguageLinkage(const Decl &D) { 571 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 572 if (!SD->hasBraces()) 573 return true; 574 return false; 575 } 576 577 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D, 578 LVComputationKind computation) { 579 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 580 "Not a name having namespace scope"); 581 ASTContext &Context = D->getASTContext(); 582 583 // C++ [basic.link]p3: 584 // A name having namespace scope (3.3.6) has internal linkage if it 585 // is the name of 586 // - an object, reference, function or function template that is 587 // explicitly declared static; or, 588 // (This bullet corresponds to C99 6.2.2p3.) 589 if (const auto *Var = dyn_cast<VarDecl>(D)) { 590 // Explicitly declared static. 591 if (Var->getStorageClass() == SC_Static) 592 return LinkageInfo::internal(); 593 594 // - a non-volatile object or reference that is explicitly declared const 595 // or constexpr and neither explicitly declared extern nor previously 596 // declared to have external linkage; or (there is no equivalent in C99) 597 if (Context.getLangOpts().CPlusPlus && 598 Var->getType().isConstQualified() && 599 !Var->getType().isVolatileQualified()) { 600 const VarDecl *PrevVar = Var->getPreviousDecl(); 601 if (PrevVar) 602 return getLVForDecl(PrevVar, computation); 603 604 if (Var->getStorageClass() != SC_Extern && 605 Var->getStorageClass() != SC_PrivateExtern && 606 !isSingleLineLanguageLinkage(*Var)) 607 return LinkageInfo::internal(); 608 } 609 610 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 611 PrevVar = PrevVar->getPreviousDecl()) { 612 if (PrevVar->getStorageClass() == SC_PrivateExtern && 613 Var->getStorageClass() == SC_None) 614 return PrevVar->getLinkageAndVisibility(); 615 // Explicitly declared static. 616 if (PrevVar->getStorageClass() == SC_Static) 617 return LinkageInfo::internal(); 618 } 619 } else if (const FunctionDecl *Function = D->getAsFunction()) { 620 // C++ [temp]p4: 621 // A non-member function template can have internal linkage; any 622 // other template name shall have external linkage. 623 624 // Explicitly declared static. 625 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 626 return LinkageInfo(InternalLinkage, DefaultVisibility, false); 627 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 628 // - a data member of an anonymous union. 629 const VarDecl *VD = IFD->getVarDecl(); 630 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 631 return getLVForNamespaceScopeDecl(VD, computation); 632 } 633 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 634 635 if (D->isInAnonymousNamespace()) { 636 const auto *Var = dyn_cast<VarDecl>(D); 637 const auto *Func = dyn_cast<FunctionDecl>(D); 638 // FIXME: In C++11 onwards, anonymous namespaces should give decls 639 // within them internal linkage, not unique external linkage. 640 if ((!Var || !isFirstInExternCContext(Var)) && 641 (!Func || !isFirstInExternCContext(Func))) 642 return LinkageInfo::uniqueExternal(); 643 } 644 645 // Set up the defaults. 646 647 // C99 6.2.2p5: 648 // If the declaration of an identifier for an object has file 649 // scope and no storage-class specifier, its linkage is 650 // external. 651 LinkageInfo LV; 652 653 if (!hasExplicitVisibilityAlready(computation)) { 654 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 655 LV.mergeVisibility(*Vis, true); 656 } else { 657 // If we're declared in a namespace with a visibility attribute, 658 // use that namespace's visibility, and it still counts as explicit. 659 for (const DeclContext *DC = D->getDeclContext(); 660 !isa<TranslationUnitDecl>(DC); 661 DC = DC->getParent()) { 662 const auto *ND = dyn_cast<NamespaceDecl>(DC); 663 if (!ND) continue; 664 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { 665 LV.mergeVisibility(*Vis, true); 666 break; 667 } 668 } 669 } 670 671 // Add in global settings if the above didn't give us direct visibility. 672 if (!LV.isVisibilityExplicit()) { 673 // Use global type/value visibility as appropriate. 674 Visibility globalVisibility; 675 if (computation == LVForValue) { 676 globalVisibility = Context.getLangOpts().getValueVisibilityMode(); 677 } else { 678 assert(computation == LVForType); 679 globalVisibility = Context.getLangOpts().getTypeVisibilityMode(); 680 } 681 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 682 683 // If we're paying attention to global visibility, apply 684 // -finline-visibility-hidden if this is an inline method. 685 if (useInlineVisibilityHidden(D)) 686 LV.mergeVisibility(HiddenVisibility, true); 687 } 688 } 689 690 // C++ [basic.link]p4: 691 692 // A name having namespace scope has external linkage if it is the 693 // name of 694 // 695 // - an object or reference, unless it has internal linkage; or 696 if (const auto *Var = dyn_cast<VarDecl>(D)) { 697 // GCC applies the following optimization to variables and static 698 // data members, but not to functions: 699 // 700 // Modify the variable's LV by the LV of its type unless this is 701 // C or extern "C". This follows from [basic.link]p9: 702 // A type without linkage shall not be used as the type of a 703 // variable or function with external linkage unless 704 // - the entity has C language linkage, or 705 // - the entity is declared within an unnamed namespace, or 706 // - the entity is not used or is defined in the same 707 // translation unit. 708 // and [basic.link]p10: 709 // ...the types specified by all declarations referring to a 710 // given variable or function shall be identical... 711 // C does not have an equivalent rule. 712 // 713 // Ignore this if we've got an explicit attribute; the user 714 // probably knows what they're doing. 715 // 716 // Note that we don't want to make the variable non-external 717 // because of this, but unique-external linkage suits us. 718 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) { 719 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 720 if (TypeLV.getLinkage() != ExternalLinkage) 721 return LinkageInfo::uniqueExternal(); 722 if (!LV.isVisibilityExplicit()) 723 LV.mergeVisibility(TypeLV); 724 } 725 726 if (Var->getStorageClass() == SC_PrivateExtern) 727 LV.mergeVisibility(HiddenVisibility, true); 728 729 // Note that Sema::MergeVarDecl already takes care of implementing 730 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 731 // to do it here. 732 733 // As per function and class template specializations (below), 734 // consider LV for the template and template arguments. We're at file 735 // scope, so we do not need to worry about nested specializations. 736 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 737 mergeTemplateLV(LV, spec, computation); 738 } 739 740 // - a function, unless it has internal linkage; or 741 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 742 // In theory, we can modify the function's LV by the LV of its 743 // type unless it has C linkage (see comment above about variables 744 // for justification). In practice, GCC doesn't do this, so it's 745 // just too painful to make work. 746 747 if (Function->getStorageClass() == SC_PrivateExtern) 748 LV.mergeVisibility(HiddenVisibility, true); 749 750 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 751 // merging storage classes and visibility attributes, so we don't have to 752 // look at previous decls in here. 753 754 // In C++, then if the type of the function uses a type with 755 // unique-external linkage, it's not legally usable from outside 756 // this translation unit. However, we should use the C linkage 757 // rules instead for extern "C" declarations. 758 if (Context.getLangOpts().CPlusPlus && 759 !Function->isInExternCContext()) { 760 // Only look at the type-as-written. If this function has an auto-deduced 761 // return type, we can't compute the linkage of that type because it could 762 // require looking at the linkage of this function, and we don't need this 763 // for correctness because the type is not part of the function's 764 // signature. 765 // FIXME: This is a hack. We should be able to solve this circularity and 766 // the one in getLVForClassMember for Functions some other way. 767 QualType TypeAsWritten = Function->getType(); 768 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 769 TypeAsWritten = TSI->getType(); 770 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage) 771 return LinkageInfo::uniqueExternal(); 772 } 773 774 // Consider LV from the template and the template arguments. 775 // We're at file scope, so we do not need to worry about nested 776 // specializations. 777 if (FunctionTemplateSpecializationInfo *specInfo 778 = Function->getTemplateSpecializationInfo()) { 779 mergeTemplateLV(LV, Function, specInfo, computation); 780 } 781 782 // - a named class (Clause 9), or an unnamed class defined in a 783 // typedef declaration in which the class has the typedef name 784 // for linkage purposes (7.1.3); or 785 // - a named enumeration (7.2), or an unnamed enumeration 786 // defined in a typedef declaration in which the enumeration 787 // has the typedef name for linkage purposes (7.1.3); or 788 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 789 // Unnamed tags have no linkage. 790 if (!Tag->hasNameForLinkage()) 791 return LinkageInfo::none(); 792 793 // If this is a class template specialization, consider the 794 // linkage of the template and template arguments. We're at file 795 // scope, so we do not need to worry about nested specializations. 796 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 797 mergeTemplateLV(LV, spec, computation); 798 } 799 800 // - an enumerator belonging to an enumeration with external linkage; 801 } else if (isa<EnumConstantDecl>(D)) { 802 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 803 computation); 804 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 805 return LinkageInfo::none(); 806 LV.merge(EnumLV); 807 808 // - a template, unless it is a function template that has 809 // internal linkage (Clause 14); 810 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 811 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 812 LinkageInfo tempLV = 813 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 814 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 815 816 // - a namespace (7.3), unless it is declared within an unnamed 817 // namespace. 818 } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) { 819 return LV; 820 821 // By extension, we assign external linkage to Objective-C 822 // interfaces. 823 } else if (isa<ObjCInterfaceDecl>(D)) { 824 // fallout 825 826 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 827 // A typedef declaration has linkage if it gives a type a name for 828 // linkage purposes. 829 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 830 return LinkageInfo::none(); 831 832 // Everything not covered here has no linkage. 833 } else { 834 return LinkageInfo::none(); 835 } 836 837 // If we ended up with non-external linkage, visibility should 838 // always be default. 839 if (LV.getLinkage() != ExternalLinkage) 840 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 841 842 return LV; 843 } 844 845 static LinkageInfo getLVForClassMember(const NamedDecl *D, 846 LVComputationKind computation) { 847 // Only certain class members have linkage. Note that fields don't 848 // really have linkage, but it's convenient to say they do for the 849 // purposes of calculating linkage of pointer-to-data-member 850 // template arguments. 851 // 852 // Templates also don't officially have linkage, but since we ignore 853 // the C++ standard and look at template arguments when determining 854 // linkage and visibility of a template specialization, we might hit 855 // a template template argument that way. If we do, we need to 856 // consider its linkage. 857 if (!(isa<CXXMethodDecl>(D) || 858 isa<VarDecl>(D) || 859 isa<FieldDecl>(D) || 860 isa<IndirectFieldDecl>(D) || 861 isa<TagDecl>(D) || 862 isa<TemplateDecl>(D))) 863 return LinkageInfo::none(); 864 865 LinkageInfo LV; 866 867 // If we have an explicit visibility attribute, merge that in. 868 if (!hasExplicitVisibilityAlready(computation)) { 869 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) 870 LV.mergeVisibility(*Vis, true); 871 // If we're paying attention to global visibility, apply 872 // -finline-visibility-hidden if this is an inline method. 873 // 874 // Note that we do this before merging information about 875 // the class visibility. 876 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 877 LV.mergeVisibility(HiddenVisibility, true); 878 } 879 880 // If this class member has an explicit visibility attribute, the only 881 // thing that can change its visibility is the template arguments, so 882 // only look for them when processing the class. 883 LVComputationKind classComputation = computation; 884 if (LV.isVisibilityExplicit()) 885 classComputation = withExplicitVisibilityAlready(computation); 886 887 LinkageInfo classLV = 888 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 889 // If the class already has unique-external linkage, we can't improve. 890 if (classLV.getLinkage() == UniqueExternalLinkage) 891 return LinkageInfo::uniqueExternal(); 892 893 if (!isExternallyVisible(classLV.getLinkage())) 894 return LinkageInfo::none(); 895 896 897 // Otherwise, don't merge in classLV yet, because in certain cases 898 // we need to completely ignore the visibility from it. 899 900 // Specifically, if this decl exists and has an explicit attribute. 901 const NamedDecl *explicitSpecSuppressor = nullptr; 902 903 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 904 // If the type of the function uses a type with unique-external 905 // linkage, it's not legally usable from outside this translation unit. 906 // But only look at the type-as-written. If this function has an 907 // auto-deduced return type, we can't compute the linkage of that type 908 // because it could require looking at the linkage of this function, and we 909 // don't need this for correctness because the type is not part of the 910 // function's signature. 911 // FIXME: This is a hack. We should be able to solve this circularity and 912 // the one in getLVForNamespaceScopeDecl for Functions some other way. 913 { 914 QualType TypeAsWritten = MD->getType(); 915 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 916 TypeAsWritten = TSI->getType(); 917 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage) 918 return LinkageInfo::uniqueExternal(); 919 } 920 // If this is a method template specialization, use the linkage for 921 // the template parameters and arguments. 922 if (FunctionTemplateSpecializationInfo *spec 923 = MD->getTemplateSpecializationInfo()) { 924 mergeTemplateLV(LV, MD, spec, computation); 925 if (spec->isExplicitSpecialization()) { 926 explicitSpecSuppressor = MD; 927 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 928 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 929 } 930 } else if (isExplicitMemberSpecialization(MD)) { 931 explicitSpecSuppressor = MD; 932 } 933 934 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 935 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 936 mergeTemplateLV(LV, spec, computation); 937 if (spec->isExplicitSpecialization()) { 938 explicitSpecSuppressor = spec; 939 } else { 940 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 941 if (isExplicitMemberSpecialization(temp)) { 942 explicitSpecSuppressor = temp->getTemplatedDecl(); 943 } 944 } 945 } else if (isExplicitMemberSpecialization(RD)) { 946 explicitSpecSuppressor = RD; 947 } 948 949 // Static data members. 950 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 951 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 952 mergeTemplateLV(LV, spec, computation); 953 954 // Modify the variable's linkage by its type, but ignore the 955 // type's visibility unless it's a definition. 956 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 957 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 958 LV.mergeVisibility(typeLV); 959 LV.mergeExternalVisibility(typeLV); 960 961 if (isExplicitMemberSpecialization(VD)) { 962 explicitSpecSuppressor = VD; 963 } 964 965 // Template members. 966 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 967 bool considerVisibility = 968 (!LV.isVisibilityExplicit() && 969 !classLV.isVisibilityExplicit() && 970 !hasExplicitVisibilityAlready(computation)); 971 LinkageInfo tempLV = 972 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 973 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 974 975 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 976 if (isExplicitMemberSpecialization(redeclTemp)) { 977 explicitSpecSuppressor = temp->getTemplatedDecl(); 978 } 979 } 980 } 981 982 // We should never be looking for an attribute directly on a template. 983 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 984 985 // If this member is an explicit member specialization, and it has 986 // an explicit attribute, ignore visibility from the parent. 987 bool considerClassVisibility = true; 988 if (explicitSpecSuppressor && 989 // optimization: hasDVA() is true only with explicit visibility. 990 LV.isVisibilityExplicit() && 991 classLV.getVisibility() != DefaultVisibility && 992 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 993 considerClassVisibility = false; 994 } 995 996 // Finally, merge in information from the class. 997 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 998 return LV; 999 } 1000 1001 void NamedDecl::anchor() { } 1002 1003 static LinkageInfo computeLVForDecl(const NamedDecl *D, 1004 LVComputationKind computation); 1005 1006 bool NamedDecl::isLinkageValid() const { 1007 if (!hasCachedLinkage()) 1008 return true; 1009 1010 return computeLVForDecl(this, LVForLinkageOnly).getLinkage() == 1011 getCachedLinkage(); 1012 } 1013 1014 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1015 StringRef name = getName(); 1016 if (name.empty()) return SFF_None; 1017 1018 if (name.front() == 'C') 1019 if (name == "CFStringCreateWithFormat" || 1020 name == "CFStringCreateWithFormatAndArguments" || 1021 name == "CFStringAppendFormat" || 1022 name == "CFStringAppendFormatAndArguments") 1023 return SFF_CFString; 1024 return SFF_None; 1025 } 1026 1027 Linkage NamedDecl::getLinkageInternal() const { 1028 // We don't care about visibility here, so ask for the cheapest 1029 // possible visibility analysis. 1030 return getLVForDecl(this, LVForLinkageOnly).getLinkage(); 1031 } 1032 1033 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1034 LVComputationKind computation = 1035 (usesTypeVisibility(this) ? LVForType : LVForValue); 1036 return getLVForDecl(this, computation); 1037 } 1038 1039 static Optional<Visibility> 1040 getExplicitVisibilityAux(const NamedDecl *ND, 1041 NamedDecl::ExplicitVisibilityKind kind, 1042 bool IsMostRecent) { 1043 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1044 1045 // Check the declaration itself first. 1046 if (Optional<Visibility> V = getVisibilityOf(ND, kind)) 1047 return V; 1048 1049 // If this is a member class of a specialization of a class template 1050 // and the corresponding decl has explicit visibility, use that. 1051 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1052 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1053 if (InstantiatedFrom) 1054 return getVisibilityOf(InstantiatedFrom, kind); 1055 } 1056 1057 // If there wasn't explicit visibility there, and this is a 1058 // specialization of a class template, check for visibility 1059 // on the pattern. 1060 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) 1061 return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(), 1062 kind); 1063 1064 // Use the most recent declaration. 1065 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1066 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1067 if (MostRecent != ND) 1068 return getExplicitVisibilityAux(MostRecent, kind, true); 1069 } 1070 1071 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1072 if (Var->isStaticDataMember()) { 1073 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1074 if (InstantiatedFrom) 1075 return getVisibilityOf(InstantiatedFrom, kind); 1076 } 1077 1078 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1079 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1080 kind); 1081 1082 return None; 1083 } 1084 // Also handle function template specializations. 1085 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1086 // If the function is a specialization of a template with an 1087 // explicit visibility attribute, use that. 1088 if (FunctionTemplateSpecializationInfo *templateInfo 1089 = fn->getTemplateSpecializationInfo()) 1090 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1091 kind); 1092 1093 // If the function is a member of a specialization of a class template 1094 // and the corresponding decl has explicit visibility, use that. 1095 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1096 if (InstantiatedFrom) 1097 return getVisibilityOf(InstantiatedFrom, kind); 1098 1099 return None; 1100 } 1101 1102 // The visibility of a template is stored in the templated decl. 1103 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1104 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1105 1106 return None; 1107 } 1108 1109 Optional<Visibility> 1110 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1111 return getExplicitVisibilityAux(this, kind, false); 1112 } 1113 1114 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl, 1115 LVComputationKind computation) { 1116 // This lambda has its linkage/visibility determined by its owner. 1117 if (ContextDecl) { 1118 if (isa<ParmVarDecl>(ContextDecl)) 1119 DC = ContextDecl->getDeclContext()->getRedeclContext(); 1120 else 1121 return getLVForDecl(cast<NamedDecl>(ContextDecl), computation); 1122 } 1123 1124 if (const auto *ND = dyn_cast<NamedDecl>(DC)) 1125 return getLVForDecl(ND, computation); 1126 1127 return LinkageInfo::external(); 1128 } 1129 1130 static LinkageInfo getLVForLocalDecl(const NamedDecl *D, 1131 LVComputationKind computation) { 1132 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1133 if (Function->isInAnonymousNamespace() && 1134 !Function->isInExternCContext()) 1135 return LinkageInfo::uniqueExternal(); 1136 1137 // This is a "void f();" which got merged with a file static. 1138 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1139 return LinkageInfo::internal(); 1140 1141 LinkageInfo LV; 1142 if (!hasExplicitVisibilityAlready(computation)) { 1143 if (Optional<Visibility> Vis = 1144 getExplicitVisibility(Function, computation)) 1145 LV.mergeVisibility(*Vis, true); 1146 } 1147 1148 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1149 // merging storage classes and visibility attributes, so we don't have to 1150 // look at previous decls in here. 1151 1152 return LV; 1153 } 1154 1155 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1156 if (Var->hasExternalStorage()) { 1157 if (Var->isInAnonymousNamespace() && !Var->isInExternCContext()) 1158 return LinkageInfo::uniqueExternal(); 1159 1160 LinkageInfo LV; 1161 if (Var->getStorageClass() == SC_PrivateExtern) 1162 LV.mergeVisibility(HiddenVisibility, true); 1163 else if (!hasExplicitVisibilityAlready(computation)) { 1164 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) 1165 LV.mergeVisibility(*Vis, true); 1166 } 1167 1168 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1169 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1170 if (PrevLV.getLinkage()) 1171 LV.setLinkage(PrevLV.getLinkage()); 1172 LV.mergeVisibility(PrevLV); 1173 } 1174 1175 return LV; 1176 } 1177 1178 if (!Var->isStaticLocal()) 1179 return LinkageInfo::none(); 1180 } 1181 1182 ASTContext &Context = D->getASTContext(); 1183 if (!Context.getLangOpts().CPlusPlus) 1184 return LinkageInfo::none(); 1185 1186 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1187 if (!OuterD) 1188 return LinkageInfo::none(); 1189 1190 LinkageInfo LV; 1191 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1192 if (!BD->getBlockManglingNumber()) 1193 return LinkageInfo::none(); 1194 1195 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1196 BD->getBlockManglingContextDecl(), computation); 1197 } else { 1198 const auto *FD = cast<FunctionDecl>(OuterD); 1199 if (!FD->isInlined() && 1200 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1201 return LinkageInfo::none(); 1202 1203 LV = getLVForDecl(FD, computation); 1204 } 1205 if (!isExternallyVisible(LV.getLinkage())) 1206 return LinkageInfo::none(); 1207 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1208 LV.isVisibilityExplicit()); 1209 } 1210 1211 static inline const CXXRecordDecl* 1212 getOutermostEnclosingLambda(const CXXRecordDecl *Record) { 1213 const CXXRecordDecl *Ret = Record; 1214 while (Record && Record->isLambda()) { 1215 Ret = Record; 1216 if (!Record->getParent()) break; 1217 // Get the Containing Class of this Lambda Class 1218 Record = dyn_cast_or_null<CXXRecordDecl>( 1219 Record->getParent()->getParent()); 1220 } 1221 return Ret; 1222 } 1223 1224 static LinkageInfo computeLVForDecl(const NamedDecl *D, 1225 LVComputationKind computation) { 1226 // Internal_linkage attribute overrides other considerations. 1227 if (D->hasAttr<InternalLinkageAttr>()) 1228 return LinkageInfo::internal(); 1229 1230 // Objective-C: treat all Objective-C declarations as having external 1231 // linkage. 1232 switch (D->getKind()) { 1233 default: 1234 break; 1235 1236 // Per C++ [basic.link]p2, only the names of objects, references, 1237 // functions, types, templates, namespaces, and values ever have linkage. 1238 // 1239 // Note that the name of a typedef, namespace alias, using declaration, 1240 // and so on are not the name of the corresponding type, namespace, or 1241 // declaration, so they do *not* have linkage. 1242 case Decl::ImplicitParam: 1243 case Decl::Label: 1244 case Decl::NamespaceAlias: 1245 case Decl::ParmVar: 1246 case Decl::Using: 1247 case Decl::UsingShadow: 1248 case Decl::UsingDirective: 1249 return LinkageInfo::none(); 1250 1251 case Decl::EnumConstant: 1252 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1253 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1254 1255 case Decl::Typedef: 1256 case Decl::TypeAlias: 1257 // A typedef declaration has linkage if it gives a type a name for 1258 // linkage purposes. 1259 if (!D->getASTContext().getLangOpts().CPlusPlus || 1260 !cast<TypedefNameDecl>(D) 1261 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1262 return LinkageInfo::none(); 1263 break; 1264 1265 case Decl::TemplateTemplateParm: // count these as external 1266 case Decl::NonTypeTemplateParm: 1267 case Decl::ObjCAtDefsField: 1268 case Decl::ObjCCategory: 1269 case Decl::ObjCCategoryImpl: 1270 case Decl::ObjCCompatibleAlias: 1271 case Decl::ObjCImplementation: 1272 case Decl::ObjCMethod: 1273 case Decl::ObjCProperty: 1274 case Decl::ObjCPropertyImpl: 1275 case Decl::ObjCProtocol: 1276 return LinkageInfo::external(); 1277 1278 case Decl::CXXRecord: { 1279 const auto *Record = cast<CXXRecordDecl>(D); 1280 if (Record->isLambda()) { 1281 if (!Record->getLambdaManglingNumber()) { 1282 // This lambda has no mangling number, so it's internal. 1283 return LinkageInfo::internal(); 1284 } 1285 1286 // This lambda has its linkage/visibility determined: 1287 // - either by the outermost lambda if that lambda has no mangling 1288 // number. 1289 // - or by the parent of the outer most lambda 1290 // This prevents infinite recursion in settings such as nested lambdas 1291 // used in NSDMI's, for e.g. 1292 // struct L { 1293 // int t{}; 1294 // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t); 1295 // }; 1296 const CXXRecordDecl *OuterMostLambda = 1297 getOutermostEnclosingLambda(Record); 1298 if (!OuterMostLambda->getLambdaManglingNumber()) 1299 return LinkageInfo::internal(); 1300 1301 return getLVForClosure( 1302 OuterMostLambda->getDeclContext()->getRedeclContext(), 1303 OuterMostLambda->getLambdaContextDecl(), computation); 1304 } 1305 1306 break; 1307 } 1308 } 1309 1310 // Handle linkage for namespace-scope names. 1311 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1312 return getLVForNamespaceScopeDecl(D, computation); 1313 1314 // C++ [basic.link]p5: 1315 // In addition, a member function, static data member, a named 1316 // class or enumeration of class scope, or an unnamed class or 1317 // enumeration defined in a class-scope typedef declaration such 1318 // that the class or enumeration has the typedef name for linkage 1319 // purposes (7.1.3), has external linkage if the name of the class 1320 // has external linkage. 1321 if (D->getDeclContext()->isRecord()) 1322 return getLVForClassMember(D, computation); 1323 1324 // C++ [basic.link]p6: 1325 // The name of a function declared in block scope and the name of 1326 // an object declared by a block scope extern declaration have 1327 // linkage. If there is a visible declaration of an entity with 1328 // linkage having the same name and type, ignoring entities 1329 // declared outside the innermost enclosing namespace scope, the 1330 // block scope declaration declares that same entity and receives 1331 // the linkage of the previous declaration. If there is more than 1332 // one such matching entity, the program is ill-formed. Otherwise, 1333 // if no matching entity is found, the block scope entity receives 1334 // external linkage. 1335 if (D->getDeclContext()->isFunctionOrMethod()) 1336 return getLVForLocalDecl(D, computation); 1337 1338 // C++ [basic.link]p6: 1339 // Names not covered by these rules have no linkage. 1340 return LinkageInfo::none(); 1341 } 1342 1343 namespace clang { 1344 class LinkageComputer { 1345 public: 1346 static LinkageInfo getLVForDecl(const NamedDecl *D, 1347 LVComputationKind computation) { 1348 // Internal_linkage attribute overrides other considerations. 1349 if (D->hasAttr<InternalLinkageAttr>()) 1350 return LinkageInfo::internal(); 1351 1352 if (computation == LVForLinkageOnly && D->hasCachedLinkage()) 1353 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1354 1355 LinkageInfo LV = computeLVForDecl(D, computation); 1356 if (D->hasCachedLinkage()) 1357 assert(D->getCachedLinkage() == LV.getLinkage()); 1358 1359 D->setCachedLinkage(LV.getLinkage()); 1360 1361 #ifndef NDEBUG 1362 // In C (because of gnu inline) and in c++ with microsoft extensions an 1363 // static can follow an extern, so we can have two decls with different 1364 // linkages. 1365 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1366 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1367 return LV; 1368 1369 // We have just computed the linkage for this decl. By induction we know 1370 // that all other computed linkages match, check that the one we just 1371 // computed also does. 1372 NamedDecl *Old = nullptr; 1373 for (auto I : D->redecls()) { 1374 auto *T = cast<NamedDecl>(I); 1375 if (T == D) 1376 continue; 1377 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1378 Old = T; 1379 break; 1380 } 1381 } 1382 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1383 #endif 1384 1385 return LV; 1386 } 1387 }; 1388 } 1389 1390 static LinkageInfo getLVForDecl(const NamedDecl *D, 1391 LVComputationKind computation) { 1392 return clang::LinkageComputer::getLVForDecl(D, computation); 1393 } 1394 1395 std::string NamedDecl::getQualifiedNameAsString() const { 1396 std::string QualName; 1397 llvm::raw_string_ostream OS(QualName); 1398 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1399 return OS.str(); 1400 } 1401 1402 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1403 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1404 } 1405 1406 void NamedDecl::printQualifiedName(raw_ostream &OS, 1407 const PrintingPolicy &P) const { 1408 const DeclContext *Ctx = getDeclContext(); 1409 1410 if (Ctx->isFunctionOrMethod()) { 1411 printName(OS); 1412 return; 1413 } 1414 1415 typedef SmallVector<const DeclContext *, 8> ContextsTy; 1416 ContextsTy Contexts; 1417 1418 // Collect contexts. 1419 while (Ctx && isa<NamedDecl>(Ctx)) { 1420 Contexts.push_back(Ctx); 1421 Ctx = Ctx->getParent(); 1422 } 1423 1424 for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend(); 1425 I != E; ++I) { 1426 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(*I)) { 1427 OS << Spec->getName(); 1428 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1429 TemplateSpecializationType::PrintTemplateArgumentList(OS, 1430 TemplateArgs.data(), 1431 TemplateArgs.size(), 1432 P); 1433 } else if (const auto *ND = dyn_cast<NamespaceDecl>(*I)) { 1434 if (P.SuppressUnwrittenScope && 1435 (ND->isAnonymousNamespace() || ND->isInline())) 1436 continue; 1437 if (ND->isAnonymousNamespace()) { 1438 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1439 : "(anonymous namespace)"); 1440 } 1441 else 1442 OS << *ND; 1443 } else if (const auto *RD = dyn_cast<RecordDecl>(*I)) { 1444 if (!RD->getIdentifier()) 1445 OS << "(anonymous " << RD->getKindName() << ')'; 1446 else 1447 OS << *RD; 1448 } else if (const auto *FD = dyn_cast<FunctionDecl>(*I)) { 1449 const FunctionProtoType *FT = nullptr; 1450 if (FD->hasWrittenPrototype()) 1451 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1452 1453 OS << *FD << '('; 1454 if (FT) { 1455 unsigned NumParams = FD->getNumParams(); 1456 for (unsigned i = 0; i < NumParams; ++i) { 1457 if (i) 1458 OS << ", "; 1459 OS << FD->getParamDecl(i)->getType().stream(P); 1460 } 1461 1462 if (FT->isVariadic()) { 1463 if (NumParams > 0) 1464 OS << ", "; 1465 OS << "..."; 1466 } 1467 } 1468 OS << ')'; 1469 } else if (const auto *ED = dyn_cast<EnumDecl>(*I)) { 1470 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1471 // enumerator is declared in the scope that immediately contains 1472 // the enum-specifier. Each scoped enumerator is declared in the 1473 // scope of the enumeration. 1474 if (ED->isScoped() || ED->getIdentifier()) 1475 OS << *ED; 1476 else 1477 continue; 1478 } else { 1479 OS << *cast<NamedDecl>(*I); 1480 } 1481 OS << "::"; 1482 } 1483 1484 if (getDeclName()) 1485 OS << *this; 1486 else 1487 OS << "(anonymous)"; 1488 } 1489 1490 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1491 const PrintingPolicy &Policy, 1492 bool Qualified) const { 1493 if (Qualified) 1494 printQualifiedName(OS, Policy); 1495 else 1496 printName(OS); 1497 } 1498 1499 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1500 return true; 1501 } 1502 static bool isRedeclarableImpl(...) { return false; } 1503 static bool isRedeclarable(Decl::Kind K) { 1504 switch (K) { 1505 #define DECL(Type, Base) \ 1506 case Decl::Type: \ 1507 return isRedeclarableImpl((Type##Decl *)nullptr); 1508 #define ABSTRACT_DECL(DECL) 1509 #include "clang/AST/DeclNodes.inc" 1510 } 1511 llvm_unreachable("unknown decl kind"); 1512 } 1513 1514 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { 1515 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1516 1517 // Never replace one imported declaration with another; we need both results 1518 // when re-exporting. 1519 if (OldD->isFromASTFile() && isFromASTFile()) 1520 return false; 1521 1522 // A kind mismatch implies that the declaration is not replaced. 1523 if (OldD->getKind() != getKind()) 1524 return false; 1525 1526 // For method declarations, we never replace. (Why?) 1527 if (isa<ObjCMethodDecl>(this)) 1528 return false; 1529 1530 // For parameters, pick the newer one. This is either an error or (in 1531 // Objective-C) permitted as an extension. 1532 if (isa<ParmVarDecl>(this)) 1533 return true; 1534 1535 // Inline namespaces can give us two declarations with the same 1536 // name and kind in the same scope but different contexts; we should 1537 // keep both declarations in this case. 1538 if (!this->getDeclContext()->getRedeclContext()->Equals( 1539 OldD->getDeclContext()->getRedeclContext())) 1540 return false; 1541 1542 // Using declarations can be replaced if they import the same name from the 1543 // same context. 1544 if (auto *UD = dyn_cast<UsingDecl>(this)) { 1545 ASTContext &Context = getASTContext(); 1546 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1547 Context.getCanonicalNestedNameSpecifier( 1548 cast<UsingDecl>(OldD)->getQualifier()); 1549 } 1550 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1551 ASTContext &Context = getASTContext(); 1552 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1553 Context.getCanonicalNestedNameSpecifier( 1554 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1555 } 1556 1557 // UsingDirectiveDecl's are not really NamedDecl's, and all have same name. 1558 // They can be replaced if they nominate the same namespace. 1559 // FIXME: Is this true even if they have different module visibility? 1560 if (auto *UD = dyn_cast<UsingDirectiveDecl>(this)) 1561 return UD->getNominatedNamespace()->getOriginalNamespace() == 1562 cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace() 1563 ->getOriginalNamespace(); 1564 1565 if (isRedeclarable(getKind())) { 1566 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1567 return false; 1568 1569 if (IsKnownNewer) 1570 return true; 1571 1572 // Check whether this is actually newer than OldD. We want to keep the 1573 // newer declaration. This loop will usually only iterate once, because 1574 // OldD is usually the previous declaration. 1575 for (auto D : redecls()) { 1576 if (D == OldD) 1577 break; 1578 1579 // If we reach the canonical declaration, then OldD is not actually older 1580 // than this one. 1581 // 1582 // FIXME: In this case, we should not add this decl to the lookup table. 1583 if (D->isCanonicalDecl()) 1584 return false; 1585 } 1586 1587 // It's a newer declaration of the same kind of declaration in the same 1588 // scope: we want this decl instead of the existing one. 1589 return true; 1590 } 1591 1592 // In all other cases, we need to keep both declarations in case they have 1593 // different visibility. Any attempt to use the name will result in an 1594 // ambiguity if more than one is visible. 1595 return false; 1596 } 1597 1598 bool NamedDecl::hasLinkage() const { 1599 return getFormalLinkage() != NoLinkage; 1600 } 1601 1602 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1603 NamedDecl *ND = this; 1604 while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1605 ND = UD->getTargetDecl(); 1606 1607 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1608 return AD->getClassInterface(); 1609 1610 return ND; 1611 } 1612 1613 bool NamedDecl::isCXXInstanceMember() const { 1614 if (!isCXXClassMember()) 1615 return false; 1616 1617 const NamedDecl *D = this; 1618 if (isa<UsingShadowDecl>(D)) 1619 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1620 1621 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1622 return true; 1623 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1624 return MD->isInstance(); 1625 return false; 1626 } 1627 1628 //===----------------------------------------------------------------------===// 1629 // DeclaratorDecl Implementation 1630 //===----------------------------------------------------------------------===// 1631 1632 template <typename DeclT> 1633 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1634 if (decl->getNumTemplateParameterLists() > 0) 1635 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1636 else 1637 return decl->getInnerLocStart(); 1638 } 1639 1640 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1641 TypeSourceInfo *TSI = getTypeSourceInfo(); 1642 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1643 return SourceLocation(); 1644 } 1645 1646 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1647 if (QualifierLoc) { 1648 // Make sure the extended decl info is allocated. 1649 if (!hasExtInfo()) { 1650 // Save (non-extended) type source info pointer. 1651 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1652 // Allocate external info struct. 1653 DeclInfo = new (getASTContext()) ExtInfo; 1654 // Restore savedTInfo into (extended) decl info. 1655 getExtInfo()->TInfo = savedTInfo; 1656 } 1657 // Set qualifier info. 1658 getExtInfo()->QualifierLoc = QualifierLoc; 1659 } else { 1660 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1661 if (hasExtInfo()) { 1662 if (getExtInfo()->NumTemplParamLists == 0) { 1663 // Save type source info pointer. 1664 TypeSourceInfo *savedTInfo = getExtInfo()->TInfo; 1665 // Deallocate the extended decl info. 1666 getASTContext().Deallocate(getExtInfo()); 1667 // Restore savedTInfo into (non-extended) decl info. 1668 DeclInfo = savedTInfo; 1669 } 1670 else 1671 getExtInfo()->QualifierLoc = QualifierLoc; 1672 } 1673 } 1674 } 1675 1676 void DeclaratorDecl::setTemplateParameterListsInfo( 1677 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1678 assert(!TPLists.empty()); 1679 // Make sure the extended decl info is allocated. 1680 if (!hasExtInfo()) { 1681 // Save (non-extended) type source info pointer. 1682 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1683 // Allocate external info struct. 1684 DeclInfo = new (getASTContext()) ExtInfo; 1685 // Restore savedTInfo into (extended) decl info. 1686 getExtInfo()->TInfo = savedTInfo; 1687 } 1688 // Set the template parameter lists info. 1689 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 1690 } 1691 1692 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1693 return getTemplateOrInnerLocStart(this); 1694 } 1695 1696 namespace { 1697 1698 // Helper function: returns true if QT is or contains a type 1699 // having a postfix component. 1700 bool typeIsPostfix(clang::QualType QT) { 1701 while (true) { 1702 const Type* T = QT.getTypePtr(); 1703 switch (T->getTypeClass()) { 1704 default: 1705 return false; 1706 case Type::Pointer: 1707 QT = cast<PointerType>(T)->getPointeeType(); 1708 break; 1709 case Type::BlockPointer: 1710 QT = cast<BlockPointerType>(T)->getPointeeType(); 1711 break; 1712 case Type::MemberPointer: 1713 QT = cast<MemberPointerType>(T)->getPointeeType(); 1714 break; 1715 case Type::LValueReference: 1716 case Type::RValueReference: 1717 QT = cast<ReferenceType>(T)->getPointeeType(); 1718 break; 1719 case Type::PackExpansion: 1720 QT = cast<PackExpansionType>(T)->getPattern(); 1721 break; 1722 case Type::Paren: 1723 case Type::ConstantArray: 1724 case Type::DependentSizedArray: 1725 case Type::IncompleteArray: 1726 case Type::VariableArray: 1727 case Type::FunctionProto: 1728 case Type::FunctionNoProto: 1729 return true; 1730 } 1731 } 1732 } 1733 1734 } // namespace 1735 1736 SourceRange DeclaratorDecl::getSourceRange() const { 1737 SourceLocation RangeEnd = getLocation(); 1738 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 1739 // If the declaration has no name or the type extends past the name take the 1740 // end location of the type. 1741 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 1742 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 1743 } 1744 return SourceRange(getOuterLocStart(), RangeEnd); 1745 } 1746 1747 void QualifierInfo::setTemplateParameterListsInfo( 1748 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1749 // Free previous template parameters (if any). 1750 if (NumTemplParamLists > 0) { 1751 Context.Deallocate(TemplParamLists); 1752 TemplParamLists = nullptr; 1753 NumTemplParamLists = 0; 1754 } 1755 // Set info on matched template parameter lists (if any). 1756 if (!TPLists.empty()) { 1757 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 1758 NumTemplParamLists = TPLists.size(); 1759 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 1760 } 1761 } 1762 1763 //===----------------------------------------------------------------------===// 1764 // VarDecl Implementation 1765 //===----------------------------------------------------------------------===// 1766 1767 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 1768 switch (SC) { 1769 case SC_None: break; 1770 case SC_Auto: return "auto"; 1771 case SC_Extern: return "extern"; 1772 case SC_PrivateExtern: return "__private_extern__"; 1773 case SC_Register: return "register"; 1774 case SC_Static: return "static"; 1775 } 1776 1777 llvm_unreachable("Invalid storage class"); 1778 } 1779 1780 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 1781 SourceLocation StartLoc, SourceLocation IdLoc, 1782 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1783 StorageClass SC) 1784 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 1785 redeclarable_base(C), Init() { 1786 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 1787 "VarDeclBitfields too large!"); 1788 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 1789 "ParmVarDeclBitfields too large!"); 1790 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 1791 "NonParmVarDeclBitfields too large!"); 1792 AllBits = 0; 1793 VarDeclBits.SClass = SC; 1794 // Everything else is implicitly initialized to false. 1795 } 1796 1797 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, 1798 SourceLocation StartL, SourceLocation IdL, 1799 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1800 StorageClass S) { 1801 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 1802 } 1803 1804 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 1805 return new (C, ID) 1806 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 1807 QualType(), nullptr, SC_None); 1808 } 1809 1810 void VarDecl::setStorageClass(StorageClass SC) { 1811 assert(isLegalForVariable(SC)); 1812 VarDeclBits.SClass = SC; 1813 } 1814 1815 VarDecl::TLSKind VarDecl::getTLSKind() const { 1816 switch (VarDeclBits.TSCSpec) { 1817 case TSCS_unspecified: 1818 if (!hasAttr<ThreadAttr>() && 1819 !(getASTContext().getLangOpts().OpenMPUseTLS && 1820 getASTContext().getTargetInfo().isTLSSupported() && 1821 hasAttr<OMPThreadPrivateDeclAttr>())) 1822 return TLS_None; 1823 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 1824 LangOptions::MSVC2015)) || 1825 hasAttr<OMPThreadPrivateDeclAttr>()) 1826 ? TLS_Dynamic 1827 : TLS_Static; 1828 case TSCS___thread: // Fall through. 1829 case TSCS__Thread_local: 1830 return TLS_Static; 1831 case TSCS_thread_local: 1832 return TLS_Dynamic; 1833 } 1834 llvm_unreachable("Unknown thread storage class specifier!"); 1835 } 1836 1837 SourceRange VarDecl::getSourceRange() const { 1838 if (const Expr *Init = getInit()) { 1839 SourceLocation InitEnd = Init->getLocEnd(); 1840 // If Init is implicit, ignore its source range and fallback on 1841 // DeclaratorDecl::getSourceRange() to handle postfix elements. 1842 if (InitEnd.isValid() && InitEnd != getLocation()) 1843 return SourceRange(getOuterLocStart(), InitEnd); 1844 } 1845 return DeclaratorDecl::getSourceRange(); 1846 } 1847 1848 template<typename T> 1849 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 1850 // C++ [dcl.link]p1: All function types, function names with external linkage, 1851 // and variable names with external linkage have a language linkage. 1852 if (!D.hasExternalFormalLinkage()) 1853 return NoLanguageLinkage; 1854 1855 // Language linkage is a C++ concept, but saying that everything else in C has 1856 // C language linkage fits the implementation nicely. 1857 ASTContext &Context = D.getASTContext(); 1858 if (!Context.getLangOpts().CPlusPlus) 1859 return CLanguageLinkage; 1860 1861 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 1862 // language linkage of the names of class members and the function type of 1863 // class member functions. 1864 const DeclContext *DC = D.getDeclContext(); 1865 if (DC->isRecord()) 1866 return CXXLanguageLinkage; 1867 1868 // If the first decl is in an extern "C" context, any other redeclaration 1869 // will have C language linkage. If the first one is not in an extern "C" 1870 // context, we would have reported an error for any other decl being in one. 1871 if (isFirstInExternCContext(&D)) 1872 return CLanguageLinkage; 1873 return CXXLanguageLinkage; 1874 } 1875 1876 template<typename T> 1877 static bool isDeclExternC(const T &D) { 1878 // Since the context is ignored for class members, they can only have C++ 1879 // language linkage or no language linkage. 1880 const DeclContext *DC = D.getDeclContext(); 1881 if (DC->isRecord()) { 1882 assert(D.getASTContext().getLangOpts().CPlusPlus); 1883 return false; 1884 } 1885 1886 return D.getLanguageLinkage() == CLanguageLinkage; 1887 } 1888 1889 LanguageLinkage VarDecl::getLanguageLinkage() const { 1890 return getDeclLanguageLinkage(*this); 1891 } 1892 1893 bool VarDecl::isExternC() const { 1894 return isDeclExternC(*this); 1895 } 1896 1897 bool VarDecl::isInExternCContext() const { 1898 return getLexicalDeclContext()->isExternCContext(); 1899 } 1900 1901 bool VarDecl::isInExternCXXContext() const { 1902 return getLexicalDeclContext()->isExternCXXContext(); 1903 } 1904 1905 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 1906 1907 VarDecl::DefinitionKind 1908 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 1909 // C++ [basic.def]p2: 1910 // A declaration is a definition unless [...] it contains the 'extern' 1911 // specifier or a linkage-specification and neither an initializer [...], 1912 // it declares a static data member in a class declaration [...]. 1913 // C++1y [temp.expl.spec]p15: 1914 // An explicit specialization of a static data member or an explicit 1915 // specialization of a static data member template is a definition if the 1916 // declaration includes an initializer; otherwise, it is a declaration. 1917 // 1918 // FIXME: How do you declare (but not define) a partial specialization of 1919 // a static data member template outside the containing class? 1920 if (isStaticDataMember()) { 1921 if (isOutOfLine() && 1922 (hasInit() || 1923 // If the first declaration is out-of-line, this may be an 1924 // instantiation of an out-of-line partial specialization of a variable 1925 // template for which we have not yet instantiated the initializer. 1926 (getFirstDecl()->isOutOfLine() 1927 ? getTemplateSpecializationKind() == TSK_Undeclared 1928 : getTemplateSpecializationKind() != 1929 TSK_ExplicitSpecialization) || 1930 isa<VarTemplatePartialSpecializationDecl>(this))) 1931 return Definition; 1932 else 1933 return DeclarationOnly; 1934 } 1935 // C99 6.7p5: 1936 // A definition of an identifier is a declaration for that identifier that 1937 // [...] causes storage to be reserved for that object. 1938 // Note: that applies for all non-file-scope objects. 1939 // C99 6.9.2p1: 1940 // If the declaration of an identifier for an object has file scope and an 1941 // initializer, the declaration is an external definition for the identifier 1942 if (hasInit()) 1943 return Definition; 1944 1945 if (hasAttr<AliasAttr>()) 1946 return Definition; 1947 1948 if (const auto *SAA = getAttr<SelectAnyAttr>()) 1949 if (!SAA->isInherited()) 1950 return Definition; 1951 1952 // A variable template specialization (other than a static data member 1953 // template or an explicit specialization) is a declaration until we 1954 // instantiate its initializer. 1955 if (isa<VarTemplateSpecializationDecl>(this) && 1956 getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 1957 return DeclarationOnly; 1958 1959 if (hasExternalStorage()) 1960 return DeclarationOnly; 1961 1962 // [dcl.link] p7: 1963 // A declaration directly contained in a linkage-specification is treated 1964 // as if it contains the extern specifier for the purpose of determining 1965 // the linkage of the declared name and whether it is a definition. 1966 if (isSingleLineLanguageLinkage(*this)) 1967 return DeclarationOnly; 1968 1969 // C99 6.9.2p2: 1970 // A declaration of an object that has file scope without an initializer, 1971 // and without a storage class specifier or the scs 'static', constitutes 1972 // a tentative definition. 1973 // No such thing in C++. 1974 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 1975 return TentativeDefinition; 1976 1977 // What's left is (in C, block-scope) declarations without initializers or 1978 // external storage. These are definitions. 1979 return Definition; 1980 } 1981 1982 VarDecl *VarDecl::getActingDefinition() { 1983 DefinitionKind Kind = isThisDeclarationADefinition(); 1984 if (Kind != TentativeDefinition) 1985 return nullptr; 1986 1987 VarDecl *LastTentative = nullptr; 1988 VarDecl *First = getFirstDecl(); 1989 for (auto I : First->redecls()) { 1990 Kind = I->isThisDeclarationADefinition(); 1991 if (Kind == Definition) 1992 return nullptr; 1993 else if (Kind == TentativeDefinition) 1994 LastTentative = I; 1995 } 1996 return LastTentative; 1997 } 1998 1999 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2000 VarDecl *First = getFirstDecl(); 2001 for (auto I : First->redecls()) { 2002 if (I->isThisDeclarationADefinition(C) == Definition) 2003 return I; 2004 } 2005 return nullptr; 2006 } 2007 2008 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2009 DefinitionKind Kind = DeclarationOnly; 2010 2011 const VarDecl *First = getFirstDecl(); 2012 for (auto I : First->redecls()) { 2013 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2014 if (Kind == Definition) 2015 break; 2016 } 2017 2018 return Kind; 2019 } 2020 2021 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2022 for (auto I : redecls()) { 2023 if (auto Expr = I->getInit()) { 2024 D = I; 2025 return Expr; 2026 } 2027 } 2028 return nullptr; 2029 } 2030 2031 bool VarDecl::isOutOfLine() const { 2032 if (Decl::isOutOfLine()) 2033 return true; 2034 2035 if (!isStaticDataMember()) 2036 return false; 2037 2038 // If this static data member was instantiated from a static data member of 2039 // a class template, check whether that static data member was defined 2040 // out-of-line. 2041 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2042 return VD->isOutOfLine(); 2043 2044 return false; 2045 } 2046 2047 VarDecl *VarDecl::getOutOfLineDefinition() { 2048 if (!isStaticDataMember()) 2049 return nullptr; 2050 2051 for (auto RD : redecls()) { 2052 if (RD->getLexicalDeclContext()->isFileContext()) 2053 return RD; 2054 } 2055 2056 return nullptr; 2057 } 2058 2059 void VarDecl::setInit(Expr *I) { 2060 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2061 Eval->~EvaluatedStmt(); 2062 getASTContext().Deallocate(Eval); 2063 } 2064 2065 Init = I; 2066 } 2067 2068 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const { 2069 const LangOptions &Lang = C.getLangOpts(); 2070 2071 if (!Lang.CPlusPlus) 2072 return false; 2073 2074 // In C++11, any variable of reference type can be used in a constant 2075 // expression if it is initialized by a constant expression. 2076 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2077 return true; 2078 2079 // Only const objects can be used in constant expressions in C++. C++98 does 2080 // not require the variable to be non-volatile, but we consider this to be a 2081 // defect. 2082 if (!getType().isConstQualified() || getType().isVolatileQualified()) 2083 return false; 2084 2085 // In C++, const, non-volatile variables of integral or enumeration types 2086 // can be used in constant expressions. 2087 if (getType()->isIntegralOrEnumerationType()) 2088 return true; 2089 2090 // Additionally, in C++11, non-volatile constexpr variables can be used in 2091 // constant expressions. 2092 return Lang.CPlusPlus11 && isConstexpr(); 2093 } 2094 2095 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2096 /// form, which contains extra information on the evaluated value of the 2097 /// initializer. 2098 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2099 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2100 if (!Eval) { 2101 auto *S = Init.get<Stmt *>(); 2102 // Note: EvaluatedStmt contains an APValue, which usually holds 2103 // resources not allocated from the ASTContext. We need to do some 2104 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2105 // where we can detect whether there's anything to clean up or not. 2106 Eval = new (getASTContext()) EvaluatedStmt; 2107 Eval->Value = S; 2108 Init = Eval; 2109 } 2110 return Eval; 2111 } 2112 2113 APValue *VarDecl::evaluateValue() const { 2114 SmallVector<PartialDiagnosticAt, 8> Notes; 2115 return evaluateValue(Notes); 2116 } 2117 2118 namespace { 2119 // Destroy an APValue that was allocated in an ASTContext. 2120 void DestroyAPValue(void* UntypedValue) { 2121 static_cast<APValue*>(UntypedValue)->~APValue(); 2122 } 2123 } // namespace 2124 2125 APValue *VarDecl::evaluateValue( 2126 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2127 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2128 2129 // We only produce notes indicating why an initializer is non-constant the 2130 // first time it is evaluated. FIXME: The notes won't always be emitted the 2131 // first time we try evaluation, so might not be produced at all. 2132 if (Eval->WasEvaluated) 2133 return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated; 2134 2135 const auto *Init = cast<Expr>(Eval->Value); 2136 assert(!Init->isValueDependent()); 2137 2138 if (Eval->IsEvaluating) { 2139 // FIXME: Produce a diagnostic for self-initialization. 2140 Eval->CheckedICE = true; 2141 Eval->IsICE = false; 2142 return nullptr; 2143 } 2144 2145 Eval->IsEvaluating = true; 2146 2147 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), 2148 this, Notes); 2149 2150 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2151 // or that it's empty (so that there's nothing to clean up) if evaluation 2152 // failed. 2153 if (!Result) 2154 Eval->Evaluated = APValue(); 2155 else if (Eval->Evaluated.needsCleanup()) 2156 getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated); 2157 2158 Eval->IsEvaluating = false; 2159 Eval->WasEvaluated = true; 2160 2161 // In C++11, we have determined whether the initializer was a constant 2162 // expression as a side-effect. 2163 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { 2164 Eval->CheckedICE = true; 2165 Eval->IsICE = Result && Notes.empty(); 2166 } 2167 2168 return Result ? &Eval->Evaluated : nullptr; 2169 } 2170 2171 bool VarDecl::checkInitIsICE() const { 2172 // Initializers of weak variables are never ICEs. 2173 if (isWeak()) 2174 return false; 2175 2176 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2177 if (Eval->CheckedICE) 2178 // We have already checked whether this subexpression is an 2179 // integral constant expression. 2180 return Eval->IsICE; 2181 2182 const auto *Init = cast<Expr>(Eval->Value); 2183 assert(!Init->isValueDependent()); 2184 2185 // In C++11, evaluate the initializer to check whether it's a constant 2186 // expression. 2187 if (getASTContext().getLangOpts().CPlusPlus11) { 2188 SmallVector<PartialDiagnosticAt, 8> Notes; 2189 evaluateValue(Notes); 2190 return Eval->IsICE; 2191 } 2192 2193 // It's an ICE whether or not the definition we found is 2194 // out-of-line. See DR 721 and the discussion in Clang PR 2195 // 6206 for details. 2196 2197 if (Eval->CheckingICE) 2198 return false; 2199 Eval->CheckingICE = true; 2200 2201 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); 2202 Eval->CheckingICE = false; 2203 Eval->CheckedICE = true; 2204 return Eval->IsICE; 2205 } 2206 2207 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2208 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2209 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2210 2211 return nullptr; 2212 } 2213 2214 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2215 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2216 return Spec->getSpecializationKind(); 2217 2218 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2219 return MSI->getTemplateSpecializationKind(); 2220 2221 return TSK_Undeclared; 2222 } 2223 2224 SourceLocation VarDecl::getPointOfInstantiation() const { 2225 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2226 return Spec->getPointOfInstantiation(); 2227 2228 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2229 return MSI->getPointOfInstantiation(); 2230 2231 return SourceLocation(); 2232 } 2233 2234 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2235 return getASTContext().getTemplateOrSpecializationInfo(this) 2236 .dyn_cast<VarTemplateDecl *>(); 2237 } 2238 2239 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2240 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2241 } 2242 2243 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2244 if (isStaticDataMember()) 2245 // FIXME: Remove ? 2246 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2247 return getASTContext().getTemplateOrSpecializationInfo(this) 2248 .dyn_cast<MemberSpecializationInfo *>(); 2249 return nullptr; 2250 } 2251 2252 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2253 SourceLocation PointOfInstantiation) { 2254 assert((isa<VarTemplateSpecializationDecl>(this) || 2255 getMemberSpecializationInfo()) && 2256 "not a variable or static data member template specialization"); 2257 2258 if (VarTemplateSpecializationDecl *Spec = 2259 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2260 Spec->setSpecializationKind(TSK); 2261 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2262 Spec->getPointOfInstantiation().isInvalid()) 2263 Spec->setPointOfInstantiation(PointOfInstantiation); 2264 } 2265 2266 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2267 MSI->setTemplateSpecializationKind(TSK); 2268 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2269 MSI->getPointOfInstantiation().isInvalid()) 2270 MSI->setPointOfInstantiation(PointOfInstantiation); 2271 } 2272 } 2273 2274 void 2275 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2276 TemplateSpecializationKind TSK) { 2277 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2278 "Previous template or instantiation?"); 2279 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2280 } 2281 2282 //===----------------------------------------------------------------------===// 2283 // ParmVarDecl Implementation 2284 //===----------------------------------------------------------------------===// 2285 2286 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2287 SourceLocation StartLoc, 2288 SourceLocation IdLoc, IdentifierInfo *Id, 2289 QualType T, TypeSourceInfo *TInfo, 2290 StorageClass S, Expr *DefArg) { 2291 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2292 S, DefArg); 2293 } 2294 2295 QualType ParmVarDecl::getOriginalType() const { 2296 TypeSourceInfo *TSI = getTypeSourceInfo(); 2297 QualType T = TSI ? TSI->getType() : getType(); 2298 if (const auto *DT = dyn_cast<DecayedType>(T)) 2299 return DT->getOriginalType(); 2300 return T; 2301 } 2302 2303 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2304 return new (C, ID) 2305 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2306 nullptr, QualType(), nullptr, SC_None, nullptr); 2307 } 2308 2309 SourceRange ParmVarDecl::getSourceRange() const { 2310 if (!hasInheritedDefaultArg()) { 2311 SourceRange ArgRange = getDefaultArgRange(); 2312 if (ArgRange.isValid()) 2313 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2314 } 2315 2316 // DeclaratorDecl considers the range of postfix types as overlapping with the 2317 // declaration name, but this is not the case with parameters in ObjC methods. 2318 if (isa<ObjCMethodDecl>(getDeclContext())) 2319 return SourceRange(DeclaratorDecl::getLocStart(), getLocation()); 2320 2321 return DeclaratorDecl::getSourceRange(); 2322 } 2323 2324 Expr *ParmVarDecl::getDefaultArg() { 2325 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2326 assert(!hasUninstantiatedDefaultArg() && 2327 "Default argument is not yet instantiated!"); 2328 2329 Expr *Arg = getInit(); 2330 if (auto *E = dyn_cast_or_null<ExprWithCleanups>(Arg)) 2331 return E->getSubExpr(); 2332 2333 return Arg; 2334 } 2335 2336 SourceRange ParmVarDecl::getDefaultArgRange() const { 2337 if (const Expr *E = getInit()) 2338 return E->getSourceRange(); 2339 2340 if (hasUninstantiatedDefaultArg()) 2341 return getUninstantiatedDefaultArg()->getSourceRange(); 2342 2343 return SourceRange(); 2344 } 2345 2346 bool ParmVarDecl::isParameterPack() const { 2347 return isa<PackExpansionType>(getType()); 2348 } 2349 2350 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2351 getASTContext().setParameterIndex(this, parameterIndex); 2352 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2353 } 2354 2355 unsigned ParmVarDecl::getParameterIndexLarge() const { 2356 return getASTContext().getParameterIndex(this); 2357 } 2358 2359 //===----------------------------------------------------------------------===// 2360 // FunctionDecl Implementation 2361 //===----------------------------------------------------------------------===// 2362 2363 void FunctionDecl::getNameForDiagnostic( 2364 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2365 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2366 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2367 if (TemplateArgs) 2368 TemplateSpecializationType::PrintTemplateArgumentList( 2369 OS, TemplateArgs->data(), TemplateArgs->size(), Policy); 2370 } 2371 2372 bool FunctionDecl::isVariadic() const { 2373 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 2374 return FT->isVariadic(); 2375 return false; 2376 } 2377 2378 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 2379 for (auto I : redecls()) { 2380 if (I->Body || I->IsLateTemplateParsed) { 2381 Definition = I; 2382 return true; 2383 } 2384 } 2385 2386 return false; 2387 } 2388 2389 bool FunctionDecl::hasTrivialBody() const 2390 { 2391 Stmt *S = getBody(); 2392 if (!S) { 2393 // Since we don't have a body for this function, we don't know if it's 2394 // trivial or not. 2395 return false; 2396 } 2397 2398 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 2399 return true; 2400 return false; 2401 } 2402 2403 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { 2404 for (auto I : redecls()) { 2405 if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed || 2406 I->hasAttr<AliasAttr>()) { 2407 Definition = I->IsDeleted ? I->getCanonicalDecl() : I; 2408 return true; 2409 } 2410 } 2411 2412 return false; 2413 } 2414 2415 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 2416 if (!hasBody(Definition)) 2417 return nullptr; 2418 2419 if (Definition->Body) 2420 return Definition->Body.get(getASTContext().getExternalSource()); 2421 2422 return nullptr; 2423 } 2424 2425 void FunctionDecl::setBody(Stmt *B) { 2426 Body = B; 2427 if (B) 2428 EndRangeLoc = B->getLocEnd(); 2429 } 2430 2431 void FunctionDecl::setPure(bool P) { 2432 IsPure = P; 2433 if (P) 2434 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 2435 Parent->markedVirtualFunctionPure(); 2436 } 2437 2438 template<std::size_t Len> 2439 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 2440 IdentifierInfo *II = ND->getIdentifier(); 2441 return II && II->isStr(Str); 2442 } 2443 2444 bool FunctionDecl::isMain() const { 2445 const TranslationUnitDecl *tunit = 2446 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2447 return tunit && 2448 !tunit->getASTContext().getLangOpts().Freestanding && 2449 isNamed(this, "main"); 2450 } 2451 2452 bool FunctionDecl::isMSVCRTEntryPoint() const { 2453 const TranslationUnitDecl *TUnit = 2454 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2455 if (!TUnit) 2456 return false; 2457 2458 // Even though we aren't really targeting MSVCRT if we are freestanding, 2459 // semantic analysis for these functions remains the same. 2460 2461 // MSVCRT entry points only exist on MSVCRT targets. 2462 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 2463 return false; 2464 2465 // Nameless functions like constructors cannot be entry points. 2466 if (!getIdentifier()) 2467 return false; 2468 2469 return llvm::StringSwitch<bool>(getName()) 2470 .Cases("main", // an ANSI console app 2471 "wmain", // a Unicode console App 2472 "WinMain", // an ANSI GUI app 2473 "wWinMain", // a Unicode GUI app 2474 "DllMain", // a DLL 2475 true) 2476 .Default(false); 2477 } 2478 2479 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 2480 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); 2481 assert(getDeclName().getCXXOverloadedOperator() == OO_New || 2482 getDeclName().getCXXOverloadedOperator() == OO_Delete || 2483 getDeclName().getCXXOverloadedOperator() == OO_Array_New || 2484 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); 2485 2486 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2487 return false; 2488 2489 const auto *proto = getType()->castAs<FunctionProtoType>(); 2490 if (proto->getNumParams() != 2 || proto->isVariadic()) 2491 return false; 2492 2493 ASTContext &Context = 2494 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 2495 ->getASTContext(); 2496 2497 // The result type and first argument type are constant across all 2498 // these operators. The second argument must be exactly void*. 2499 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 2500 } 2501 2502 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const { 2503 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 2504 return false; 2505 if (getDeclName().getCXXOverloadedOperator() != OO_New && 2506 getDeclName().getCXXOverloadedOperator() != OO_Delete && 2507 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 2508 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 2509 return false; 2510 2511 if (isa<CXXRecordDecl>(getDeclContext())) 2512 return false; 2513 2514 // This can only fail for an invalid 'operator new' declaration. 2515 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2516 return false; 2517 2518 const auto *FPT = getType()->castAs<FunctionProtoType>(); 2519 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic()) 2520 return false; 2521 2522 // If this is a single-parameter function, it must be a replaceable global 2523 // allocation or deallocation function. 2524 if (FPT->getNumParams() == 1) 2525 return true; 2526 2527 // Otherwise, we're looking for a second parameter whose type is 2528 // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'. 2529 QualType Ty = FPT->getParamType(1); 2530 ASTContext &Ctx = getASTContext(); 2531 if (Ctx.getLangOpts().SizedDeallocation && 2532 Ctx.hasSameType(Ty, Ctx.getSizeType())) 2533 return true; 2534 if (!Ty->isReferenceType()) 2535 return false; 2536 Ty = Ty->getPointeeType(); 2537 if (Ty.getCVRQualifiers() != Qualifiers::Const) 2538 return false; 2539 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 2540 return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace(); 2541 } 2542 2543 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 2544 return getDeclLanguageLinkage(*this); 2545 } 2546 2547 bool FunctionDecl::isExternC() const { 2548 return isDeclExternC(*this); 2549 } 2550 2551 bool FunctionDecl::isInExternCContext() const { 2552 return getLexicalDeclContext()->isExternCContext(); 2553 } 2554 2555 bool FunctionDecl::isInExternCXXContext() const { 2556 return getLexicalDeclContext()->isExternCXXContext(); 2557 } 2558 2559 bool FunctionDecl::isGlobal() const { 2560 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 2561 return Method->isStatic(); 2562 2563 if (getCanonicalDecl()->getStorageClass() == SC_Static) 2564 return false; 2565 2566 for (const DeclContext *DC = getDeclContext(); 2567 DC->isNamespace(); 2568 DC = DC->getParent()) { 2569 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 2570 if (!Namespace->getDeclName()) 2571 return false; 2572 break; 2573 } 2574 } 2575 2576 return true; 2577 } 2578 2579 bool FunctionDecl::isNoReturn() const { 2580 return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 2581 hasAttr<C11NoReturnAttr>() || 2582 getType()->getAs<FunctionType>()->getNoReturnAttr(); 2583 } 2584 2585 void 2586 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 2587 redeclarable_base::setPreviousDecl(PrevDecl); 2588 2589 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 2590 FunctionTemplateDecl *PrevFunTmpl 2591 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 2592 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 2593 FunTmpl->setPreviousDecl(PrevFunTmpl); 2594 } 2595 2596 if (PrevDecl && PrevDecl->IsInline) 2597 IsInline = true; 2598 } 2599 2600 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 2601 2602 /// \brief Returns a value indicating whether this function 2603 /// corresponds to a builtin function. 2604 /// 2605 /// The function corresponds to a built-in function if it is 2606 /// declared at translation scope or within an extern "C" block and 2607 /// its name matches with the name of a builtin. The returned value 2608 /// will be 0 for functions that do not correspond to a builtin, a 2609 /// value of type \c Builtin::ID if in the target-independent range 2610 /// \c [1,Builtin::First), or a target-specific builtin value. 2611 unsigned FunctionDecl::getBuiltinID() const { 2612 if (!getIdentifier()) 2613 return 0; 2614 2615 unsigned BuiltinID = getIdentifier()->getBuiltinID(); 2616 if (!BuiltinID) 2617 return 0; 2618 2619 ASTContext &Context = getASTContext(); 2620 if (Context.getLangOpts().CPlusPlus) { 2621 const auto *LinkageDecl = 2622 dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext()); 2623 // In C++, the first declaration of a builtin is always inside an implicit 2624 // extern "C". 2625 // FIXME: A recognised library function may not be directly in an extern "C" 2626 // declaration, for instance "extern "C" { namespace std { decl } }". 2627 if (!LinkageDecl) { 2628 if (BuiltinID == Builtin::BI__GetExceptionInfo && 2629 Context.getTargetInfo().getCXXABI().isMicrosoft() && 2630 isInStdNamespace()) 2631 return Builtin::BI__GetExceptionInfo; 2632 return 0; 2633 } 2634 if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c) 2635 return 0; 2636 } 2637 2638 // If the function is marked "overloadable", it has a different mangled name 2639 // and is not the C library function. 2640 if (hasAttr<OverloadableAttr>()) 2641 return 0; 2642 2643 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 2644 return BuiltinID; 2645 2646 // This function has the name of a known C library 2647 // function. Determine whether it actually refers to the C library 2648 // function or whether it just has the same name. 2649 2650 // If this is a static function, it's not a builtin. 2651 if (getStorageClass() == SC_Static) 2652 return 0; 2653 2654 return BuiltinID; 2655 } 2656 2657 2658 /// getNumParams - Return the number of parameters this function must have 2659 /// based on its FunctionType. This is the length of the ParamInfo array 2660 /// after it has been created. 2661 unsigned FunctionDecl::getNumParams() const { 2662 const auto *FPT = getType()->getAs<FunctionProtoType>(); 2663 return FPT ? FPT->getNumParams() : 0; 2664 } 2665 2666 void FunctionDecl::setParams(ASTContext &C, 2667 ArrayRef<ParmVarDecl *> NewParamInfo) { 2668 assert(!ParamInfo && "Already has param info!"); 2669 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 2670 2671 // Zero params -> null pointer. 2672 if (!NewParamInfo.empty()) { 2673 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 2674 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 2675 } 2676 } 2677 2678 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) { 2679 assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!"); 2680 2681 if (!NewDecls.empty()) { 2682 NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()]; 2683 std::copy(NewDecls.begin(), NewDecls.end(), A); 2684 DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size()); 2685 // Move declarations introduced in prototype to the function context. 2686 for (auto I : NewDecls) { 2687 DeclContext *DC = I->getDeclContext(); 2688 // Forward-declared reference to an enumeration is not added to 2689 // declaration scope, so skip declaration that is absent from its 2690 // declaration contexts. 2691 if (DC->containsDecl(I)) { 2692 DC->removeDecl(I); 2693 I->setDeclContext(this); 2694 addDecl(I); 2695 } 2696 } 2697 } 2698 } 2699 2700 /// getMinRequiredArguments - Returns the minimum number of arguments 2701 /// needed to call this function. This may be fewer than the number of 2702 /// function parameters, if some of the parameters have default 2703 /// arguments (in C++) or are parameter packs (C++11). 2704 unsigned FunctionDecl::getMinRequiredArguments() const { 2705 if (!getASTContext().getLangOpts().CPlusPlus) 2706 return getNumParams(); 2707 2708 unsigned NumRequiredArgs = 0; 2709 for (auto *Param : params()) 2710 if (!Param->isParameterPack() && !Param->hasDefaultArg()) 2711 ++NumRequiredArgs; 2712 return NumRequiredArgs; 2713 } 2714 2715 /// \brief The combination of the extern and inline keywords under MSVC forces 2716 /// the function to be required. 2717 /// 2718 /// Note: This function assumes that we will only get called when isInlined() 2719 /// would return true for this FunctionDecl. 2720 bool FunctionDecl::isMSExternInline() const { 2721 assert(isInlined() && "expected to get called on an inlined function!"); 2722 2723 const ASTContext &Context = getASTContext(); 2724 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 2725 !hasAttr<DLLExportAttr>()) 2726 return false; 2727 2728 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 2729 FD = FD->getPreviousDecl()) 2730 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 2731 return true; 2732 2733 return false; 2734 } 2735 2736 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 2737 if (Redecl->getStorageClass() != SC_Extern) 2738 return false; 2739 2740 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 2741 FD = FD->getPreviousDecl()) 2742 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 2743 return false; 2744 2745 return true; 2746 } 2747 2748 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 2749 // Only consider file-scope declarations in this test. 2750 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 2751 return false; 2752 2753 // Only consider explicit declarations; the presence of a builtin for a 2754 // libcall shouldn't affect whether a definition is externally visible. 2755 if (Redecl->isImplicit()) 2756 return false; 2757 2758 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 2759 return true; // Not an inline definition 2760 2761 return false; 2762 } 2763 2764 /// \brief For a function declaration in C or C++, determine whether this 2765 /// declaration causes the definition to be externally visible. 2766 /// 2767 /// For instance, this determines if adding the current declaration to the set 2768 /// of redeclarations of the given functions causes 2769 /// isInlineDefinitionExternallyVisible to change from false to true. 2770 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 2771 assert(!doesThisDeclarationHaveABody() && 2772 "Must have a declaration without a body."); 2773 2774 ASTContext &Context = getASTContext(); 2775 2776 if (Context.getLangOpts().MSVCCompat) { 2777 const FunctionDecl *Definition; 2778 if (hasBody(Definition) && Definition->isInlined() && 2779 redeclForcesDefMSVC(this)) 2780 return true; 2781 } 2782 2783 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 2784 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 2785 // an externally visible definition. 2786 // 2787 // FIXME: What happens if gnu_inline gets added on after the first 2788 // declaration? 2789 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 2790 return false; 2791 2792 const FunctionDecl *Prev = this; 2793 bool FoundBody = false; 2794 while ((Prev = Prev->getPreviousDecl())) { 2795 FoundBody |= Prev->Body.isValid(); 2796 2797 if (Prev->Body) { 2798 // If it's not the case that both 'inline' and 'extern' are 2799 // specified on the definition, then it is always externally visible. 2800 if (!Prev->isInlineSpecified() || 2801 Prev->getStorageClass() != SC_Extern) 2802 return false; 2803 } else if (Prev->isInlineSpecified() && 2804 Prev->getStorageClass() != SC_Extern) { 2805 return false; 2806 } 2807 } 2808 return FoundBody; 2809 } 2810 2811 if (Context.getLangOpts().CPlusPlus) 2812 return false; 2813 2814 // C99 6.7.4p6: 2815 // [...] If all of the file scope declarations for a function in a 2816 // translation unit include the inline function specifier without extern, 2817 // then the definition in that translation unit is an inline definition. 2818 if (isInlineSpecified() && getStorageClass() != SC_Extern) 2819 return false; 2820 const FunctionDecl *Prev = this; 2821 bool FoundBody = false; 2822 while ((Prev = Prev->getPreviousDecl())) { 2823 FoundBody |= Prev->Body.isValid(); 2824 if (RedeclForcesDefC99(Prev)) 2825 return false; 2826 } 2827 return FoundBody; 2828 } 2829 2830 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 2831 const TypeSourceInfo *TSI = getTypeSourceInfo(); 2832 if (!TSI) 2833 return SourceRange(); 2834 FunctionTypeLoc FTL = 2835 TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>(); 2836 if (!FTL) 2837 return SourceRange(); 2838 2839 // Skip self-referential return types. 2840 const SourceManager &SM = getASTContext().getSourceManager(); 2841 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 2842 SourceLocation Boundary = getNameInfo().getLocStart(); 2843 if (RTRange.isInvalid() || Boundary.isInvalid() || 2844 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 2845 return SourceRange(); 2846 2847 return RTRange; 2848 } 2849 2850 bool FunctionDecl::hasUnusedResultAttr() const { 2851 QualType RetType = getReturnType(); 2852 if (RetType->isRecordType()) { 2853 const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl(); 2854 const auto *MD = dyn_cast<CXXMethodDecl>(this); 2855 if (Ret && Ret->hasAttr<WarnUnusedResultAttr>() && 2856 !(MD && MD->getCorrespondingMethodInClass(Ret, true))) 2857 return true; 2858 } 2859 return hasAttr<WarnUnusedResultAttr>(); 2860 } 2861 2862 /// \brief For an inline function definition in C, or for a gnu_inline function 2863 /// in C++, determine whether the definition will be externally visible. 2864 /// 2865 /// Inline function definitions are always available for inlining optimizations. 2866 /// However, depending on the language dialect, declaration specifiers, and 2867 /// attributes, the definition of an inline function may or may not be 2868 /// "externally" visible to other translation units in the program. 2869 /// 2870 /// In C99, inline definitions are not externally visible by default. However, 2871 /// if even one of the global-scope declarations is marked "extern inline", the 2872 /// inline definition becomes externally visible (C99 6.7.4p6). 2873 /// 2874 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 2875 /// definition, we use the GNU semantics for inline, which are nearly the 2876 /// opposite of C99 semantics. In particular, "inline" by itself will create 2877 /// an externally visible symbol, but "extern inline" will not create an 2878 /// externally visible symbol. 2879 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 2880 assert(doesThisDeclarationHaveABody() && "Must have the function definition"); 2881 assert(isInlined() && "Function must be inline"); 2882 ASTContext &Context = getASTContext(); 2883 2884 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 2885 // Note: If you change the logic here, please change 2886 // doesDeclarationForceExternallyVisibleDefinition as well. 2887 // 2888 // If it's not the case that both 'inline' and 'extern' are 2889 // specified on the definition, then this inline definition is 2890 // externally visible. 2891 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 2892 return true; 2893 2894 // If any declaration is 'inline' but not 'extern', then this definition 2895 // is externally visible. 2896 for (auto Redecl : redecls()) { 2897 if (Redecl->isInlineSpecified() && 2898 Redecl->getStorageClass() != SC_Extern) 2899 return true; 2900 } 2901 2902 return false; 2903 } 2904 2905 // The rest of this function is C-only. 2906 assert(!Context.getLangOpts().CPlusPlus && 2907 "should not use C inline rules in C++"); 2908 2909 // C99 6.7.4p6: 2910 // [...] If all of the file scope declarations for a function in a 2911 // translation unit include the inline function specifier without extern, 2912 // then the definition in that translation unit is an inline definition. 2913 for (auto Redecl : redecls()) { 2914 if (RedeclForcesDefC99(Redecl)) 2915 return true; 2916 } 2917 2918 // C99 6.7.4p6: 2919 // An inline definition does not provide an external definition for the 2920 // function, and does not forbid an external definition in another 2921 // translation unit. 2922 return false; 2923 } 2924 2925 /// getOverloadedOperator - Which C++ overloaded operator this 2926 /// function represents, if any. 2927 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 2928 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 2929 return getDeclName().getCXXOverloadedOperator(); 2930 else 2931 return OO_None; 2932 } 2933 2934 /// getLiteralIdentifier - The literal suffix identifier this function 2935 /// represents, if any. 2936 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 2937 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 2938 return getDeclName().getCXXLiteralIdentifier(); 2939 else 2940 return nullptr; 2941 } 2942 2943 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 2944 if (TemplateOrSpecialization.isNull()) 2945 return TK_NonTemplate; 2946 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) 2947 return TK_FunctionTemplate; 2948 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 2949 return TK_MemberSpecialization; 2950 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 2951 return TK_FunctionTemplateSpecialization; 2952 if (TemplateOrSpecialization.is 2953 <DependentFunctionTemplateSpecializationInfo*>()) 2954 return TK_DependentFunctionTemplateSpecialization; 2955 2956 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 2957 } 2958 2959 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 2960 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 2961 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 2962 2963 return nullptr; 2964 } 2965 2966 void 2967 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 2968 FunctionDecl *FD, 2969 TemplateSpecializationKind TSK) { 2970 assert(TemplateOrSpecialization.isNull() && 2971 "Member function is already a specialization"); 2972 MemberSpecializationInfo *Info 2973 = new (C) MemberSpecializationInfo(FD, TSK); 2974 TemplateOrSpecialization = Info; 2975 } 2976 2977 bool FunctionDecl::isImplicitlyInstantiable() const { 2978 // If the function is invalid, it can't be implicitly instantiated. 2979 if (isInvalidDecl()) 2980 return false; 2981 2982 switch (getTemplateSpecializationKind()) { 2983 case TSK_Undeclared: 2984 case TSK_ExplicitInstantiationDefinition: 2985 return false; 2986 2987 case TSK_ImplicitInstantiation: 2988 return true; 2989 2990 // It is possible to instantiate TSK_ExplicitSpecialization kind 2991 // if the FunctionDecl has a class scope specialization pattern. 2992 case TSK_ExplicitSpecialization: 2993 return getClassScopeSpecializationPattern() != nullptr; 2994 2995 case TSK_ExplicitInstantiationDeclaration: 2996 // Handled below. 2997 break; 2998 } 2999 3000 // Find the actual template from which we will instantiate. 3001 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 3002 bool HasPattern = false; 3003 if (PatternDecl) 3004 HasPattern = PatternDecl->hasBody(PatternDecl); 3005 3006 // C++0x [temp.explicit]p9: 3007 // Except for inline functions, other explicit instantiation declarations 3008 // have the effect of suppressing the implicit instantiation of the entity 3009 // to which they refer. 3010 if (!HasPattern || !PatternDecl) 3011 return true; 3012 3013 return PatternDecl->isInlined(); 3014 } 3015 3016 bool FunctionDecl::isTemplateInstantiation() const { 3017 switch (getTemplateSpecializationKind()) { 3018 case TSK_Undeclared: 3019 case TSK_ExplicitSpecialization: 3020 return false; 3021 case TSK_ImplicitInstantiation: 3022 case TSK_ExplicitInstantiationDeclaration: 3023 case TSK_ExplicitInstantiationDefinition: 3024 return true; 3025 } 3026 llvm_unreachable("All TSK values handled."); 3027 } 3028 3029 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const { 3030 // Handle class scope explicit specialization special case. 3031 if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 3032 return getClassScopeSpecializationPattern(); 3033 3034 // If this is a generic lambda call operator specialization, its 3035 // instantiation pattern is always its primary template's pattern 3036 // even if its primary template was instantiated from another 3037 // member template (which happens with nested generic lambdas). 3038 // Since a lambda's call operator's body is transformed eagerly, 3039 // we don't have to go hunting for a prototype definition template 3040 // (i.e. instantiated-from-member-template) to use as an instantiation 3041 // pattern. 3042 3043 if (isGenericLambdaCallOperatorSpecialization( 3044 dyn_cast<CXXMethodDecl>(this))) { 3045 assert(getPrimaryTemplate() && "A generic lambda specialization must be " 3046 "generated from a primary call operator " 3047 "template"); 3048 assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() && 3049 "A generic lambda call operator template must always have a body - " 3050 "even if instantiated from a prototype (i.e. as written) member " 3051 "template"); 3052 return getPrimaryTemplate()->getTemplatedDecl(); 3053 } 3054 3055 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 3056 while (Primary->getInstantiatedFromMemberTemplate()) { 3057 // If we have hit a point where the user provided a specialization of 3058 // this template, we're done looking. 3059 if (Primary->isMemberSpecialization()) 3060 break; 3061 Primary = Primary->getInstantiatedFromMemberTemplate(); 3062 } 3063 3064 return Primary->getTemplatedDecl(); 3065 } 3066 3067 return getInstantiatedFromMemberFunction(); 3068 } 3069 3070 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3071 if (FunctionTemplateSpecializationInfo *Info 3072 = TemplateOrSpecialization 3073 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3074 return Info->Template.getPointer(); 3075 } 3076 return nullptr; 3077 } 3078 3079 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const { 3080 return getASTContext().getClassScopeSpecializationPattern(this); 3081 } 3082 3083 const TemplateArgumentList * 3084 FunctionDecl::getTemplateSpecializationArgs() const { 3085 if (FunctionTemplateSpecializationInfo *Info 3086 = TemplateOrSpecialization 3087 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3088 return Info->TemplateArguments; 3089 } 3090 return nullptr; 3091 } 3092 3093 const ASTTemplateArgumentListInfo * 3094 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3095 if (FunctionTemplateSpecializationInfo *Info 3096 = TemplateOrSpecialization 3097 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3098 return Info->TemplateArgumentsAsWritten; 3099 } 3100 return nullptr; 3101 } 3102 3103 void 3104 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3105 FunctionTemplateDecl *Template, 3106 const TemplateArgumentList *TemplateArgs, 3107 void *InsertPos, 3108 TemplateSpecializationKind TSK, 3109 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3110 SourceLocation PointOfInstantiation) { 3111 assert(TSK != TSK_Undeclared && 3112 "Must specify the type of function template specialization"); 3113 FunctionTemplateSpecializationInfo *Info 3114 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); 3115 if (!Info) 3116 Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK, 3117 TemplateArgs, 3118 TemplateArgsAsWritten, 3119 PointOfInstantiation); 3120 TemplateOrSpecialization = Info; 3121 Template->addSpecialization(Info, InsertPos); 3122 } 3123 3124 void 3125 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3126 const UnresolvedSetImpl &Templates, 3127 const TemplateArgumentListInfo &TemplateArgs) { 3128 assert(TemplateOrSpecialization.isNull()); 3129 DependentFunctionTemplateSpecializationInfo *Info = 3130 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 3131 TemplateArgs); 3132 TemplateOrSpecialization = Info; 3133 } 3134 3135 DependentFunctionTemplateSpecializationInfo * 3136 DependentFunctionTemplateSpecializationInfo::Create( 3137 ASTContext &Context, const UnresolvedSetImpl &Ts, 3138 const TemplateArgumentListInfo &TArgs) { 3139 void *Buffer = Context.Allocate( 3140 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( 3141 TArgs.size(), Ts.size())); 3142 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); 3143 } 3144 3145 DependentFunctionTemplateSpecializationInfo:: 3146 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 3147 const TemplateArgumentListInfo &TArgs) 3148 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 3149 3150 NumTemplates = Ts.size(); 3151 NumArgs = TArgs.size(); 3152 3153 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); 3154 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 3155 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 3156 3157 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); 3158 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 3159 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 3160 } 3161 3162 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 3163 // For a function template specialization, query the specialization 3164 // information object. 3165 FunctionTemplateSpecializationInfo *FTSInfo 3166 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); 3167 if (FTSInfo) 3168 return FTSInfo->getTemplateSpecializationKind(); 3169 3170 MemberSpecializationInfo *MSInfo 3171 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>(); 3172 if (MSInfo) 3173 return MSInfo->getTemplateSpecializationKind(); 3174 3175 return TSK_Undeclared; 3176 } 3177 3178 void 3179 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3180 SourceLocation PointOfInstantiation) { 3181 if (FunctionTemplateSpecializationInfo *FTSInfo 3182 = TemplateOrSpecialization.dyn_cast< 3183 FunctionTemplateSpecializationInfo*>()) { 3184 FTSInfo->setTemplateSpecializationKind(TSK); 3185 if (TSK != TSK_ExplicitSpecialization && 3186 PointOfInstantiation.isValid() && 3187 FTSInfo->getPointOfInstantiation().isInvalid()) 3188 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 3189 } else if (MemberSpecializationInfo *MSInfo 3190 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 3191 MSInfo->setTemplateSpecializationKind(TSK); 3192 if (TSK != TSK_ExplicitSpecialization && 3193 PointOfInstantiation.isValid() && 3194 MSInfo->getPointOfInstantiation().isInvalid()) 3195 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3196 } else 3197 llvm_unreachable("Function cannot have a template specialization kind"); 3198 } 3199 3200 SourceLocation FunctionDecl::getPointOfInstantiation() const { 3201 if (FunctionTemplateSpecializationInfo *FTSInfo 3202 = TemplateOrSpecialization.dyn_cast< 3203 FunctionTemplateSpecializationInfo*>()) 3204 return FTSInfo->getPointOfInstantiation(); 3205 else if (MemberSpecializationInfo *MSInfo 3206 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) 3207 return MSInfo->getPointOfInstantiation(); 3208 3209 return SourceLocation(); 3210 } 3211 3212 bool FunctionDecl::isOutOfLine() const { 3213 if (Decl::isOutOfLine()) 3214 return true; 3215 3216 // If this function was instantiated from a member function of a 3217 // class template, check whether that member function was defined out-of-line. 3218 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 3219 const FunctionDecl *Definition; 3220 if (FD->hasBody(Definition)) 3221 return Definition->isOutOfLine(); 3222 } 3223 3224 // If this function was instantiated from a function template, 3225 // check whether that function template was defined out-of-line. 3226 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 3227 const FunctionDecl *Definition; 3228 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 3229 return Definition->isOutOfLine(); 3230 } 3231 3232 return false; 3233 } 3234 3235 SourceRange FunctionDecl::getSourceRange() const { 3236 return SourceRange(getOuterLocStart(), EndRangeLoc); 3237 } 3238 3239 unsigned FunctionDecl::getMemoryFunctionKind() const { 3240 IdentifierInfo *FnInfo = getIdentifier(); 3241 3242 if (!FnInfo) 3243 return 0; 3244 3245 // Builtin handling. 3246 switch (getBuiltinID()) { 3247 case Builtin::BI__builtin_memset: 3248 case Builtin::BI__builtin___memset_chk: 3249 case Builtin::BImemset: 3250 return Builtin::BImemset; 3251 3252 case Builtin::BI__builtin_memcpy: 3253 case Builtin::BI__builtin___memcpy_chk: 3254 case Builtin::BImemcpy: 3255 return Builtin::BImemcpy; 3256 3257 case Builtin::BI__builtin_memmove: 3258 case Builtin::BI__builtin___memmove_chk: 3259 case Builtin::BImemmove: 3260 return Builtin::BImemmove; 3261 3262 case Builtin::BIstrlcpy: 3263 case Builtin::BI__builtin___strlcpy_chk: 3264 return Builtin::BIstrlcpy; 3265 3266 case Builtin::BIstrlcat: 3267 case Builtin::BI__builtin___strlcat_chk: 3268 return Builtin::BIstrlcat; 3269 3270 case Builtin::BI__builtin_memcmp: 3271 case Builtin::BImemcmp: 3272 return Builtin::BImemcmp; 3273 3274 case Builtin::BI__builtin_strncpy: 3275 case Builtin::BI__builtin___strncpy_chk: 3276 case Builtin::BIstrncpy: 3277 return Builtin::BIstrncpy; 3278 3279 case Builtin::BI__builtin_strncmp: 3280 case Builtin::BIstrncmp: 3281 return Builtin::BIstrncmp; 3282 3283 case Builtin::BI__builtin_strncasecmp: 3284 case Builtin::BIstrncasecmp: 3285 return Builtin::BIstrncasecmp; 3286 3287 case Builtin::BI__builtin_strncat: 3288 case Builtin::BI__builtin___strncat_chk: 3289 case Builtin::BIstrncat: 3290 return Builtin::BIstrncat; 3291 3292 case Builtin::BI__builtin_strndup: 3293 case Builtin::BIstrndup: 3294 return Builtin::BIstrndup; 3295 3296 case Builtin::BI__builtin_strlen: 3297 case Builtin::BIstrlen: 3298 return Builtin::BIstrlen; 3299 3300 default: 3301 if (isExternC()) { 3302 if (FnInfo->isStr("memset")) 3303 return Builtin::BImemset; 3304 else if (FnInfo->isStr("memcpy")) 3305 return Builtin::BImemcpy; 3306 else if (FnInfo->isStr("memmove")) 3307 return Builtin::BImemmove; 3308 else if (FnInfo->isStr("memcmp")) 3309 return Builtin::BImemcmp; 3310 else if (FnInfo->isStr("strncpy")) 3311 return Builtin::BIstrncpy; 3312 else if (FnInfo->isStr("strncmp")) 3313 return Builtin::BIstrncmp; 3314 else if (FnInfo->isStr("strncasecmp")) 3315 return Builtin::BIstrncasecmp; 3316 else if (FnInfo->isStr("strncat")) 3317 return Builtin::BIstrncat; 3318 else if (FnInfo->isStr("strndup")) 3319 return Builtin::BIstrndup; 3320 else if (FnInfo->isStr("strlen")) 3321 return Builtin::BIstrlen; 3322 } 3323 break; 3324 } 3325 return 0; 3326 } 3327 3328 //===----------------------------------------------------------------------===// 3329 // FieldDecl Implementation 3330 //===----------------------------------------------------------------------===// 3331 3332 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 3333 SourceLocation StartLoc, SourceLocation IdLoc, 3334 IdentifierInfo *Id, QualType T, 3335 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 3336 InClassInitStyle InitStyle) { 3337 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 3338 BW, Mutable, InitStyle); 3339 } 3340 3341 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3342 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 3343 SourceLocation(), nullptr, QualType(), nullptr, 3344 nullptr, false, ICIS_NoInit); 3345 } 3346 3347 bool FieldDecl::isAnonymousStructOrUnion() const { 3348 if (!isImplicit() || getDeclName()) 3349 return false; 3350 3351 if (const auto *Record = getType()->getAs<RecordType>()) 3352 return Record->getDecl()->isAnonymousStructOrUnion(); 3353 3354 return false; 3355 } 3356 3357 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 3358 assert(isBitField() && "not a bitfield"); 3359 auto *BitWidth = static_cast<Expr *>(InitStorage.getPointer()); 3360 return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue(); 3361 } 3362 3363 unsigned FieldDecl::getFieldIndex() const { 3364 const FieldDecl *Canonical = getCanonicalDecl(); 3365 if (Canonical != this) 3366 return Canonical->getFieldIndex(); 3367 3368 if (CachedFieldIndex) return CachedFieldIndex - 1; 3369 3370 unsigned Index = 0; 3371 const RecordDecl *RD = getParent(); 3372 3373 for (auto *Field : RD->fields()) { 3374 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 3375 ++Index; 3376 } 3377 3378 assert(CachedFieldIndex && "failed to find field in parent"); 3379 return CachedFieldIndex - 1; 3380 } 3381 3382 SourceRange FieldDecl::getSourceRange() const { 3383 switch (InitStorage.getInt()) { 3384 // All three of these cases store an optional Expr*. 3385 case ISK_BitWidthOrNothing: 3386 case ISK_InClassCopyInit: 3387 case ISK_InClassListInit: 3388 if (const auto *E = static_cast<const Expr *>(InitStorage.getPointer())) 3389 return SourceRange(getInnerLocStart(), E->getLocEnd()); 3390 // FALLTHROUGH 3391 3392 case ISK_CapturedVLAType: 3393 return DeclaratorDecl::getSourceRange(); 3394 } 3395 llvm_unreachable("bad init storage kind"); 3396 } 3397 3398 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 3399 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 3400 "capturing type in non-lambda or captured record."); 3401 assert(InitStorage.getInt() == ISK_BitWidthOrNothing && 3402 InitStorage.getPointer() == nullptr && 3403 "bit width, initializer or captured type already set"); 3404 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 3405 ISK_CapturedVLAType); 3406 } 3407 3408 //===----------------------------------------------------------------------===// 3409 // TagDecl Implementation 3410 //===----------------------------------------------------------------------===// 3411 3412 SourceLocation TagDecl::getOuterLocStart() const { 3413 return getTemplateOrInnerLocStart(this); 3414 } 3415 3416 SourceRange TagDecl::getSourceRange() const { 3417 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 3418 return SourceRange(getOuterLocStart(), E); 3419 } 3420 3421 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 3422 3423 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 3424 TypedefNameDeclOrQualifier = TDD; 3425 if (const Type *T = getTypeForDecl()) { 3426 (void)T; 3427 assert(T->isLinkageValid()); 3428 } 3429 assert(isLinkageValid()); 3430 } 3431 3432 void TagDecl::startDefinition() { 3433 IsBeingDefined = true; 3434 3435 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 3436 struct CXXRecordDecl::DefinitionData *Data = 3437 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 3438 for (auto I : redecls()) 3439 cast<CXXRecordDecl>(I)->DefinitionData = Data; 3440 } 3441 } 3442 3443 void TagDecl::completeDefinition() { 3444 assert((!isa<CXXRecordDecl>(this) || 3445 cast<CXXRecordDecl>(this)->hasDefinition()) && 3446 "definition completed but not started"); 3447 3448 IsCompleteDefinition = true; 3449 IsBeingDefined = false; 3450 3451 if (ASTMutationListener *L = getASTMutationListener()) 3452 L->CompletedTagDefinition(this); 3453 } 3454 3455 TagDecl *TagDecl::getDefinition() const { 3456 if (isCompleteDefinition()) 3457 return const_cast<TagDecl *>(this); 3458 3459 // If it's possible for us to have an out-of-date definition, check now. 3460 if (MayHaveOutOfDateDef) { 3461 if (IdentifierInfo *II = getIdentifier()) { 3462 if (II->isOutOfDate()) { 3463 updateOutOfDate(*II); 3464 } 3465 } 3466 } 3467 3468 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 3469 return CXXRD->getDefinition(); 3470 3471 for (auto R : redecls()) 3472 if (R->isCompleteDefinition()) 3473 return R; 3474 3475 return nullptr; 3476 } 3477 3478 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 3479 if (QualifierLoc) { 3480 // Make sure the extended qualifier info is allocated. 3481 if (!hasExtInfo()) 3482 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 3483 // Set qualifier info. 3484 getExtInfo()->QualifierLoc = QualifierLoc; 3485 } else { 3486 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 3487 if (hasExtInfo()) { 3488 if (getExtInfo()->NumTemplParamLists == 0) { 3489 getASTContext().Deallocate(getExtInfo()); 3490 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 3491 } 3492 else 3493 getExtInfo()->QualifierLoc = QualifierLoc; 3494 } 3495 } 3496 } 3497 3498 void TagDecl::setTemplateParameterListsInfo( 3499 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 3500 assert(!TPLists.empty()); 3501 // Make sure the extended decl info is allocated. 3502 if (!hasExtInfo()) 3503 // Allocate external info struct. 3504 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 3505 // Set the template parameter lists info. 3506 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 3507 } 3508 3509 //===----------------------------------------------------------------------===// 3510 // EnumDecl Implementation 3511 //===----------------------------------------------------------------------===// 3512 3513 void EnumDecl::anchor() { } 3514 3515 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 3516 SourceLocation StartLoc, SourceLocation IdLoc, 3517 IdentifierInfo *Id, 3518 EnumDecl *PrevDecl, bool IsScoped, 3519 bool IsScopedUsingClassTag, bool IsFixed) { 3520 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 3521 IsScoped, IsScopedUsingClassTag, IsFixed); 3522 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3523 C.getTypeDeclType(Enum, PrevDecl); 3524 return Enum; 3525 } 3526 3527 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3528 EnumDecl *Enum = 3529 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 3530 nullptr, nullptr, false, false, false); 3531 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3532 return Enum; 3533 } 3534 3535 SourceRange EnumDecl::getIntegerTypeRange() const { 3536 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 3537 return TI->getTypeLoc().getSourceRange(); 3538 return SourceRange(); 3539 } 3540 3541 void EnumDecl::completeDefinition(QualType NewType, 3542 QualType NewPromotionType, 3543 unsigned NumPositiveBits, 3544 unsigned NumNegativeBits) { 3545 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 3546 if (!IntegerType) 3547 IntegerType = NewType.getTypePtr(); 3548 PromotionType = NewPromotionType; 3549 setNumPositiveBits(NumPositiveBits); 3550 setNumNegativeBits(NumNegativeBits); 3551 TagDecl::completeDefinition(); 3552 } 3553 3554 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 3555 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 3556 return MSI->getTemplateSpecializationKind(); 3557 3558 return TSK_Undeclared; 3559 } 3560 3561 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3562 SourceLocation PointOfInstantiation) { 3563 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 3564 assert(MSI && "Not an instantiated member enumeration?"); 3565 MSI->setTemplateSpecializationKind(TSK); 3566 if (TSK != TSK_ExplicitSpecialization && 3567 PointOfInstantiation.isValid() && 3568 MSI->getPointOfInstantiation().isInvalid()) 3569 MSI->setPointOfInstantiation(PointOfInstantiation); 3570 } 3571 3572 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 3573 if (SpecializationInfo) 3574 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 3575 3576 return nullptr; 3577 } 3578 3579 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 3580 TemplateSpecializationKind TSK) { 3581 assert(!SpecializationInfo && "Member enum is already a specialization"); 3582 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 3583 } 3584 3585 //===----------------------------------------------------------------------===// 3586 // RecordDecl Implementation 3587 //===----------------------------------------------------------------------===// 3588 3589 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 3590 DeclContext *DC, SourceLocation StartLoc, 3591 SourceLocation IdLoc, IdentifierInfo *Id, 3592 RecordDecl *PrevDecl) 3593 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 3594 HasFlexibleArrayMember = false; 3595 AnonymousStructOrUnion = false; 3596 HasObjectMember = false; 3597 HasVolatileMember = false; 3598 LoadedFieldsFromExternalStorage = false; 3599 assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!"); 3600 } 3601 3602 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 3603 SourceLocation StartLoc, SourceLocation IdLoc, 3604 IdentifierInfo *Id, RecordDecl* PrevDecl) { 3605 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 3606 StartLoc, IdLoc, Id, PrevDecl); 3607 R->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3608 3609 C.getTypeDeclType(R, PrevDecl); 3610 return R; 3611 } 3612 3613 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 3614 RecordDecl *R = 3615 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 3616 SourceLocation(), nullptr, nullptr); 3617 R->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3618 return R; 3619 } 3620 3621 bool RecordDecl::isInjectedClassName() const { 3622 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 3623 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 3624 } 3625 3626 bool RecordDecl::isLambda() const { 3627 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 3628 return RD->isLambda(); 3629 return false; 3630 } 3631 3632 bool RecordDecl::isCapturedRecord() const { 3633 return hasAttr<CapturedRecordAttr>(); 3634 } 3635 3636 void RecordDecl::setCapturedRecord() { 3637 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 3638 } 3639 3640 RecordDecl::field_iterator RecordDecl::field_begin() const { 3641 if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage) 3642 LoadFieldsFromExternalStorage(); 3643 3644 return field_iterator(decl_iterator(FirstDecl)); 3645 } 3646 3647 /// completeDefinition - Notes that the definition of this type is now 3648 /// complete. 3649 void RecordDecl::completeDefinition() { 3650 assert(!isCompleteDefinition() && "Cannot redefine record!"); 3651 TagDecl::completeDefinition(); 3652 } 3653 3654 /// isMsStruct - Get whether or not this record uses ms_struct layout. 3655 /// This which can be turned on with an attribute, pragma, or the 3656 /// -mms-bitfields command-line option. 3657 bool RecordDecl::isMsStruct(const ASTContext &C) const { 3658 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 3659 } 3660 3661 void RecordDecl::LoadFieldsFromExternalStorage() const { 3662 ExternalASTSource *Source = getASTContext().getExternalSource(); 3663 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 3664 3665 // Notify that we have a RecordDecl doing some initialization. 3666 ExternalASTSource::Deserializing TheFields(Source); 3667 3668 SmallVector<Decl*, 64> Decls; 3669 LoadedFieldsFromExternalStorage = true; 3670 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 3671 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 3672 }, Decls); 3673 3674 #ifndef NDEBUG 3675 // Check that all decls we got were FieldDecls. 3676 for (unsigned i=0, e=Decls.size(); i != e; ++i) 3677 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 3678 #endif 3679 3680 if (Decls.empty()) 3681 return; 3682 3683 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 3684 /*FieldsAlreadyLoaded=*/false); 3685 } 3686 3687 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 3688 ASTContext &Context = getASTContext(); 3689 if (!Context.getLangOpts().Sanitize.hasOneOf( 3690 SanitizerKind::Address | SanitizerKind::KernelAddress) || 3691 !Context.getLangOpts().SanitizeAddressFieldPadding) 3692 return false; 3693 const auto &Blacklist = Context.getSanitizerBlacklist(); 3694 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 3695 // We may be able to relax some of these requirements. 3696 int ReasonToReject = -1; 3697 if (!CXXRD || CXXRD->isExternCContext()) 3698 ReasonToReject = 0; // is not C++. 3699 else if (CXXRD->hasAttr<PackedAttr>()) 3700 ReasonToReject = 1; // is packed. 3701 else if (CXXRD->isUnion()) 3702 ReasonToReject = 2; // is a union. 3703 else if (CXXRD->isTriviallyCopyable()) 3704 ReasonToReject = 3; // is trivially copyable. 3705 else if (CXXRD->hasTrivialDestructor()) 3706 ReasonToReject = 4; // has trivial destructor. 3707 else if (CXXRD->isStandardLayout()) 3708 ReasonToReject = 5; // is standard layout. 3709 else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding")) 3710 ReasonToReject = 6; // is in a blacklisted file. 3711 else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(), 3712 "field-padding")) 3713 ReasonToReject = 7; // is blacklisted. 3714 3715 if (EmitRemark) { 3716 if (ReasonToReject >= 0) 3717 Context.getDiagnostics().Report( 3718 getLocation(), 3719 diag::remark_sanitize_address_insert_extra_padding_rejected) 3720 << getQualifiedNameAsString() << ReasonToReject; 3721 else 3722 Context.getDiagnostics().Report( 3723 getLocation(), 3724 diag::remark_sanitize_address_insert_extra_padding_accepted) 3725 << getQualifiedNameAsString(); 3726 } 3727 return ReasonToReject < 0; 3728 } 3729 3730 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 3731 for (const auto *I : fields()) { 3732 if (I->getIdentifier()) 3733 return I; 3734 3735 if (const auto *RT = I->getType()->getAs<RecordType>()) 3736 if (const FieldDecl *NamedDataMember = 3737 RT->getDecl()->findFirstNamedDataMember()) 3738 return NamedDataMember; 3739 } 3740 3741 // We didn't find a named data member. 3742 return nullptr; 3743 } 3744 3745 3746 //===----------------------------------------------------------------------===// 3747 // BlockDecl Implementation 3748 //===----------------------------------------------------------------------===// 3749 3750 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 3751 assert(!ParamInfo && "Already has param info!"); 3752 3753 // Zero params -> null pointer. 3754 if (!NewParamInfo.empty()) { 3755 NumParams = NewParamInfo.size(); 3756 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 3757 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3758 } 3759 } 3760 3761 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 3762 bool CapturesCXXThis) { 3763 this->CapturesCXXThis = CapturesCXXThis; 3764 this->NumCaptures = Captures.size(); 3765 3766 if (Captures.empty()) { 3767 this->Captures = nullptr; 3768 return; 3769 } 3770 3771 this->Captures = Captures.copy(Context).data(); 3772 } 3773 3774 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 3775 for (const auto &I : captures()) 3776 // Only auto vars can be captured, so no redeclaration worries. 3777 if (I.getVariable() == variable) 3778 return true; 3779 3780 return false; 3781 } 3782 3783 SourceRange BlockDecl::getSourceRange() const { 3784 return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation()); 3785 } 3786 3787 //===----------------------------------------------------------------------===// 3788 // Other Decl Allocation/Deallocation Method Implementations 3789 //===----------------------------------------------------------------------===// 3790 3791 void TranslationUnitDecl::anchor() { } 3792 3793 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 3794 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 3795 } 3796 3797 void ExternCContextDecl::anchor() { } 3798 3799 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 3800 TranslationUnitDecl *DC) { 3801 return new (C, DC) ExternCContextDecl(DC); 3802 } 3803 3804 void LabelDecl::anchor() { } 3805 3806 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 3807 SourceLocation IdentL, IdentifierInfo *II) { 3808 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 3809 } 3810 3811 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 3812 SourceLocation IdentL, IdentifierInfo *II, 3813 SourceLocation GnuLabelL) { 3814 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 3815 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 3816 } 3817 3818 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3819 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 3820 SourceLocation()); 3821 } 3822 3823 void LabelDecl::setMSAsmLabel(StringRef Name) { 3824 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 3825 memcpy(Buffer, Name.data(), Name.size()); 3826 Buffer[Name.size()] = '\0'; 3827 MSAsmName = Buffer; 3828 } 3829 3830 void ValueDecl::anchor() { } 3831 3832 bool ValueDecl::isWeak() const { 3833 for (const auto *I : attrs()) 3834 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I)) 3835 return true; 3836 3837 return isWeakImported(); 3838 } 3839 3840 void ImplicitParamDecl::anchor() { } 3841 3842 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 3843 SourceLocation IdLoc, 3844 IdentifierInfo *Id, 3845 QualType Type) { 3846 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type); 3847 } 3848 3849 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 3850 unsigned ID) { 3851 return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr, 3852 QualType()); 3853 } 3854 3855 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, 3856 SourceLocation StartLoc, 3857 const DeclarationNameInfo &NameInfo, 3858 QualType T, TypeSourceInfo *TInfo, 3859 StorageClass SC, 3860 bool isInlineSpecified, 3861 bool hasWrittenPrototype, 3862 bool isConstexprSpecified) { 3863 FunctionDecl *New = 3864 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo, 3865 SC, isInlineSpecified, isConstexprSpecified); 3866 New->HasWrittenPrototype = hasWrittenPrototype; 3867 return New; 3868 } 3869 3870 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3871 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(), 3872 DeclarationNameInfo(), QualType(), nullptr, 3873 SC_None, false, false); 3874 } 3875 3876 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 3877 return new (C, DC) BlockDecl(DC, L); 3878 } 3879 3880 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3881 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 3882 } 3883 3884 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 3885 unsigned NumParams) { 3886 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 3887 CapturedDecl(DC, NumParams); 3888 } 3889 3890 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 3891 unsigned NumParams) { 3892 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 3893 CapturedDecl(nullptr, NumParams); 3894 } 3895 3896 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 3897 SourceLocation L, 3898 IdentifierInfo *Id, QualType T, 3899 Expr *E, const llvm::APSInt &V) { 3900 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 3901 } 3902 3903 EnumConstantDecl * 3904 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3905 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 3906 QualType(), nullptr, llvm::APSInt()); 3907 } 3908 3909 void IndirectFieldDecl::anchor() { } 3910 3911 IndirectFieldDecl * 3912 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 3913 IdentifierInfo *Id, QualType T, NamedDecl **CH, 3914 unsigned CHS) { 3915 return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS); 3916 } 3917 3918 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 3919 unsigned ID) { 3920 return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(), 3921 DeclarationName(), QualType(), nullptr, 3922 0); 3923 } 3924 3925 SourceRange EnumConstantDecl::getSourceRange() const { 3926 SourceLocation End = getLocation(); 3927 if (Init) 3928 End = Init->getLocEnd(); 3929 return SourceRange(getLocation(), End); 3930 } 3931 3932 void TypeDecl::anchor() { } 3933 3934 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 3935 SourceLocation StartLoc, SourceLocation IdLoc, 3936 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 3937 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 3938 } 3939 3940 void TypedefNameDecl::anchor() { } 3941 3942 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 3943 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 3944 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 3945 auto *ThisTypedef = this; 3946 if (AnyRedecl && OwningTypedef) { 3947 OwningTypedef = OwningTypedef->getCanonicalDecl(); 3948 ThisTypedef = ThisTypedef->getCanonicalDecl(); 3949 } 3950 if (OwningTypedef == ThisTypedef) 3951 return TT->getDecl(); 3952 } 3953 3954 return nullptr; 3955 } 3956 3957 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3958 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 3959 nullptr, nullptr); 3960 } 3961 3962 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 3963 SourceLocation StartLoc, 3964 SourceLocation IdLoc, IdentifierInfo *Id, 3965 TypeSourceInfo *TInfo) { 3966 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 3967 } 3968 3969 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3970 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 3971 SourceLocation(), nullptr, nullptr); 3972 } 3973 3974 SourceRange TypedefDecl::getSourceRange() const { 3975 SourceLocation RangeEnd = getLocation(); 3976 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 3977 if (typeIsPostfix(TInfo->getType())) 3978 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 3979 } 3980 return SourceRange(getLocStart(), RangeEnd); 3981 } 3982 3983 SourceRange TypeAliasDecl::getSourceRange() const { 3984 SourceLocation RangeEnd = getLocStart(); 3985 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 3986 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 3987 return SourceRange(getLocStart(), RangeEnd); 3988 } 3989 3990 void FileScopeAsmDecl::anchor() { } 3991 3992 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 3993 StringLiteral *Str, 3994 SourceLocation AsmLoc, 3995 SourceLocation RParenLoc) { 3996 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 3997 } 3998 3999 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 4000 unsigned ID) { 4001 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 4002 SourceLocation()); 4003 } 4004 4005 void EmptyDecl::anchor() {} 4006 4007 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4008 return new (C, DC) EmptyDecl(DC, L); 4009 } 4010 4011 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4012 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 4013 } 4014 4015 //===----------------------------------------------------------------------===// 4016 // ImportDecl Implementation 4017 //===----------------------------------------------------------------------===// 4018 4019 /// \brief Retrieve the number of module identifiers needed to name the given 4020 /// module. 4021 static unsigned getNumModuleIdentifiers(Module *Mod) { 4022 unsigned Result = 1; 4023 while (Mod->Parent) { 4024 Mod = Mod->Parent; 4025 ++Result; 4026 } 4027 return Result; 4028 } 4029 4030 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 4031 Module *Imported, 4032 ArrayRef<SourceLocation> IdentifierLocs) 4033 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true), 4034 NextLocalImport() 4035 { 4036 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 4037 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 4038 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 4039 StoredLocs); 4040 } 4041 4042 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 4043 Module *Imported, SourceLocation EndLoc) 4044 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false), 4045 NextLocalImport() 4046 { 4047 *getTrailingObjects<SourceLocation>() = EndLoc; 4048 } 4049 4050 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 4051 SourceLocation StartLoc, Module *Imported, 4052 ArrayRef<SourceLocation> IdentifierLocs) { 4053 return new (C, DC, 4054 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 4055 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 4056 } 4057 4058 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 4059 SourceLocation StartLoc, 4060 Module *Imported, 4061 SourceLocation EndLoc) { 4062 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 4063 ImportDecl(DC, StartLoc, Imported, EndLoc); 4064 Import->setImplicit(); 4065 return Import; 4066 } 4067 4068 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4069 unsigned NumLocations) { 4070 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 4071 ImportDecl(EmptyShell()); 4072 } 4073 4074 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 4075 if (!ImportedAndComplete.getInt()) 4076 return None; 4077 4078 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 4079 return llvm::makeArrayRef(StoredLocs, 4080 getNumModuleIdentifiers(getImportedModule())); 4081 } 4082 4083 SourceRange ImportDecl::getSourceRange() const { 4084 if (!ImportedAndComplete.getInt()) 4085 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 4086 4087 return SourceRange(getLocation(), getIdentifierLocs().back()); 4088 } 4089