1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/snapshot/serialize.h" 6 7 #include "src/accessors.h" 8 #include "src/api.h" 9 #include "src/base/platform/platform.h" 10 #include "src/bootstrapper.h" 11 #include "src/code-stubs.h" 12 #include "src/deoptimizer.h" 13 #include "src/execution.h" 14 #include "src/global-handles.h" 15 #include "src/ic/ic.h" 16 #include "src/ic/stub-cache.h" 17 #include "src/objects.h" 18 #include "src/parsing/parser.h" 19 #include "src/profiler/cpu-profiler.h" 20 #include "src/runtime/runtime.h" 21 #include "src/snapshot/natives.h" 22 #include "src/snapshot/snapshot.h" 23 #include "src/snapshot/snapshot-source-sink.h" 24 #include "src/v8.h" 25 #include "src/v8threads.h" 26 #include "src/version.h" 27 28 namespace v8 { 29 namespace internal { 30 31 32 // ----------------------------------------------------------------------------- 33 // Coding of external references. 34 35 36 ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) { 37 ExternalReferenceTable* external_reference_table = 38 isolate->external_reference_table(); 39 if (external_reference_table == NULL) { 40 external_reference_table = new ExternalReferenceTable(isolate); 41 isolate->set_external_reference_table(external_reference_table); 42 } 43 return external_reference_table; 44 } 45 46 47 ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) { 48 // Miscellaneous 49 Add(ExternalReference::roots_array_start(isolate).address(), 50 "Heap::roots_array_start()"); 51 Add(ExternalReference::address_of_stack_limit(isolate).address(), 52 "StackGuard::address_of_jslimit()"); 53 Add(ExternalReference::address_of_real_stack_limit(isolate).address(), 54 "StackGuard::address_of_real_jslimit()"); 55 Add(ExternalReference::new_space_start(isolate).address(), 56 "Heap::NewSpaceStart()"); 57 Add(ExternalReference::new_space_mask(isolate).address(), 58 "Heap::NewSpaceMask()"); 59 Add(ExternalReference::new_space_allocation_limit_address(isolate).address(), 60 "Heap::NewSpaceAllocationLimitAddress()"); 61 Add(ExternalReference::new_space_allocation_top_address(isolate).address(), 62 "Heap::NewSpaceAllocationTopAddress()"); 63 Add(ExternalReference::mod_two_doubles_operation(isolate).address(), 64 "mod_two_doubles"); 65 // Keyed lookup cache. 66 Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(), 67 "KeyedLookupCache::keys()"); 68 Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(), 69 "KeyedLookupCache::field_offsets()"); 70 Add(ExternalReference::handle_scope_next_address(isolate).address(), 71 "HandleScope::next"); 72 Add(ExternalReference::handle_scope_limit_address(isolate).address(), 73 "HandleScope::limit"); 74 Add(ExternalReference::handle_scope_level_address(isolate).address(), 75 "HandleScope::level"); 76 Add(ExternalReference::new_deoptimizer_function(isolate).address(), 77 "Deoptimizer::New()"); 78 Add(ExternalReference::compute_output_frames_function(isolate).address(), 79 "Deoptimizer::ComputeOutputFrames()"); 80 Add(ExternalReference::address_of_min_int().address(), 81 "LDoubleConstant::min_int"); 82 Add(ExternalReference::address_of_one_half().address(), 83 "LDoubleConstant::one_half"); 84 Add(ExternalReference::isolate_address(isolate).address(), "isolate"); 85 Add(ExternalReference::address_of_negative_infinity().address(), 86 "LDoubleConstant::negative_infinity"); 87 Add(ExternalReference::power_double_double_function(isolate).address(), 88 "power_double_double_function"); 89 Add(ExternalReference::power_double_int_function(isolate).address(), 90 "power_double_int_function"); 91 Add(ExternalReference::math_log_double_function(isolate).address(), 92 "std::log"); 93 Add(ExternalReference::store_buffer_top(isolate).address(), 94 "store_buffer_top"); 95 Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan"); 96 Add(ExternalReference::get_date_field_function(isolate).address(), 97 "JSDate::GetField"); 98 Add(ExternalReference::date_cache_stamp(isolate).address(), 99 "date_cache_stamp"); 100 Add(ExternalReference::address_of_pending_message_obj(isolate).address(), 101 "address_of_pending_message_obj"); 102 Add(ExternalReference::get_make_code_young_function(isolate).address(), 103 "Code::MakeCodeYoung"); 104 Add(ExternalReference::cpu_features().address(), "cpu_features"); 105 Add(ExternalReference::old_space_allocation_top_address(isolate).address(), 106 "Heap::OldSpaceAllocationTopAddress"); 107 Add(ExternalReference::old_space_allocation_limit_address(isolate).address(), 108 "Heap::OldSpaceAllocationLimitAddress"); 109 Add(ExternalReference::allocation_sites_list_address(isolate).address(), 110 "Heap::allocation_sites_list_address()"); 111 Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias"); 112 Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(), 113 "Code::MarkCodeAsExecuted"); 114 Add(ExternalReference::is_profiling_address(isolate).address(), 115 "CpuProfiler::is_profiling"); 116 Add(ExternalReference::scheduled_exception_address(isolate).address(), 117 "Isolate::scheduled_exception"); 118 Add(ExternalReference::invoke_function_callback(isolate).address(), 119 "InvokeFunctionCallback"); 120 Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(), 121 "InvokeAccessorGetterCallback"); 122 Add(ExternalReference::log_enter_external_function(isolate).address(), 123 "Logger::EnterExternal"); 124 Add(ExternalReference::log_leave_external_function(isolate).address(), 125 "Logger::LeaveExternal"); 126 Add(ExternalReference::address_of_minus_one_half().address(), 127 "double_constants.minus_one_half"); 128 Add(ExternalReference::stress_deopt_count(isolate).address(), 129 "Isolate::stress_deopt_count_address()"); 130 Add(ExternalReference::virtual_handler_register(isolate).address(), 131 "Isolate::virtual_handler_register()"); 132 Add(ExternalReference::virtual_slot_register(isolate).address(), 133 "Isolate::virtual_slot_register()"); 134 Add(ExternalReference::runtime_function_table_address(isolate).address(), 135 "Runtime::runtime_function_table_address()"); 136 137 // Debug addresses 138 Add(ExternalReference::debug_after_break_target_address(isolate).address(), 139 "Debug::after_break_target_address()"); 140 Add(ExternalReference::debug_is_active_address(isolate).address(), 141 "Debug::is_active_address()"); 142 Add(ExternalReference::debug_step_in_enabled_address(isolate).address(), 143 "Debug::step_in_enabled_address()"); 144 145 #ifndef V8_INTERPRETED_REGEXP 146 Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(), 147 "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()"); 148 Add(ExternalReference::re_check_stack_guard_state(isolate).address(), 149 "RegExpMacroAssembler*::CheckStackGuardState()"); 150 Add(ExternalReference::re_grow_stack(isolate).address(), 151 "NativeRegExpMacroAssembler::GrowStack()"); 152 Add(ExternalReference::re_word_character_map().address(), 153 "NativeRegExpMacroAssembler::word_character_map"); 154 Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(), 155 "RegExpStack::limit_address()"); 156 Add(ExternalReference::address_of_regexp_stack_memory_address(isolate) 157 .address(), 158 "RegExpStack::memory_address()"); 159 Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(), 160 "RegExpStack::memory_size()"); 161 Add(ExternalReference::address_of_static_offsets_vector(isolate).address(), 162 "OffsetsVector::static_offsets_vector"); 163 #endif // V8_INTERPRETED_REGEXP 164 165 // The following populates all of the different type of external references 166 // into the ExternalReferenceTable. 167 // 168 // NOTE: This function was originally 100k of code. It has since been 169 // rewritten to be mostly table driven, as the callback macro style tends to 170 // very easily cause code bloat. Please be careful in the future when adding 171 // new references. 172 173 struct RefTableEntry { 174 uint16_t id; 175 const char* name; 176 }; 177 178 static const RefTableEntry c_builtins[] = { 179 #define DEF_ENTRY_C(name, ignored) \ 180 { Builtins::c_##name, "Builtins::" #name } \ 181 , 182 BUILTIN_LIST_C(DEF_ENTRY_C) 183 #undef DEF_ENTRY_C 184 }; 185 186 for (unsigned i = 0; i < arraysize(c_builtins); ++i) { 187 ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id), 188 isolate); 189 Add(ref.address(), c_builtins[i].name); 190 } 191 192 static const RefTableEntry builtins[] = { 193 #define DEF_ENTRY_C(name, ignored) \ 194 { Builtins::k##name, "Builtins::" #name } \ 195 , 196 #define DEF_ENTRY_A(name, i1, i2, i3) \ 197 { Builtins::k##name, "Builtins::" #name } \ 198 , 199 BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A) 200 BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A) 201 #undef DEF_ENTRY_C 202 #undef DEF_ENTRY_A 203 }; 204 205 for (unsigned i = 0; i < arraysize(builtins); ++i) { 206 ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate); 207 Add(ref.address(), builtins[i].name); 208 } 209 210 static const RefTableEntry runtime_functions[] = { 211 #define RUNTIME_ENTRY(name, i1, i2) \ 212 { Runtime::k##name, "Runtime::" #name } \ 213 , 214 FOR_EACH_INTRINSIC(RUNTIME_ENTRY) 215 #undef RUNTIME_ENTRY 216 }; 217 218 for (unsigned i = 0; i < arraysize(runtime_functions); ++i) { 219 ExternalReference ref( 220 static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate); 221 Add(ref.address(), runtime_functions[i].name); 222 } 223 224 // Stat counters 225 struct StatsRefTableEntry { 226 StatsCounter* (Counters::*counter)(); 227 const char* name; 228 }; 229 230 static const StatsRefTableEntry stats_ref_table[] = { 231 #define COUNTER_ENTRY(name, caption) \ 232 { &Counters::name, "Counters::" #name } \ 233 , 234 STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY) 235 #undef COUNTER_ENTRY 236 }; 237 238 Counters* counters = isolate->counters(); 239 for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) { 240 // To make sure the indices are not dependent on whether counters are 241 // enabled, use a dummy address as filler. 242 Address address = NotAvailable(); 243 StatsCounter* counter = (counters->*(stats_ref_table[i].counter))(); 244 if (counter->Enabled()) { 245 address = reinterpret_cast<Address>(counter->GetInternalPointer()); 246 } 247 Add(address, stats_ref_table[i].name); 248 } 249 250 // Top addresses 251 static const char* address_names[] = { 252 #define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address", 253 FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL 254 #undef BUILD_NAME_LITERAL 255 }; 256 257 for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) { 258 Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)), 259 address_names[i]); 260 } 261 262 // Accessors 263 struct AccessorRefTable { 264 Address address; 265 const char* name; 266 }; 267 268 static const AccessorRefTable accessors[] = { 269 #define ACCESSOR_INFO_DECLARATION(name) \ 270 { FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \ 271 , {FUNCTION_ADDR(&Accessors::name##Setter), "Accessors::" #name "Setter"}, 272 ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION) 273 #undef ACCESSOR_INFO_DECLARATION 274 }; 275 276 for (unsigned i = 0; i < arraysize(accessors); ++i) { 277 Add(accessors[i].address, accessors[i].name); 278 } 279 280 StubCache* stub_cache = isolate->stub_cache(); 281 282 // Stub cache tables 283 Add(stub_cache->key_reference(StubCache::kPrimary).address(), 284 "StubCache::primary_->key"); 285 Add(stub_cache->value_reference(StubCache::kPrimary).address(), 286 "StubCache::primary_->value"); 287 Add(stub_cache->map_reference(StubCache::kPrimary).address(), 288 "StubCache::primary_->map"); 289 Add(stub_cache->key_reference(StubCache::kSecondary).address(), 290 "StubCache::secondary_->key"); 291 Add(stub_cache->value_reference(StubCache::kSecondary).address(), 292 "StubCache::secondary_->value"); 293 Add(stub_cache->map_reference(StubCache::kSecondary).address(), 294 "StubCache::secondary_->map"); 295 296 // Runtime entries 297 Add(ExternalReference::delete_handle_scope_extensions(isolate).address(), 298 "HandleScope::DeleteExtensions"); 299 Add(ExternalReference::incremental_marking_record_write_function(isolate) 300 .address(), 301 "IncrementalMarking::RecordWrite"); 302 Add(ExternalReference::store_buffer_overflow_function(isolate).address(), 303 "StoreBuffer::StoreBufferOverflow"); 304 305 // Add a small set of deopt entry addresses to encoder without generating the 306 // deopt table code, which isn't possible at deserialization time. 307 HandleScope scope(isolate); 308 for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) { 309 Address address = Deoptimizer::GetDeoptimizationEntry( 310 isolate, 311 entry, 312 Deoptimizer::LAZY, 313 Deoptimizer::CALCULATE_ENTRY_ADDRESS); 314 Add(address, "lazy_deopt"); 315 } 316 } 317 318 319 ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) { 320 map_ = isolate->external_reference_map(); 321 if (map_ != NULL) return; 322 map_ = new HashMap(HashMap::PointersMatch); 323 ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate); 324 for (int i = 0; i < table->size(); ++i) { 325 Address addr = table->address(i); 326 if (addr == ExternalReferenceTable::NotAvailable()) continue; 327 // We expect no duplicate external references entries in the table. 328 DCHECK_NULL(map_->Lookup(addr, Hash(addr))); 329 map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i); 330 } 331 isolate->set_external_reference_map(map_); 332 } 333 334 335 uint32_t ExternalReferenceEncoder::Encode(Address address) const { 336 DCHECK_NOT_NULL(address); 337 HashMap::Entry* entry = 338 const_cast<HashMap*>(map_)->Lookup(address, Hash(address)); 339 DCHECK_NOT_NULL(entry); 340 return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value)); 341 } 342 343 344 const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate, 345 Address address) const { 346 HashMap::Entry* entry = 347 const_cast<HashMap*>(map_)->Lookup(address, Hash(address)); 348 if (entry == NULL) return "<unknown>"; 349 uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value)); 350 return ExternalReferenceTable::instance(isolate)->name(i); 351 } 352 353 354 class CodeAddressMap: public CodeEventLogger { 355 public: 356 explicit CodeAddressMap(Isolate* isolate) 357 : isolate_(isolate) { 358 isolate->logger()->addCodeEventListener(this); 359 } 360 361 ~CodeAddressMap() override { 362 isolate_->logger()->removeCodeEventListener(this); 363 } 364 365 void CodeMoveEvent(Address from, Address to) override { 366 address_to_name_map_.Move(from, to); 367 } 368 369 void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) override {} 370 371 void CodeDeleteEvent(Address from) override { 372 address_to_name_map_.Remove(from); 373 } 374 375 const char* Lookup(Address address) { 376 return address_to_name_map_.Lookup(address); 377 } 378 379 private: 380 class NameMap { 381 public: 382 NameMap() : impl_(HashMap::PointersMatch) {} 383 384 ~NameMap() { 385 for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) { 386 DeleteArray(static_cast<const char*>(p->value)); 387 } 388 } 389 390 void Insert(Address code_address, const char* name, int name_size) { 391 HashMap::Entry* entry = FindOrCreateEntry(code_address); 392 if (entry->value == NULL) { 393 entry->value = CopyName(name, name_size); 394 } 395 } 396 397 const char* Lookup(Address code_address) { 398 HashMap::Entry* entry = FindEntry(code_address); 399 return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL; 400 } 401 402 void Remove(Address code_address) { 403 HashMap::Entry* entry = FindEntry(code_address); 404 if (entry != NULL) { 405 DeleteArray(static_cast<char*>(entry->value)); 406 RemoveEntry(entry); 407 } 408 } 409 410 void Move(Address from, Address to) { 411 if (from == to) return; 412 HashMap::Entry* from_entry = FindEntry(from); 413 DCHECK(from_entry != NULL); 414 void* value = from_entry->value; 415 RemoveEntry(from_entry); 416 HashMap::Entry* to_entry = FindOrCreateEntry(to); 417 DCHECK(to_entry->value == NULL); 418 to_entry->value = value; 419 } 420 421 private: 422 static char* CopyName(const char* name, int name_size) { 423 char* result = NewArray<char>(name_size + 1); 424 for (int i = 0; i < name_size; ++i) { 425 char c = name[i]; 426 if (c == '\0') c = ' '; 427 result[i] = c; 428 } 429 result[name_size] = '\0'; 430 return result; 431 } 432 433 HashMap::Entry* FindOrCreateEntry(Address code_address) { 434 return impl_.LookupOrInsert(code_address, 435 ComputePointerHash(code_address)); 436 } 437 438 HashMap::Entry* FindEntry(Address code_address) { 439 return impl_.Lookup(code_address, ComputePointerHash(code_address)); 440 } 441 442 void RemoveEntry(HashMap::Entry* entry) { 443 impl_.Remove(entry->key, entry->hash); 444 } 445 446 HashMap impl_; 447 448 DISALLOW_COPY_AND_ASSIGN(NameMap); 449 }; 450 451 void LogRecordedBuffer(Code* code, SharedFunctionInfo*, const char* name, 452 int length) override { 453 address_to_name_map_.Insert(code->address(), name, length); 454 } 455 456 NameMap address_to_name_map_; 457 Isolate* isolate_; 458 }; 459 460 461 void Deserializer::DecodeReservation( 462 Vector<const SerializedData::Reservation> res) { 463 DCHECK_EQ(0, reservations_[NEW_SPACE].length()); 464 STATIC_ASSERT(NEW_SPACE == 0); 465 int current_space = NEW_SPACE; 466 for (auto& r : res) { 467 reservations_[current_space].Add({r.chunk_size(), NULL, NULL}); 468 if (r.is_last()) current_space++; 469 } 470 DCHECK_EQ(kNumberOfSpaces, current_space); 471 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0; 472 } 473 474 475 void Deserializer::FlushICacheForNewIsolate() { 476 DCHECK(!deserializing_user_code_); 477 // The entire isolate is newly deserialized. Simply flush all code pages. 478 PageIterator it(isolate_->heap()->code_space()); 479 while (it.has_next()) { 480 Page* p = it.next(); 481 Assembler::FlushICache(isolate_, p->area_start(), 482 p->area_end() - p->area_start()); 483 } 484 } 485 486 487 void Deserializer::FlushICacheForNewCodeObjects() { 488 DCHECK(deserializing_user_code_); 489 for (Code* code : new_code_objects_) { 490 Assembler::FlushICache(isolate_, code->instruction_start(), 491 code->instruction_size()); 492 } 493 } 494 495 496 bool Deserializer::ReserveSpace() { 497 #ifdef DEBUG 498 for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) { 499 CHECK(reservations_[i].length() > 0); 500 } 501 #endif // DEBUG 502 if (!isolate_->heap()->ReserveSpace(reservations_)) return false; 503 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { 504 high_water_[i] = reservations_[i][0].start; 505 } 506 return true; 507 } 508 509 510 void Deserializer::Initialize(Isolate* isolate) { 511 DCHECK_NULL(isolate_); 512 DCHECK_NOT_NULL(isolate); 513 isolate_ = isolate; 514 DCHECK_NULL(external_reference_table_); 515 external_reference_table_ = ExternalReferenceTable::instance(isolate); 516 CHECK_EQ(magic_number_, 517 SerializedData::ComputeMagicNumber(external_reference_table_)); 518 } 519 520 521 void Deserializer::Deserialize(Isolate* isolate) { 522 Initialize(isolate); 523 if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context"); 524 // No active threads. 525 DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse()); 526 // No active handles. 527 DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty()); 528 529 { 530 DisallowHeapAllocation no_gc; 531 isolate_->heap()->IterateSmiRoots(this); 532 isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); 533 isolate_->heap()->RepairFreeListsAfterDeserialization(); 534 isolate_->heap()->IterateWeakRoots(this, VISIT_ALL); 535 DeserializeDeferredObjects(); 536 FlushICacheForNewIsolate(); 537 } 538 539 isolate_->heap()->set_native_contexts_list( 540 isolate_->heap()->undefined_value()); 541 // The allocation site list is build during root iteration, but if no sites 542 // were encountered then it needs to be initialized to undefined. 543 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { 544 isolate_->heap()->set_allocation_sites_list( 545 isolate_->heap()->undefined_value()); 546 } 547 548 // Update data pointers to the external strings containing natives sources. 549 Natives::UpdateSourceCache(isolate_->heap()); 550 ExtraNatives::UpdateSourceCache(isolate_->heap()); 551 552 // Issue code events for newly deserialized code objects. 553 LOG_CODE_EVENT(isolate_, LogCodeObjects()); 554 LOG_CODE_EVENT(isolate_, LogCompiledFunctions()); 555 } 556 557 558 MaybeHandle<Object> Deserializer::DeserializePartial( 559 Isolate* isolate, Handle<JSGlobalProxy> global_proxy) { 560 Initialize(isolate); 561 if (!ReserveSpace()) { 562 V8::FatalProcessOutOfMemory("deserialize context"); 563 return MaybeHandle<Object>(); 564 } 565 566 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1); 567 attached_objects[kGlobalProxyReference] = global_proxy; 568 SetAttachedObjects(attached_objects); 569 570 DisallowHeapAllocation no_gc; 571 // Keep track of the code space start and end pointers in case new 572 // code objects were unserialized 573 OldSpace* code_space = isolate_->heap()->code_space(); 574 Address start_address = code_space->top(); 575 Object* root; 576 VisitPointer(&root); 577 DeserializeDeferredObjects(); 578 579 // There's no code deserialized here. If this assert fires then that's 580 // changed and logging should be added to notify the profiler et al of the 581 // new code, which also has to be flushed from instruction cache. 582 CHECK_EQ(start_address, code_space->top()); 583 return Handle<Object>(root, isolate); 584 } 585 586 587 MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode( 588 Isolate* isolate) { 589 Initialize(isolate); 590 if (!ReserveSpace()) { 591 return Handle<SharedFunctionInfo>(); 592 } else { 593 deserializing_user_code_ = true; 594 HandleScope scope(isolate); 595 Handle<SharedFunctionInfo> result; 596 { 597 DisallowHeapAllocation no_gc; 598 Object* root; 599 VisitPointer(&root); 600 DeserializeDeferredObjects(); 601 FlushICacheForNewCodeObjects(); 602 result = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root)); 603 } 604 CommitPostProcessedObjects(isolate); 605 return scope.CloseAndEscape(result); 606 } 607 } 608 609 610 Deserializer::~Deserializer() { 611 // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed. 612 // DCHECK(source_.AtEOF()); 613 attached_objects_.Dispose(); 614 } 615 616 617 // This is called on the roots. It is the driver of the deserialization 618 // process. It is also called on the body of each function. 619 void Deserializer::VisitPointers(Object** start, Object** end) { 620 // The space must be new space. Any other space would cause ReadChunk to try 621 // to update the remembered using NULL as the address. 622 ReadData(start, end, NEW_SPACE, NULL); 623 } 624 625 626 void Deserializer::DeserializeDeferredObjects() { 627 for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) { 628 switch (code) { 629 case kAlignmentPrefix: 630 case kAlignmentPrefix + 1: 631 case kAlignmentPrefix + 2: 632 SetAlignment(code); 633 break; 634 default: { 635 int space = code & kSpaceMask; 636 DCHECK(space <= kNumberOfSpaces); 637 DCHECK(code - space == kNewObject); 638 HeapObject* object = GetBackReferencedObject(space); 639 int size = source_.GetInt() << kPointerSizeLog2; 640 Address obj_address = object->address(); 641 Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize); 642 Object** end = reinterpret_cast<Object**>(obj_address + size); 643 bool filled = ReadData(start, end, space, obj_address); 644 CHECK(filled); 645 DCHECK(CanBeDeferred(object)); 646 PostProcessNewObject(object, space); 647 } 648 } 649 } 650 } 651 652 653 // Used to insert a deserialized internalized string into the string table. 654 class StringTableInsertionKey : public HashTableKey { 655 public: 656 explicit StringTableInsertionKey(String* string) 657 : string_(string), hash_(HashForObject(string)) { 658 DCHECK(string->IsInternalizedString()); 659 } 660 661 bool IsMatch(Object* string) override { 662 // We know that all entries in a hash table had their hash keys created. 663 // Use that knowledge to have fast failure. 664 if (hash_ != HashForObject(string)) return false; 665 // We want to compare the content of two internalized strings here. 666 return string_->SlowEquals(String::cast(string)); 667 } 668 669 uint32_t Hash() override { return hash_; } 670 671 uint32_t HashForObject(Object* key) override { 672 return String::cast(key)->Hash(); 673 } 674 675 MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override { 676 return handle(string_, isolate); 677 } 678 679 private: 680 String* string_; 681 uint32_t hash_; 682 DisallowHeapAllocation no_gc; 683 }; 684 685 686 HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) { 687 if (deserializing_user_code()) { 688 if (obj->IsString()) { 689 String* string = String::cast(obj); 690 // Uninitialize hash field as the hash seed may have changed. 691 string->set_hash_field(String::kEmptyHashField); 692 if (string->IsInternalizedString()) { 693 // Canonicalize the internalized string. If it already exists in the 694 // string table, set it to forward to the existing one. 695 StringTableInsertionKey key(string); 696 String* canonical = StringTable::LookupKeyIfExists(isolate_, &key); 697 if (canonical == NULL) { 698 new_internalized_strings_.Add(handle(string)); 699 return string; 700 } else { 701 string->SetForwardedInternalizedString(canonical); 702 return canonical; 703 } 704 } 705 } else if (obj->IsScript()) { 706 new_scripts_.Add(handle(Script::cast(obj))); 707 } else { 708 DCHECK(CanBeDeferred(obj)); 709 } 710 } 711 if (obj->IsAllocationSite()) { 712 DCHECK(obj->IsAllocationSite()); 713 // Allocation sites are present in the snapshot, and must be linked into 714 // a list at deserialization time. 715 AllocationSite* site = AllocationSite::cast(obj); 716 // TODO(mvstanton): consider treating the heap()->allocation_sites_list() 717 // as a (weak) root. If this root is relocated correctly, this becomes 718 // unnecessary. 719 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { 720 site->set_weak_next(isolate_->heap()->undefined_value()); 721 } else { 722 site->set_weak_next(isolate_->heap()->allocation_sites_list()); 723 } 724 isolate_->heap()->set_allocation_sites_list(site); 725 } else if (obj->IsCode()) { 726 // We flush all code pages after deserializing the startup snapshot. In that 727 // case, we only need to remember code objects in the large object space. 728 // When deserializing user code, remember each individual code object. 729 if (deserializing_user_code() || space == LO_SPACE) { 730 new_code_objects_.Add(Code::cast(obj)); 731 } 732 } 733 // Check alignment. 734 DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment())); 735 return obj; 736 } 737 738 739 void Deserializer::CommitPostProcessedObjects(Isolate* isolate) { 740 StringTable::EnsureCapacityForDeserialization( 741 isolate, new_internalized_strings_.length()); 742 for (Handle<String> string : new_internalized_strings_) { 743 StringTableInsertionKey key(*string); 744 DCHECK_NULL(StringTable::LookupKeyIfExists(isolate, &key)); 745 StringTable::LookupKey(isolate, &key); 746 } 747 748 Heap* heap = isolate->heap(); 749 Factory* factory = isolate->factory(); 750 for (Handle<Script> script : new_scripts_) { 751 // Assign a new script id to avoid collision. 752 script->set_id(isolate_->heap()->NextScriptId()); 753 // Add script to list. 754 Handle<Object> list = WeakFixedArray::Add(factory->script_list(), script); 755 heap->SetRootScriptList(*list); 756 } 757 } 758 759 760 HeapObject* Deserializer::GetBackReferencedObject(int space) { 761 HeapObject* obj; 762 BackReference back_reference(source_.GetInt()); 763 if (space == LO_SPACE) { 764 CHECK(back_reference.chunk_index() == 0); 765 uint32_t index = back_reference.large_object_index(); 766 obj = deserialized_large_objects_[index]; 767 } else { 768 DCHECK(space < kNumberOfPreallocatedSpaces); 769 uint32_t chunk_index = back_reference.chunk_index(); 770 DCHECK_LE(chunk_index, current_chunk_[space]); 771 uint32_t chunk_offset = back_reference.chunk_offset(); 772 Address address = reservations_[space][chunk_index].start + chunk_offset; 773 if (next_alignment_ != kWordAligned) { 774 int padding = Heap::GetFillToAlign(address, next_alignment_); 775 next_alignment_ = kWordAligned; 776 DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller()); 777 address += padding; 778 } 779 obj = HeapObject::FromAddress(address); 780 } 781 if (deserializing_user_code() && obj->IsInternalizedString()) { 782 obj = String::cast(obj)->GetForwardedInternalizedString(); 783 } 784 hot_objects_.Add(obj); 785 return obj; 786 } 787 788 789 // This routine writes the new object into the pointer provided and then 790 // returns true if the new object was in young space and false otherwise. 791 // The reason for this strange interface is that otherwise the object is 792 // written very late, which means the FreeSpace map is not set up by the 793 // time we need to use it to mark the space at the end of a page free. 794 void Deserializer::ReadObject(int space_number, Object** write_back) { 795 Address address; 796 HeapObject* obj; 797 int size = source_.GetInt() << kObjectAlignmentBits; 798 799 if (next_alignment_ != kWordAligned) { 800 int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_); 801 address = Allocate(space_number, reserved); 802 obj = HeapObject::FromAddress(address); 803 // If one of the following assertions fails, then we are deserializing an 804 // aligned object when the filler maps have not been deserialized yet. 805 // We require filler maps as padding to align the object. 806 Heap* heap = isolate_->heap(); 807 DCHECK(heap->free_space_map()->IsMap()); 808 DCHECK(heap->one_pointer_filler_map()->IsMap()); 809 DCHECK(heap->two_pointer_filler_map()->IsMap()); 810 obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_); 811 address = obj->address(); 812 next_alignment_ = kWordAligned; 813 } else { 814 address = Allocate(space_number, size); 815 obj = HeapObject::FromAddress(address); 816 } 817 818 isolate_->heap()->OnAllocationEvent(obj, size); 819 Object** current = reinterpret_cast<Object**>(address); 820 Object** limit = current + (size >> kPointerSizeLog2); 821 if (FLAG_log_snapshot_positions) { 822 LOG(isolate_, SnapshotPositionEvent(address, source_.position())); 823 } 824 825 if (ReadData(current, limit, space_number, address)) { 826 // Only post process if object content has not been deferred. 827 obj = PostProcessNewObject(obj, space_number); 828 } 829 830 Object* write_back_obj = obj; 831 UnalignedCopy(write_back, &write_back_obj); 832 #ifdef DEBUG 833 if (obj->IsCode()) { 834 DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE); 835 } else { 836 DCHECK(space_number != CODE_SPACE); 837 } 838 #endif // DEBUG 839 } 840 841 842 // We know the space requirements before deserialization and can 843 // pre-allocate that reserved space. During deserialization, all we need 844 // to do is to bump up the pointer for each space in the reserved 845 // space. This is also used for fixing back references. 846 // We may have to split up the pre-allocation into several chunks 847 // because it would not fit onto a single page. We do not have to keep 848 // track of when to move to the next chunk. An opcode will signal this. 849 // Since multiple large objects cannot be folded into one large object 850 // space allocation, we have to do an actual allocation when deserializing 851 // each large object. Instead of tracking offset for back references, we 852 // reference large objects by index. 853 Address Deserializer::Allocate(int space_index, int size) { 854 if (space_index == LO_SPACE) { 855 AlwaysAllocateScope scope(isolate_); 856 LargeObjectSpace* lo_space = isolate_->heap()->lo_space(); 857 Executability exec = static_cast<Executability>(source_.Get()); 858 AllocationResult result = lo_space->AllocateRaw(size, exec); 859 HeapObject* obj = HeapObject::cast(result.ToObjectChecked()); 860 deserialized_large_objects_.Add(obj); 861 return obj->address(); 862 } else { 863 DCHECK(space_index < kNumberOfPreallocatedSpaces); 864 Address address = high_water_[space_index]; 865 DCHECK_NOT_NULL(address); 866 high_water_[space_index] += size; 867 #ifdef DEBUG 868 // Assert that the current reserved chunk is still big enough. 869 const Heap::Reservation& reservation = reservations_[space_index]; 870 int chunk_index = current_chunk_[space_index]; 871 CHECK_LE(high_water_[space_index], reservation[chunk_index].end); 872 #endif 873 return address; 874 } 875 } 876 877 878 Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector, 879 Object** current) { 880 DCHECK(!isolate_->heap()->deserialization_complete()); 881 NativesExternalStringResource* resource = new NativesExternalStringResource( 882 source_vector.start(), source_vector.length()); 883 Object* resource_obj = reinterpret_cast<Object*>(resource); 884 UnalignedCopy(current++, &resource_obj); 885 return current; 886 } 887 888 889 bool Deserializer::ReadData(Object** current, Object** limit, int source_space, 890 Address current_object_address) { 891 Isolate* const isolate = isolate_; 892 // Write barrier support costs around 1% in startup time. In fact there 893 // are no new space objects in current boot snapshots, so it's not needed, 894 // but that may change. 895 bool write_barrier_needed = 896 (current_object_address != NULL && source_space != NEW_SPACE && 897 source_space != CODE_SPACE); 898 while (current < limit) { 899 byte data = source_.Get(); 900 switch (data) { 901 #define CASE_STATEMENT(where, how, within, space_number) \ 902 case where + how + within + space_number: \ 903 STATIC_ASSERT((where & ~kWhereMask) == 0); \ 904 STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \ 905 STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \ 906 STATIC_ASSERT((space_number & ~kSpaceMask) == 0); 907 908 #define CASE_BODY(where, how, within, space_number_if_any) \ 909 { \ 910 bool emit_write_barrier = false; \ 911 bool current_was_incremented = false; \ 912 int space_number = space_number_if_any == kAnyOldSpace \ 913 ? (data & kSpaceMask) \ 914 : space_number_if_any; \ 915 if (where == kNewObject && how == kPlain && within == kStartOfObject) { \ 916 ReadObject(space_number, current); \ 917 emit_write_barrier = (space_number == NEW_SPACE); \ 918 } else { \ 919 Object* new_object = NULL; /* May not be a real Object pointer. */ \ 920 if (where == kNewObject) { \ 921 ReadObject(space_number, &new_object); \ 922 } else if (where == kBackref) { \ 923 emit_write_barrier = (space_number == NEW_SPACE); \ 924 new_object = GetBackReferencedObject(data & kSpaceMask); \ 925 } else if (where == kBackrefWithSkip) { \ 926 int skip = source_.GetInt(); \ 927 current = reinterpret_cast<Object**>( \ 928 reinterpret_cast<Address>(current) + skip); \ 929 emit_write_barrier = (space_number == NEW_SPACE); \ 930 new_object = GetBackReferencedObject(data & kSpaceMask); \ 931 } else if (where == kRootArray) { \ 932 int id = source_.GetInt(); \ 933 Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); \ 934 new_object = isolate->heap()->root(root_index); \ 935 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ 936 } else if (where == kPartialSnapshotCache) { \ 937 int cache_index = source_.GetInt(); \ 938 new_object = isolate->partial_snapshot_cache()->at(cache_index); \ 939 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ 940 } else if (where == kExternalReference) { \ 941 int skip = source_.GetInt(); \ 942 current = reinterpret_cast<Object**>( \ 943 reinterpret_cast<Address>(current) + skip); \ 944 int reference_id = source_.GetInt(); \ 945 Address address = external_reference_table_->address(reference_id); \ 946 new_object = reinterpret_cast<Object*>(address); \ 947 } else if (where == kAttachedReference) { \ 948 int index = source_.GetInt(); \ 949 DCHECK(deserializing_user_code() || index == kGlobalProxyReference); \ 950 new_object = *attached_objects_[index]; \ 951 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ 952 } else { \ 953 DCHECK(where == kBuiltin); \ 954 DCHECK(deserializing_user_code()); \ 955 int builtin_id = source_.GetInt(); \ 956 DCHECK_LE(0, builtin_id); \ 957 DCHECK_LT(builtin_id, Builtins::builtin_count); \ 958 Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \ 959 new_object = isolate->builtins()->builtin(name); \ 960 emit_write_barrier = false; \ 961 } \ 962 if (within == kInnerPointer) { \ 963 if (space_number != CODE_SPACE || new_object->IsCode()) { \ 964 Code* new_code_object = reinterpret_cast<Code*>(new_object); \ 965 new_object = \ 966 reinterpret_cast<Object*>(new_code_object->instruction_start()); \ 967 } else { \ 968 DCHECK(space_number == CODE_SPACE); \ 969 Cell* cell = Cell::cast(new_object); \ 970 new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \ 971 } \ 972 } \ 973 if (how == kFromCode) { \ 974 Address location_of_branch_data = reinterpret_cast<Address>(current); \ 975 Assembler::deserialization_set_special_target_at( \ 976 isolate, location_of_branch_data, \ 977 Code::cast(HeapObject::FromAddress(current_object_address)), \ 978 reinterpret_cast<Address>(new_object)); \ 979 location_of_branch_data += Assembler::kSpecialTargetSize; \ 980 current = reinterpret_cast<Object**>(location_of_branch_data); \ 981 current_was_incremented = true; \ 982 } else { \ 983 UnalignedCopy(current, &new_object); \ 984 } \ 985 } \ 986 if (emit_write_barrier && write_barrier_needed) { \ 987 Address current_address = reinterpret_cast<Address>(current); \ 988 isolate->heap()->RecordWrite( \ 989 current_object_address, \ 990 static_cast<int>(current_address - current_object_address)); \ 991 } \ 992 if (!current_was_incremented) { \ 993 current++; \ 994 } \ 995 break; \ 996 } 997 998 // This generates a case and a body for the new space (which has to do extra 999 // write barrier handling) and handles the other spaces with fall-through cases 1000 // and one body. 1001 #define ALL_SPACES(where, how, within) \ 1002 CASE_STATEMENT(where, how, within, NEW_SPACE) \ 1003 CASE_BODY(where, how, within, NEW_SPACE) \ 1004 CASE_STATEMENT(where, how, within, OLD_SPACE) \ 1005 CASE_STATEMENT(where, how, within, CODE_SPACE) \ 1006 CASE_STATEMENT(where, how, within, MAP_SPACE) \ 1007 CASE_STATEMENT(where, how, within, LO_SPACE) \ 1008 CASE_BODY(where, how, within, kAnyOldSpace) 1009 1010 #define FOUR_CASES(byte_code) \ 1011 case byte_code: \ 1012 case byte_code + 1: \ 1013 case byte_code + 2: \ 1014 case byte_code + 3: 1015 1016 #define SIXTEEN_CASES(byte_code) \ 1017 FOUR_CASES(byte_code) \ 1018 FOUR_CASES(byte_code + 4) \ 1019 FOUR_CASES(byte_code + 8) \ 1020 FOUR_CASES(byte_code + 12) 1021 1022 #define SINGLE_CASE(where, how, within, space) \ 1023 CASE_STATEMENT(where, how, within, space) \ 1024 CASE_BODY(where, how, within, space) 1025 1026 // Deserialize a new object and write a pointer to it to the current 1027 // object. 1028 ALL_SPACES(kNewObject, kPlain, kStartOfObject) 1029 // Support for direct instruction pointers in functions. It's an inner 1030 // pointer because it points at the entry point, not at the start of the 1031 // code object. 1032 SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE) 1033 // Deserialize a new code object and write a pointer to its first 1034 // instruction to the current code object. 1035 ALL_SPACES(kNewObject, kFromCode, kInnerPointer) 1036 // Find a recently deserialized object using its offset from the current 1037 // allocation point and write a pointer to it to the current object. 1038 ALL_SPACES(kBackref, kPlain, kStartOfObject) 1039 ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject) 1040 #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \ 1041 defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL 1042 // Deserialize a new object from pointer found in code and write 1043 // a pointer to it to the current object. Required only for MIPS, PPC or 1044 // ARM with embedded constant pool, and omitted on the other architectures 1045 // because it is fully unrolled and would cause bloat. 1046 ALL_SPACES(kNewObject, kFromCode, kStartOfObject) 1047 // Find a recently deserialized code object using its offset from the 1048 // current allocation point and write a pointer to it to the current 1049 // object. Required only for MIPS, PPC or ARM with embedded constant pool. 1050 ALL_SPACES(kBackref, kFromCode, kStartOfObject) 1051 ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject) 1052 #endif 1053 // Find a recently deserialized code object using its offset from the 1054 // current allocation point and write a pointer to its first instruction 1055 // to the current code object or the instruction pointer in a function 1056 // object. 1057 ALL_SPACES(kBackref, kFromCode, kInnerPointer) 1058 ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer) 1059 ALL_SPACES(kBackref, kPlain, kInnerPointer) 1060 ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer) 1061 // Find an object in the roots array and write a pointer to it to the 1062 // current object. 1063 SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0) 1064 #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \ 1065 defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL 1066 // Find an object in the roots array and write a pointer to it to in code. 1067 SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0) 1068 #endif 1069 // Find an object in the partial snapshots cache and write a pointer to it 1070 // to the current object. 1071 SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0) 1072 // Find an code entry in the partial snapshots cache and 1073 // write a pointer to it to the current object. 1074 SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0) 1075 // Find an external reference and write a pointer to it to the current 1076 // object. 1077 SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0) 1078 // Find an external reference and write a pointer to it in the current 1079 // code object. 1080 SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0) 1081 // Find an object in the attached references and write a pointer to it to 1082 // the current object. 1083 SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0) 1084 SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0) 1085 SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0) 1086 // Find a builtin and write a pointer to it to the current object. 1087 SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0) 1088 SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0) 1089 SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0) 1090 1091 #undef CASE_STATEMENT 1092 #undef CASE_BODY 1093 #undef ALL_SPACES 1094 1095 case kSkip: { 1096 int size = source_.GetInt(); 1097 current = reinterpret_cast<Object**>( 1098 reinterpret_cast<intptr_t>(current) + size); 1099 break; 1100 } 1101 1102 case kInternalReferenceEncoded: 1103 case kInternalReference: { 1104 // Internal reference address is not encoded via skip, but by offset 1105 // from code entry. 1106 int pc_offset = source_.GetInt(); 1107 int target_offset = source_.GetInt(); 1108 Code* code = 1109 Code::cast(HeapObject::FromAddress(current_object_address)); 1110 DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size()); 1111 DCHECK(0 <= target_offset && target_offset <= code->instruction_size()); 1112 Address pc = code->entry() + pc_offset; 1113 Address target = code->entry() + target_offset; 1114 Assembler::deserialization_set_target_internal_reference_at( 1115 isolate, pc, target, data == kInternalReference 1116 ? RelocInfo::INTERNAL_REFERENCE 1117 : RelocInfo::INTERNAL_REFERENCE_ENCODED); 1118 break; 1119 } 1120 1121 case kNop: 1122 break; 1123 1124 case kNextChunk: { 1125 int space = source_.Get(); 1126 DCHECK(space < kNumberOfPreallocatedSpaces); 1127 int chunk_index = current_chunk_[space]; 1128 const Heap::Reservation& reservation = reservations_[space]; 1129 // Make sure the current chunk is indeed exhausted. 1130 CHECK_EQ(reservation[chunk_index].end, high_water_[space]); 1131 // Move to next reserved chunk. 1132 chunk_index = ++current_chunk_[space]; 1133 CHECK_LT(chunk_index, reservation.length()); 1134 high_water_[space] = reservation[chunk_index].start; 1135 break; 1136 } 1137 1138 case kDeferred: { 1139 // Deferred can only occur right after the heap object header. 1140 DCHECK(current == reinterpret_cast<Object**>(current_object_address + 1141 kPointerSize)); 1142 HeapObject* obj = HeapObject::FromAddress(current_object_address); 1143 // If the deferred object is a map, its instance type may be used 1144 // during deserialization. Initialize it with a temporary value. 1145 if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE); 1146 current = limit; 1147 return false; 1148 } 1149 1150 case kSynchronize: 1151 // If we get here then that indicates that you have a mismatch between 1152 // the number of GC roots when serializing and deserializing. 1153 CHECK(false); 1154 break; 1155 1156 case kNativesStringResource: 1157 current = CopyInNativesSource(Natives::GetScriptSource(source_.Get()), 1158 current); 1159 break; 1160 1161 case kExtraNativesStringResource: 1162 current = CopyInNativesSource( 1163 ExtraNatives::GetScriptSource(source_.Get()), current); 1164 break; 1165 1166 // Deserialize raw data of variable length. 1167 case kVariableRawData: { 1168 int size_in_bytes = source_.GetInt(); 1169 byte* raw_data_out = reinterpret_cast<byte*>(current); 1170 source_.CopyRaw(raw_data_out, size_in_bytes); 1171 break; 1172 } 1173 1174 case kVariableRepeat: { 1175 int repeats = source_.GetInt(); 1176 Object* object = current[-1]; 1177 DCHECK(!isolate->heap()->InNewSpace(object)); 1178 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); 1179 break; 1180 } 1181 1182 case kAlignmentPrefix: 1183 case kAlignmentPrefix + 1: 1184 case kAlignmentPrefix + 2: 1185 SetAlignment(data); 1186 break; 1187 1188 STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots); 1189 STATIC_ASSERT(kNumberOfRootArrayConstants == 32); 1190 SIXTEEN_CASES(kRootArrayConstantsWithSkip) 1191 SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) { 1192 int skip = source_.GetInt(); 1193 current = reinterpret_cast<Object**>( 1194 reinterpret_cast<intptr_t>(current) + skip); 1195 // Fall through. 1196 } 1197 1198 SIXTEEN_CASES(kRootArrayConstants) 1199 SIXTEEN_CASES(kRootArrayConstants + 16) { 1200 int id = data & kRootArrayConstantsMask; 1201 Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); 1202 Object* object = isolate->heap()->root(root_index); 1203 DCHECK(!isolate->heap()->InNewSpace(object)); 1204 UnalignedCopy(current++, &object); 1205 break; 1206 } 1207 1208 STATIC_ASSERT(kNumberOfHotObjects == 8); 1209 FOUR_CASES(kHotObjectWithSkip) 1210 FOUR_CASES(kHotObjectWithSkip + 4) { 1211 int skip = source_.GetInt(); 1212 current = reinterpret_cast<Object**>( 1213 reinterpret_cast<Address>(current) + skip); 1214 // Fall through. 1215 } 1216 1217 FOUR_CASES(kHotObject) 1218 FOUR_CASES(kHotObject + 4) { 1219 int index = data & kHotObjectMask; 1220 Object* hot_object = hot_objects_.Get(index); 1221 UnalignedCopy(current, &hot_object); 1222 if (write_barrier_needed && isolate->heap()->InNewSpace(hot_object)) { 1223 Address current_address = reinterpret_cast<Address>(current); 1224 isolate->heap()->RecordWrite( 1225 current_object_address, 1226 static_cast<int>(current_address - current_object_address)); 1227 } 1228 current++; 1229 break; 1230 } 1231 1232 // Deserialize raw data of fixed length from 1 to 32 words. 1233 STATIC_ASSERT(kNumberOfFixedRawData == 32); 1234 SIXTEEN_CASES(kFixedRawData) 1235 SIXTEEN_CASES(kFixedRawData + 16) { 1236 byte* raw_data_out = reinterpret_cast<byte*>(current); 1237 int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2; 1238 source_.CopyRaw(raw_data_out, size_in_bytes); 1239 current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes); 1240 break; 1241 } 1242 1243 STATIC_ASSERT(kNumberOfFixedRepeat == 16); 1244 SIXTEEN_CASES(kFixedRepeat) { 1245 int repeats = data - kFixedRepeatStart; 1246 Object* object; 1247 UnalignedCopy(&object, current - 1); 1248 DCHECK(!isolate->heap()->InNewSpace(object)); 1249 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); 1250 break; 1251 } 1252 1253 #undef SIXTEEN_CASES 1254 #undef FOUR_CASES 1255 #undef SINGLE_CASE 1256 1257 default: 1258 CHECK(false); 1259 } 1260 } 1261 CHECK_EQ(limit, current); 1262 return true; 1263 } 1264 1265 1266 Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink) 1267 : isolate_(isolate), 1268 sink_(sink), 1269 external_reference_encoder_(isolate), 1270 root_index_map_(isolate), 1271 recursion_depth_(0), 1272 code_address_map_(NULL), 1273 large_objects_total_size_(0), 1274 seen_large_objects_index_(0) { 1275 // The serializer is meant to be used only to generate initial heap images 1276 // from a context in which there is only one isolate. 1277 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { 1278 pending_chunk_[i] = 0; 1279 max_chunk_size_[i] = static_cast<uint32_t>( 1280 MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i))); 1281 } 1282 1283 #ifdef OBJECT_PRINT 1284 if (FLAG_serialization_statistics) { 1285 instance_type_count_ = NewArray<int>(kInstanceTypes); 1286 instance_type_size_ = NewArray<size_t>(kInstanceTypes); 1287 for (int i = 0; i < kInstanceTypes; i++) { 1288 instance_type_count_[i] = 0; 1289 instance_type_size_[i] = 0; 1290 } 1291 } else { 1292 instance_type_count_ = NULL; 1293 instance_type_size_ = NULL; 1294 } 1295 #endif // OBJECT_PRINT 1296 } 1297 1298 1299 Serializer::~Serializer() { 1300 if (code_address_map_ != NULL) delete code_address_map_; 1301 #ifdef OBJECT_PRINT 1302 if (instance_type_count_ != NULL) { 1303 DeleteArray(instance_type_count_); 1304 DeleteArray(instance_type_size_); 1305 } 1306 #endif // OBJECT_PRINT 1307 } 1308 1309 1310 #ifdef OBJECT_PRINT 1311 void Serializer::CountInstanceType(Map* map, int size) { 1312 int instance_type = map->instance_type(); 1313 instance_type_count_[instance_type]++; 1314 instance_type_size_[instance_type] += size; 1315 } 1316 #endif // OBJECT_PRINT 1317 1318 1319 void Serializer::OutputStatistics(const char* name) { 1320 if (!FLAG_serialization_statistics) return; 1321 PrintF("%s:\n", name); 1322 PrintF(" Spaces (bytes):\n"); 1323 for (int space = 0; space < kNumberOfSpaces; space++) { 1324 PrintF("%16s", AllocationSpaceName(static_cast<AllocationSpace>(space))); 1325 } 1326 PrintF("\n"); 1327 for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) { 1328 size_t s = pending_chunk_[space]; 1329 for (uint32_t chunk_size : completed_chunks_[space]) s += chunk_size; 1330 PrintF("%16" V8_PTR_PREFIX "d", s); 1331 } 1332 PrintF("%16d\n", large_objects_total_size_); 1333 #ifdef OBJECT_PRINT 1334 PrintF(" Instance types (count and bytes):\n"); 1335 #define PRINT_INSTANCE_TYPE(Name) \ 1336 if (instance_type_count_[Name]) { \ 1337 PrintF("%10d %10" V8_PTR_PREFIX "d %s\n", instance_type_count_[Name], \ 1338 instance_type_size_[Name], #Name); \ 1339 } 1340 INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE) 1341 #undef PRINT_INSTANCE_TYPE 1342 PrintF("\n"); 1343 #endif // OBJECT_PRINT 1344 } 1345 1346 1347 class Serializer::ObjectSerializer : public ObjectVisitor { 1348 public: 1349 ObjectSerializer(Serializer* serializer, Object* o, SnapshotByteSink* sink, 1350 HowToCode how_to_code, WhereToPoint where_to_point) 1351 : serializer_(serializer), 1352 object_(HeapObject::cast(o)), 1353 sink_(sink), 1354 reference_representation_(how_to_code + where_to_point), 1355 bytes_processed_so_far_(0), 1356 is_code_object_(o->IsCode()), 1357 code_has_been_output_(false) {} 1358 void Serialize(); 1359 void SerializeDeferred(); 1360 void VisitPointers(Object** start, Object** end) override; 1361 void VisitEmbeddedPointer(RelocInfo* target) override; 1362 void VisitExternalReference(Address* p) override; 1363 void VisitExternalReference(RelocInfo* rinfo) override; 1364 void VisitInternalReference(RelocInfo* rinfo) override; 1365 void VisitCodeTarget(RelocInfo* target) override; 1366 void VisitCodeEntry(Address entry_address) override; 1367 void VisitCell(RelocInfo* rinfo) override; 1368 void VisitRuntimeEntry(RelocInfo* reloc) override; 1369 // Used for seralizing the external strings that hold the natives source. 1370 void VisitExternalOneByteString( 1371 v8::String::ExternalOneByteStringResource** resource) override; 1372 // We can't serialize a heap with external two byte strings. 1373 void VisitExternalTwoByteString( 1374 v8::String::ExternalStringResource** resource) override { 1375 UNREACHABLE(); 1376 } 1377 1378 private: 1379 void SerializePrologue(AllocationSpace space, int size, Map* map); 1380 1381 bool SerializeExternalNativeSourceString( 1382 int builtin_count, 1383 v8::String::ExternalOneByteStringResource** resource_pointer, 1384 FixedArray* source_cache, int resource_index); 1385 1386 enum ReturnSkip { kCanReturnSkipInsteadOfSkipping, kIgnoringReturn }; 1387 // This function outputs or skips the raw data between the last pointer and 1388 // up to the current position. It optionally can just return the number of 1389 // bytes to skip instead of performing a skip instruction, in case the skip 1390 // can be merged into the next instruction. 1391 int OutputRawData(Address up_to, ReturnSkip return_skip = kIgnoringReturn); 1392 // External strings are serialized in a way to resemble sequential strings. 1393 void SerializeExternalString(); 1394 1395 Address PrepareCode(); 1396 1397 Serializer* serializer_; 1398 HeapObject* object_; 1399 SnapshotByteSink* sink_; 1400 int reference_representation_; 1401 int bytes_processed_so_far_; 1402 bool is_code_object_; 1403 bool code_has_been_output_; 1404 }; 1405 1406 1407 void Serializer::SerializeDeferredObjects() { 1408 while (deferred_objects_.length() > 0) { 1409 HeapObject* obj = deferred_objects_.RemoveLast(); 1410 ObjectSerializer obj_serializer(this, obj, sink_, kPlain, kStartOfObject); 1411 obj_serializer.SerializeDeferred(); 1412 } 1413 sink_->Put(kSynchronize, "Finished with deferred objects"); 1414 } 1415 1416 1417 void StartupSerializer::SerializeStrongReferences() { 1418 Isolate* isolate = this->isolate(); 1419 // No active threads. 1420 CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse()); 1421 // No active or weak handles. 1422 CHECK(isolate->handle_scope_implementer()->blocks()->is_empty()); 1423 CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles()); 1424 CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles()); 1425 // We don't support serializing installed extensions. 1426 CHECK(!isolate->has_installed_extensions()); 1427 isolate->heap()->IterateSmiRoots(this); 1428 isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); 1429 } 1430 1431 1432 void StartupSerializer::VisitPointers(Object** start, Object** end) { 1433 for (Object** current = start; current < end; current++) { 1434 if (start == isolate()->heap()->roots_array_start()) { 1435 root_index_wave_front_ = 1436 Max(root_index_wave_front_, static_cast<intptr_t>(current - start)); 1437 } 1438 if (ShouldBeSkipped(current)) { 1439 sink_->Put(kSkip, "Skip"); 1440 sink_->PutInt(kPointerSize, "SkipOneWord"); 1441 } else if ((*current)->IsSmi()) { 1442 sink_->Put(kOnePointerRawData, "Smi"); 1443 for (int i = 0; i < kPointerSize; i++) { 1444 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte"); 1445 } 1446 } else { 1447 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0); 1448 } 1449 } 1450 } 1451 1452 1453 void PartialSerializer::Serialize(Object** o) { 1454 if ((*o)->IsContext()) { 1455 Context* context = Context::cast(*o); 1456 global_object_ = context->global_object(); 1457 back_reference_map()->AddGlobalProxy(context->global_proxy()); 1458 // The bootstrap snapshot has a code-stub context. When serializing the 1459 // partial snapshot, it is chained into the weak context list on the isolate 1460 // and it's next context pointer may point to the code-stub context. Clear 1461 // it before serializing, it will get re-added to the context list 1462 // explicitly when it's loaded. 1463 if (context->IsNativeContext()) { 1464 context->set(Context::NEXT_CONTEXT_LINK, 1465 isolate_->heap()->undefined_value()); 1466 DCHECK(!context->global_object()->IsUndefined()); 1467 } 1468 } 1469 VisitPointer(o); 1470 SerializeDeferredObjects(); 1471 Pad(); 1472 } 1473 1474 1475 bool Serializer::ShouldBeSkipped(Object** current) { 1476 Object** roots = isolate()->heap()->roots_array_start(); 1477 return current == &roots[Heap::kStoreBufferTopRootIndex] 1478 || current == &roots[Heap::kStackLimitRootIndex] 1479 || current == &roots[Heap::kRealStackLimitRootIndex]; 1480 } 1481 1482 1483 void Serializer::VisitPointers(Object** start, Object** end) { 1484 for (Object** current = start; current < end; current++) { 1485 if ((*current)->IsSmi()) { 1486 sink_->Put(kOnePointerRawData, "Smi"); 1487 for (int i = 0; i < kPointerSize; i++) { 1488 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte"); 1489 } 1490 } else { 1491 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0); 1492 } 1493 } 1494 } 1495 1496 1497 void Serializer::EncodeReservations( 1498 List<SerializedData::Reservation>* out) const { 1499 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { 1500 for (int j = 0; j < completed_chunks_[i].length(); j++) { 1501 out->Add(SerializedData::Reservation(completed_chunks_[i][j])); 1502 } 1503 1504 if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) { 1505 out->Add(SerializedData::Reservation(pending_chunk_[i])); 1506 } 1507 out->last().mark_as_last(); 1508 } 1509 1510 out->Add(SerializedData::Reservation(large_objects_total_size_)); 1511 out->last().mark_as_last(); 1512 } 1513 1514 1515 // This ensures that the partial snapshot cache keeps things alive during GC and 1516 // tracks their movement. When it is called during serialization of the startup 1517 // snapshot nothing happens. When the partial (context) snapshot is created, 1518 // this array is populated with the pointers that the partial snapshot will 1519 // need. As that happens we emit serialized objects to the startup snapshot 1520 // that correspond to the elements of this cache array. On deserialization we 1521 // therefore need to visit the cache array. This fills it up with pointers to 1522 // deserialized objects. 1523 void SerializerDeserializer::Iterate(Isolate* isolate, 1524 ObjectVisitor* visitor) { 1525 if (isolate->serializer_enabled()) return; 1526 List<Object*>* cache = isolate->partial_snapshot_cache(); 1527 for (int i = 0;; ++i) { 1528 // Extend the array ready to get a value when deserializing. 1529 if (cache->length() <= i) cache->Add(Smi::FromInt(0)); 1530 visitor->VisitPointer(&cache->at(i)); 1531 // Sentinel is the undefined object, which is a root so it will not normally 1532 // be found in the cache. 1533 if (cache->at(i)->IsUndefined()) break; 1534 } 1535 } 1536 1537 1538 bool SerializerDeserializer::CanBeDeferred(HeapObject* o) { 1539 return !o->IsString() && !o->IsScript(); 1540 } 1541 1542 1543 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) { 1544 Isolate* isolate = this->isolate(); 1545 List<Object*>* cache = isolate->partial_snapshot_cache(); 1546 int new_index = cache->length(); 1547 1548 int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index); 1549 if (index == PartialCacheIndexMap::kInvalidIndex) { 1550 // We didn't find the object in the cache. So we add it to the cache and 1551 // then visit the pointer so that it becomes part of the startup snapshot 1552 // and we can refer to it from the partial snapshot. 1553 cache->Add(heap_object); 1554 startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object)); 1555 // We don't recurse from the startup snapshot generator into the partial 1556 // snapshot generator. 1557 return new_index; 1558 } 1559 return index; 1560 } 1561 1562 1563 bool PartialSerializer::ShouldBeInThePartialSnapshotCache(HeapObject* o) { 1564 // Scripts should be referred only through shared function infos. We can't 1565 // allow them to be part of the partial snapshot because they contain a 1566 // unique ID, and deserializing several partial snapshots containing script 1567 // would cause dupes. 1568 DCHECK(!o->IsScript()); 1569 return o->IsName() || o->IsSharedFunctionInfo() || o->IsHeapNumber() || 1570 o->IsCode() || o->IsScopeInfo() || o->IsExecutableAccessorInfo() || 1571 o->map() == 1572 startup_serializer_->isolate()->heap()->fixed_cow_array_map(); 1573 } 1574 1575 1576 #ifdef DEBUG 1577 bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) { 1578 DCHECK(reference.is_valid()); 1579 DCHECK(!reference.is_source()); 1580 DCHECK(!reference.is_global_proxy()); 1581 AllocationSpace space = reference.space(); 1582 int chunk_index = reference.chunk_index(); 1583 if (space == LO_SPACE) { 1584 return chunk_index == 0 && 1585 reference.large_object_index() < seen_large_objects_index_; 1586 } else if (chunk_index == completed_chunks_[space].length()) { 1587 return reference.chunk_offset() < pending_chunk_[space]; 1588 } else { 1589 return chunk_index < completed_chunks_[space].length() && 1590 reference.chunk_offset() < completed_chunks_[space][chunk_index]; 1591 } 1592 } 1593 #endif // DEBUG 1594 1595 1596 bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code, 1597 WhereToPoint where_to_point, int skip) { 1598 if (how_to_code == kPlain && where_to_point == kStartOfObject) { 1599 // Encode a reference to a hot object by its index in the working set. 1600 int index = hot_objects_.Find(obj); 1601 if (index != HotObjectsList::kNotFound) { 1602 DCHECK(index >= 0 && index < kNumberOfHotObjects); 1603 if (FLAG_trace_serializer) { 1604 PrintF(" Encoding hot object %d:", index); 1605 obj->ShortPrint(); 1606 PrintF("\n"); 1607 } 1608 if (skip != 0) { 1609 sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip"); 1610 sink_->PutInt(skip, "HotObjectSkipDistance"); 1611 } else { 1612 sink_->Put(kHotObject + index, "HotObject"); 1613 } 1614 return true; 1615 } 1616 } 1617 BackReference back_reference = back_reference_map_.Lookup(obj); 1618 if (back_reference.is_valid()) { 1619 // Encode the location of an already deserialized object in order to write 1620 // its location into a later object. We can encode the location as an 1621 // offset fromthe start of the deserialized objects or as an offset 1622 // backwards from thecurrent allocation pointer. 1623 if (back_reference.is_source()) { 1624 FlushSkip(skip); 1625 if (FLAG_trace_serializer) PrintF(" Encoding source object\n"); 1626 DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject); 1627 sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source"); 1628 sink_->PutInt(kSourceObjectReference, "kSourceObjectReference"); 1629 } else if (back_reference.is_global_proxy()) { 1630 FlushSkip(skip); 1631 if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n"); 1632 DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject); 1633 sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy"); 1634 sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference"); 1635 } else { 1636 if (FLAG_trace_serializer) { 1637 PrintF(" Encoding back reference to: "); 1638 obj->ShortPrint(); 1639 PrintF("\n"); 1640 } 1641 1642 PutAlignmentPrefix(obj); 1643 AllocationSpace space = back_reference.space(); 1644 if (skip == 0) { 1645 sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef"); 1646 } else { 1647 sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space, 1648 "BackRefWithSkip"); 1649 sink_->PutInt(skip, "BackRefSkipDistance"); 1650 } 1651 PutBackReference(obj, back_reference); 1652 } 1653 return true; 1654 } 1655 return false; 1656 } 1657 1658 1659 StartupSerializer::StartupSerializer(Isolate* isolate, SnapshotByteSink* sink) 1660 : Serializer(isolate, sink), root_index_wave_front_(0) { 1661 // Clear the cache of objects used by the partial snapshot. After the 1662 // strong roots have been serialized we can create a partial snapshot 1663 // which will repopulate the cache with objects needed by that partial 1664 // snapshot. 1665 isolate->partial_snapshot_cache()->Clear(); 1666 InitializeCodeAddressMap(); 1667 } 1668 1669 1670 void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, 1671 WhereToPoint where_to_point, int skip) { 1672 DCHECK(!obj->IsJSFunction()); 1673 1674 int root_index = root_index_map_.Lookup(obj); 1675 // We can only encode roots as such if it has already been serialized. 1676 // That applies to root indices below the wave front. 1677 if (root_index != RootIndexMap::kInvalidRootIndex && 1678 root_index < root_index_wave_front_) { 1679 PutRoot(root_index, obj, how_to_code, where_to_point, skip); 1680 return; 1681 } 1682 1683 if (obj->IsCode() && Code::cast(obj)->kind() == Code::FUNCTION) { 1684 obj = isolate()->builtins()->builtin(Builtins::kCompileLazy); 1685 } 1686 1687 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; 1688 1689 FlushSkip(skip); 1690 1691 // Object has not yet been serialized. Serialize it here. 1692 ObjectSerializer object_serializer(this, obj, sink_, how_to_code, 1693 where_to_point); 1694 object_serializer.Serialize(); 1695 } 1696 1697 1698 void StartupSerializer::SerializeWeakReferencesAndDeferred() { 1699 // This phase comes right after the serialization (of the snapshot). 1700 // After we have done the partial serialization the partial snapshot cache 1701 // will contain some references needed to decode the partial snapshot. We 1702 // add one entry with 'undefined' which is the sentinel that the deserializer 1703 // uses to know it is done deserializing the array. 1704 Object* undefined = isolate()->heap()->undefined_value(); 1705 VisitPointer(&undefined); 1706 isolate()->heap()->IterateWeakRoots(this, VISIT_ALL); 1707 SerializeDeferredObjects(); 1708 Pad(); 1709 } 1710 1711 1712 void Serializer::PutRoot(int root_index, 1713 HeapObject* object, 1714 SerializerDeserializer::HowToCode how_to_code, 1715 SerializerDeserializer::WhereToPoint where_to_point, 1716 int skip) { 1717 if (FLAG_trace_serializer) { 1718 PrintF(" Encoding root %d:", root_index); 1719 object->ShortPrint(); 1720 PrintF("\n"); 1721 } 1722 1723 if (how_to_code == kPlain && where_to_point == kStartOfObject && 1724 root_index < kNumberOfRootArrayConstants && 1725 !isolate()->heap()->InNewSpace(object)) { 1726 if (skip == 0) { 1727 sink_->Put(kRootArrayConstants + root_index, "RootConstant"); 1728 } else { 1729 sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant"); 1730 sink_->PutInt(skip, "SkipInPutRoot"); 1731 } 1732 } else { 1733 FlushSkip(skip); 1734 sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization"); 1735 sink_->PutInt(root_index, "root_index"); 1736 } 1737 } 1738 1739 1740 void Serializer::PutBackReference(HeapObject* object, BackReference reference) { 1741 DCHECK(BackReferenceIsAlreadyAllocated(reference)); 1742 sink_->PutInt(reference.reference(), "BackRefValue"); 1743 hot_objects_.Add(object); 1744 } 1745 1746 1747 int Serializer::PutAlignmentPrefix(HeapObject* object) { 1748 AllocationAlignment alignment = object->RequiredAlignment(); 1749 if (alignment != kWordAligned) { 1750 DCHECK(1 <= alignment && alignment <= 3); 1751 byte prefix = (kAlignmentPrefix - 1) + alignment; 1752 sink_->Put(prefix, "Alignment"); 1753 return Heap::GetMaximumFillToAlign(alignment); 1754 } 1755 return 0; 1756 } 1757 1758 1759 void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, 1760 WhereToPoint where_to_point, int skip) { 1761 if (obj->IsMap()) { 1762 // The code-caches link to context-specific code objects, which 1763 // the startup and context serializes cannot currently handle. 1764 DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array()); 1765 } 1766 1767 // Replace typed arrays by undefined. 1768 if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value(); 1769 1770 int root_index = root_index_map_.Lookup(obj); 1771 if (root_index != RootIndexMap::kInvalidRootIndex) { 1772 PutRoot(root_index, obj, how_to_code, where_to_point, skip); 1773 return; 1774 } 1775 1776 if (ShouldBeInThePartialSnapshotCache(obj)) { 1777 FlushSkip(skip); 1778 1779 int cache_index = PartialSnapshotCacheIndex(obj); 1780 sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point, 1781 "PartialSnapshotCache"); 1782 sink_->PutInt(cache_index, "partial_snapshot_cache_index"); 1783 return; 1784 } 1785 1786 // Pointers from the partial snapshot to the objects in the startup snapshot 1787 // should go through the root array or through the partial snapshot cache. 1788 // If this is not the case you may have to add something to the root array. 1789 DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid()); 1790 // All the internalized strings that the partial snapshot needs should be 1791 // either in the root table or in the partial snapshot cache. 1792 DCHECK(!obj->IsInternalizedString()); 1793 1794 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; 1795 1796 FlushSkip(skip); 1797 1798 // Clear literal boilerplates. 1799 if (obj->IsJSFunction()) { 1800 FixedArray* literals = JSFunction::cast(obj)->literals(); 1801 for (int i = 0; i < literals->length(); i++) literals->set_undefined(i); 1802 } 1803 1804 // Object has not yet been serialized. Serialize it here. 1805 ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point); 1806 serializer.Serialize(); 1807 } 1808 1809 1810 void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space, 1811 int size, Map* map) { 1812 if (serializer_->code_address_map_) { 1813 const char* code_name = 1814 serializer_->code_address_map_->Lookup(object_->address()); 1815 LOG(serializer_->isolate_, 1816 CodeNameEvent(object_->address(), sink_->Position(), code_name)); 1817 LOG(serializer_->isolate_, 1818 SnapshotPositionEvent(object_->address(), sink_->Position())); 1819 } 1820 1821 BackReference back_reference; 1822 if (space == LO_SPACE) { 1823 sink_->Put(kNewObject + reference_representation_ + space, 1824 "NewLargeObject"); 1825 sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords"); 1826 if (object_->IsCode()) { 1827 sink_->Put(EXECUTABLE, "executable large object"); 1828 } else { 1829 sink_->Put(NOT_EXECUTABLE, "not executable large object"); 1830 } 1831 back_reference = serializer_->AllocateLargeObject(size); 1832 } else { 1833 int fill = serializer_->PutAlignmentPrefix(object_); 1834 back_reference = serializer_->Allocate(space, size + fill); 1835 sink_->Put(kNewObject + reference_representation_ + space, "NewObject"); 1836 sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords"); 1837 } 1838 1839 #ifdef OBJECT_PRINT 1840 if (FLAG_serialization_statistics) { 1841 serializer_->CountInstanceType(map, size); 1842 } 1843 #endif // OBJECT_PRINT 1844 1845 // Mark this object as already serialized. 1846 serializer_->back_reference_map()->Add(object_, back_reference); 1847 1848 // Serialize the map (first word of the object). 1849 serializer_->SerializeObject(map, kPlain, kStartOfObject, 0); 1850 } 1851 1852 1853 void Serializer::ObjectSerializer::SerializeExternalString() { 1854 // Instead of serializing this as an external string, we serialize 1855 // an imaginary sequential string with the same content. 1856 Isolate* isolate = serializer_->isolate(); 1857 DCHECK(object_->IsExternalString()); 1858 DCHECK(object_->map() != isolate->heap()->native_source_string_map()); 1859 ExternalString* string = ExternalString::cast(object_); 1860 int length = string->length(); 1861 Map* map; 1862 int content_size; 1863 int allocation_size; 1864 const byte* resource; 1865 // Find the map and size for the imaginary sequential string. 1866 bool internalized = object_->IsInternalizedString(); 1867 if (object_->IsExternalOneByteString()) { 1868 map = internalized ? isolate->heap()->one_byte_internalized_string_map() 1869 : isolate->heap()->one_byte_string_map(); 1870 allocation_size = SeqOneByteString::SizeFor(length); 1871 content_size = length * kCharSize; 1872 resource = reinterpret_cast<const byte*>( 1873 ExternalOneByteString::cast(string)->resource()->data()); 1874 } else { 1875 map = internalized ? isolate->heap()->internalized_string_map() 1876 : isolate->heap()->string_map(); 1877 allocation_size = SeqTwoByteString::SizeFor(length); 1878 content_size = length * kShortSize; 1879 resource = reinterpret_cast<const byte*>( 1880 ExternalTwoByteString::cast(string)->resource()->data()); 1881 } 1882 1883 AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize) 1884 ? LO_SPACE 1885 : OLD_SPACE; 1886 SerializePrologue(space, allocation_size, map); 1887 1888 // Output the rest of the imaginary string. 1889 int bytes_to_output = allocation_size - HeapObject::kHeaderSize; 1890 1891 // Output raw data header. Do not bother with common raw length cases here. 1892 sink_->Put(kVariableRawData, "RawDataForString"); 1893 sink_->PutInt(bytes_to_output, "length"); 1894 1895 // Serialize string header (except for map). 1896 Address string_start = string->address(); 1897 for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) { 1898 sink_->PutSection(string_start[i], "StringHeader"); 1899 } 1900 1901 // Serialize string content. 1902 sink_->PutRaw(resource, content_size, "StringContent"); 1903 1904 // Since the allocation size is rounded up to object alignment, there 1905 // maybe left-over bytes that need to be padded. 1906 int padding_size = allocation_size - SeqString::kHeaderSize - content_size; 1907 DCHECK(0 <= padding_size && padding_size < kObjectAlignment); 1908 for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding"); 1909 1910 sink_->Put(kSkip, "SkipAfterString"); 1911 sink_->PutInt(bytes_to_output, "SkipDistance"); 1912 } 1913 1914 1915 // Clear and later restore the next link in the weak cell, if the object is one. 1916 class UnlinkWeakCellScope { 1917 public: 1918 explicit UnlinkWeakCellScope(HeapObject* object) : weak_cell_(NULL) { 1919 if (object->IsWeakCell()) { 1920 weak_cell_ = WeakCell::cast(object); 1921 next_ = weak_cell_->next(); 1922 weak_cell_->clear_next(object->GetHeap()->the_hole_value()); 1923 } 1924 } 1925 1926 ~UnlinkWeakCellScope() { 1927 if (weak_cell_) weak_cell_->set_next(next_, UPDATE_WEAK_WRITE_BARRIER); 1928 } 1929 1930 private: 1931 WeakCell* weak_cell_; 1932 Object* next_; 1933 DisallowHeapAllocation no_gc_; 1934 }; 1935 1936 1937 void Serializer::ObjectSerializer::Serialize() { 1938 if (FLAG_trace_serializer) { 1939 PrintF(" Encoding heap object: "); 1940 object_->ShortPrint(); 1941 PrintF("\n"); 1942 } 1943 1944 // We cannot serialize typed array objects correctly. 1945 DCHECK(!object_->IsJSTypedArray()); 1946 1947 // We don't expect fillers. 1948 DCHECK(!object_->IsFiller()); 1949 1950 if (object_->IsScript()) { 1951 // Clear cached line ends. 1952 Object* undefined = serializer_->isolate()->heap()->undefined_value(); 1953 Script::cast(object_)->set_line_ends(undefined); 1954 } 1955 1956 if (object_->IsExternalString()) { 1957 Heap* heap = serializer_->isolate()->heap(); 1958 if (object_->map() != heap->native_source_string_map()) { 1959 // Usually we cannot recreate resources for external strings. To work 1960 // around this, external strings are serialized to look like ordinary 1961 // sequential strings. 1962 // The exception are native source code strings, since we can recreate 1963 // their resources. In that case we fall through and leave it to 1964 // VisitExternalOneByteString further down. 1965 SerializeExternalString(); 1966 return; 1967 } 1968 } 1969 1970 int size = object_->Size(); 1971 Map* map = object_->map(); 1972 AllocationSpace space = 1973 MemoryChunk::FromAddress(object_->address())->owner()->identity(); 1974 SerializePrologue(space, size, map); 1975 1976 // Serialize the rest of the object. 1977 CHECK_EQ(0, bytes_processed_so_far_); 1978 bytes_processed_so_far_ = kPointerSize; 1979 1980 RecursionScope recursion(serializer_); 1981 // Objects that are immediately post processed during deserialization 1982 // cannot be deferred, since post processing requires the object content. 1983 if (recursion.ExceedsMaximum() && CanBeDeferred(object_)) { 1984 serializer_->QueueDeferredObject(object_); 1985 sink_->Put(kDeferred, "Deferring object content"); 1986 return; 1987 } 1988 1989 UnlinkWeakCellScope unlink_weak_cell(object_); 1990 1991 object_->IterateBody(map->instance_type(), size, this); 1992 OutputRawData(object_->address() + size); 1993 } 1994 1995 1996 void Serializer::ObjectSerializer::SerializeDeferred() { 1997 if (FLAG_trace_serializer) { 1998 PrintF(" Encoding deferred heap object: "); 1999 object_->ShortPrint(); 2000 PrintF("\n"); 2001 } 2002 2003 int size = object_->Size(); 2004 Map* map = object_->map(); 2005 BackReference reference = serializer_->back_reference_map()->Lookup(object_); 2006 2007 // Serialize the rest of the object. 2008 CHECK_EQ(0, bytes_processed_so_far_); 2009 bytes_processed_so_far_ = kPointerSize; 2010 2011 serializer_->PutAlignmentPrefix(object_); 2012 sink_->Put(kNewObject + reference.space(), "deferred object"); 2013 serializer_->PutBackReference(object_, reference); 2014 sink_->PutInt(size >> kPointerSizeLog2, "deferred object size"); 2015 2016 UnlinkWeakCellScope unlink_weak_cell(object_); 2017 2018 object_->IterateBody(map->instance_type(), size, this); 2019 OutputRawData(object_->address() + size); 2020 } 2021 2022 2023 void Serializer::ObjectSerializer::VisitPointers(Object** start, 2024 Object** end) { 2025 Object** current = start; 2026 while (current < end) { 2027 while (current < end && (*current)->IsSmi()) current++; 2028 if (current < end) OutputRawData(reinterpret_cast<Address>(current)); 2029 2030 while (current < end && !(*current)->IsSmi()) { 2031 HeapObject* current_contents = HeapObject::cast(*current); 2032 int root_index = serializer_->root_index_map()->Lookup(current_contents); 2033 // Repeats are not subject to the write barrier so we can only use 2034 // immortal immovable root members. They are never in new space. 2035 if (current != start && root_index != RootIndexMap::kInvalidRootIndex && 2036 Heap::RootIsImmortalImmovable(root_index) && 2037 current_contents == current[-1]) { 2038 DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents)); 2039 int repeat_count = 1; 2040 while (¤t[repeat_count] < end - 1 && 2041 current[repeat_count] == current_contents) { 2042 repeat_count++; 2043 } 2044 current += repeat_count; 2045 bytes_processed_so_far_ += repeat_count * kPointerSize; 2046 if (repeat_count > kNumberOfFixedRepeat) { 2047 sink_->Put(kVariableRepeat, "VariableRepeat"); 2048 sink_->PutInt(repeat_count, "repeat count"); 2049 } else { 2050 sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat"); 2051 } 2052 } else { 2053 serializer_->SerializeObject( 2054 current_contents, kPlain, kStartOfObject, 0); 2055 bytes_processed_so_far_ += kPointerSize; 2056 current++; 2057 } 2058 } 2059 } 2060 } 2061 2062 2063 void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) { 2064 int skip = OutputRawData(rinfo->target_address_address(), 2065 kCanReturnSkipInsteadOfSkipping); 2066 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; 2067 Object* object = rinfo->target_object(); 2068 serializer_->SerializeObject(HeapObject::cast(object), how_to_code, 2069 kStartOfObject, skip); 2070 bytes_processed_so_far_ += rinfo->target_address_size(); 2071 } 2072 2073 2074 void Serializer::ObjectSerializer::VisitExternalReference(Address* p) { 2075 int skip = OutputRawData(reinterpret_cast<Address>(p), 2076 kCanReturnSkipInsteadOfSkipping); 2077 sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef"); 2078 sink_->PutInt(skip, "SkipB4ExternalRef"); 2079 Address target = *p; 2080 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); 2081 bytes_processed_so_far_ += kPointerSize; 2082 } 2083 2084 2085 void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) { 2086 int skip = OutputRawData(rinfo->target_address_address(), 2087 kCanReturnSkipInsteadOfSkipping); 2088 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; 2089 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); 2090 sink_->PutInt(skip, "SkipB4ExternalRef"); 2091 Address target = rinfo->target_external_reference(); 2092 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); 2093 bytes_processed_so_far_ += rinfo->target_address_size(); 2094 } 2095 2096 2097 void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) { 2098 // We can only reference to internal references of code that has been output. 2099 DCHECK(is_code_object_ && code_has_been_output_); 2100 // We do not use skip from last patched pc to find the pc to patch, since 2101 // target_address_address may not return addresses in ascending order when 2102 // used for internal references. External references may be stored at the 2103 // end of the code in the constant pool, whereas internal references are 2104 // inline. That would cause the skip to be negative. Instead, we store the 2105 // offset from code entry. 2106 Address entry = Code::cast(object_)->entry(); 2107 intptr_t pc_offset = rinfo->target_internal_reference_address() - entry; 2108 intptr_t target_offset = rinfo->target_internal_reference() - entry; 2109 DCHECK(0 <= pc_offset && 2110 pc_offset <= Code::cast(object_)->instruction_size()); 2111 DCHECK(0 <= target_offset && 2112 target_offset <= Code::cast(object_)->instruction_size()); 2113 sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE 2114 ? kInternalReference 2115 : kInternalReferenceEncoded, 2116 "InternalRef"); 2117 sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address"); 2118 sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value"); 2119 } 2120 2121 2122 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) { 2123 int skip = OutputRawData(rinfo->target_address_address(), 2124 kCanReturnSkipInsteadOfSkipping); 2125 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; 2126 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); 2127 sink_->PutInt(skip, "SkipB4ExternalRef"); 2128 Address target = rinfo->target_address(); 2129 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); 2130 bytes_processed_so_far_ += rinfo->target_address_size(); 2131 } 2132 2133 2134 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) { 2135 int skip = OutputRawData(rinfo->target_address_address(), 2136 kCanReturnSkipInsteadOfSkipping); 2137 Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address()); 2138 serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip); 2139 bytes_processed_so_far_ += rinfo->target_address_size(); 2140 } 2141 2142 2143 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) { 2144 int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping); 2145 Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address)); 2146 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); 2147 bytes_processed_so_far_ += kPointerSize; 2148 } 2149 2150 2151 void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) { 2152 int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping); 2153 Cell* object = Cell::cast(rinfo->target_cell()); 2154 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); 2155 bytes_processed_so_far_ += kPointerSize; 2156 } 2157 2158 2159 bool Serializer::ObjectSerializer::SerializeExternalNativeSourceString( 2160 int builtin_count, 2161 v8::String::ExternalOneByteStringResource** resource_pointer, 2162 FixedArray* source_cache, int resource_index) { 2163 for (int i = 0; i < builtin_count; i++) { 2164 Object* source = source_cache->get(i); 2165 if (!source->IsUndefined()) { 2166 ExternalOneByteString* string = ExternalOneByteString::cast(source); 2167 typedef v8::String::ExternalOneByteStringResource Resource; 2168 const Resource* resource = string->resource(); 2169 if (resource == *resource_pointer) { 2170 sink_->Put(resource_index, "NativesStringResource"); 2171 sink_->PutSection(i, "NativesStringResourceEnd"); 2172 bytes_processed_so_far_ += sizeof(resource); 2173 return true; 2174 } 2175 } 2176 } 2177 return false; 2178 } 2179 2180 2181 void Serializer::ObjectSerializer::VisitExternalOneByteString( 2182 v8::String::ExternalOneByteStringResource** resource_pointer) { 2183 Address references_start = reinterpret_cast<Address>(resource_pointer); 2184 OutputRawData(references_start); 2185 if (SerializeExternalNativeSourceString( 2186 Natives::GetBuiltinsCount(), resource_pointer, 2187 Natives::GetSourceCache(serializer_->isolate()->heap()), 2188 kNativesStringResource)) { 2189 return; 2190 } 2191 if (SerializeExternalNativeSourceString( 2192 ExtraNatives::GetBuiltinsCount(), resource_pointer, 2193 ExtraNatives::GetSourceCache(serializer_->isolate()->heap()), 2194 kExtraNativesStringResource)) { 2195 return; 2196 } 2197 // One of the strings in the natives cache should match the resource. We 2198 // don't expect any other kinds of external strings here. 2199 UNREACHABLE(); 2200 } 2201 2202 2203 Address Serializer::ObjectSerializer::PrepareCode() { 2204 // To make snapshots reproducible, we make a copy of the code object 2205 // and wipe all pointers in the copy, which we then serialize. 2206 Code* original = Code::cast(object_); 2207 Code* code = serializer_->CopyCode(original); 2208 // Code age headers are not serializable. 2209 code->MakeYoung(serializer_->isolate()); 2210 int mode_mask = RelocInfo::kCodeTargetMask | 2211 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | 2212 RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) | 2213 RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) | 2214 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) | 2215 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED); 2216 for (RelocIterator it(code, mode_mask); !it.done(); it.next()) { 2217 RelocInfo* rinfo = it.rinfo(); 2218 rinfo->WipeOut(); 2219 } 2220 // We need to wipe out the header fields *after* wiping out the 2221 // relocations, because some of these fields are needed for the latter. 2222 code->WipeOutHeader(); 2223 return code->address(); 2224 } 2225 2226 2227 int Serializer::ObjectSerializer::OutputRawData( 2228 Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) { 2229 Address object_start = object_->address(); 2230 int base = bytes_processed_so_far_; 2231 int up_to_offset = static_cast<int>(up_to - object_start); 2232 int to_skip = up_to_offset - bytes_processed_so_far_; 2233 int bytes_to_output = to_skip; 2234 bytes_processed_so_far_ += to_skip; 2235 // This assert will fail if the reloc info gives us the target_address_address 2236 // locations in a non-ascending order. Luckily that doesn't happen. 2237 DCHECK(to_skip >= 0); 2238 bool outputting_code = false; 2239 if (to_skip != 0 && is_code_object_ && !code_has_been_output_) { 2240 // Output the code all at once and fix later. 2241 bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_; 2242 outputting_code = true; 2243 code_has_been_output_ = true; 2244 } 2245 if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) { 2246 if (!outputting_code && bytes_to_output == to_skip && 2247 IsAligned(bytes_to_output, kPointerAlignment) && 2248 bytes_to_output <= kNumberOfFixedRawData * kPointerSize) { 2249 int size_in_words = bytes_to_output >> kPointerSizeLog2; 2250 sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData"); 2251 to_skip = 0; // This instruction includes skip. 2252 } else { 2253 // We always end up here if we are outputting the code of a code object. 2254 sink_->Put(kVariableRawData, "VariableRawData"); 2255 sink_->PutInt(bytes_to_output, "length"); 2256 } 2257 2258 if (is_code_object_) object_start = PrepareCode(); 2259 2260 const char* description = is_code_object_ ? "Code" : "Byte"; 2261 sink_->PutRaw(object_start + base, bytes_to_output, description); 2262 } 2263 if (to_skip != 0 && return_skip == kIgnoringReturn) { 2264 sink_->Put(kSkip, "Skip"); 2265 sink_->PutInt(to_skip, "SkipDistance"); 2266 to_skip = 0; 2267 } 2268 return to_skip; 2269 } 2270 2271 2272 BackReference Serializer::AllocateLargeObject(int size) { 2273 // Large objects are allocated one-by-one when deserializing. We do not 2274 // have to keep track of multiple chunks. 2275 large_objects_total_size_ += size; 2276 return BackReference::LargeObjectReference(seen_large_objects_index_++); 2277 } 2278 2279 2280 BackReference Serializer::Allocate(AllocationSpace space, int size) { 2281 DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces); 2282 DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space))); 2283 uint32_t new_chunk_size = pending_chunk_[space] + size; 2284 if (new_chunk_size > max_chunk_size(space)) { 2285 // The new chunk size would not fit onto a single page. Complete the 2286 // current chunk and start a new one. 2287 sink_->Put(kNextChunk, "NextChunk"); 2288 sink_->Put(space, "NextChunkSpace"); 2289 completed_chunks_[space].Add(pending_chunk_[space]); 2290 DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex); 2291 pending_chunk_[space] = 0; 2292 new_chunk_size = size; 2293 } 2294 uint32_t offset = pending_chunk_[space]; 2295 pending_chunk_[space] = new_chunk_size; 2296 return BackReference::Reference(space, completed_chunks_[space].length(), 2297 offset); 2298 } 2299 2300 2301 void Serializer::Pad() { 2302 // The non-branching GetInt will read up to 3 bytes too far, so we need 2303 // to pad the snapshot to make sure we don't read over the end. 2304 for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) { 2305 sink_->Put(kNop, "Padding"); 2306 } 2307 // Pad up to pointer size for checksum. 2308 while (!IsAligned(sink_->Position(), kPointerAlignment)) { 2309 sink_->Put(kNop, "Padding"); 2310 } 2311 } 2312 2313 2314 void Serializer::InitializeCodeAddressMap() { 2315 isolate_->InitializeLoggingAndCounters(); 2316 code_address_map_ = new CodeAddressMap(isolate_); 2317 } 2318 2319 2320 Code* Serializer::CopyCode(Code* code) { 2321 code_buffer_.Rewind(0); // Clear buffer without deleting backing store. 2322 int size = code->CodeSize(); 2323 code_buffer_.AddAll(Vector<byte>(code->address(), size)); 2324 return Code::cast(HeapObject::FromAddress(&code_buffer_.first())); 2325 } 2326 2327 2328 ScriptData* CodeSerializer::Serialize(Isolate* isolate, 2329 Handle<SharedFunctionInfo> info, 2330 Handle<String> source) { 2331 base::ElapsedTimer timer; 2332 if (FLAG_profile_deserialization) timer.Start(); 2333 if (FLAG_trace_serializer) { 2334 PrintF("[Serializing from"); 2335 Object* script = info->script(); 2336 if (script->IsScript()) Script::cast(script)->name()->ShortPrint(); 2337 PrintF("]\n"); 2338 } 2339 2340 // Serialize code object. 2341 SnapshotByteSink sink(info->code()->CodeSize() * 2); 2342 CodeSerializer cs(isolate, &sink, *source); 2343 DisallowHeapAllocation no_gc; 2344 Object** location = Handle<Object>::cast(info).location(); 2345 cs.VisitPointer(location); 2346 cs.SerializeDeferredObjects(); 2347 cs.Pad(); 2348 2349 SerializedCodeData data(sink.data(), cs); 2350 ScriptData* script_data = data.GetScriptData(); 2351 2352 if (FLAG_profile_deserialization) { 2353 double ms = timer.Elapsed().InMillisecondsF(); 2354 int length = script_data->length(); 2355 PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms); 2356 } 2357 2358 return script_data; 2359 } 2360 2361 2362 void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, 2363 WhereToPoint where_to_point, int skip) { 2364 int root_index = root_index_map_.Lookup(obj); 2365 if (root_index != RootIndexMap::kInvalidRootIndex) { 2366 PutRoot(root_index, obj, how_to_code, where_to_point, skip); 2367 return; 2368 } 2369 2370 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; 2371 2372 FlushSkip(skip); 2373 2374 if (obj->IsCode()) { 2375 Code* code_object = Code::cast(obj); 2376 switch (code_object->kind()) { 2377 case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet. 2378 case Code::HANDLER: // No handlers patched in yet. 2379 case Code::REGEXP: // No regexp literals initialized yet. 2380 case Code::NUMBER_OF_KINDS: // Pseudo enum value. 2381 CHECK(false); 2382 case Code::BUILTIN: 2383 SerializeBuiltin(code_object->builtin_index(), how_to_code, 2384 where_to_point); 2385 return; 2386 case Code::STUB: 2387 SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point); 2388 return; 2389 #define IC_KIND_CASE(KIND) case Code::KIND: 2390 IC_KIND_LIST(IC_KIND_CASE) 2391 #undef IC_KIND_CASE 2392 SerializeIC(code_object, how_to_code, where_to_point); 2393 return; 2394 case Code::FUNCTION: 2395 DCHECK(code_object->has_reloc_info_for_serialization()); 2396 SerializeGeneric(code_object, how_to_code, where_to_point); 2397 return; 2398 case Code::WASM_FUNCTION: 2399 UNREACHABLE(); 2400 } 2401 UNREACHABLE(); 2402 } 2403 2404 // Past this point we should not see any (context-specific) maps anymore. 2405 CHECK(!obj->IsMap()); 2406 // There should be no references to the global object embedded. 2407 CHECK(!obj->IsJSGlobalProxy() && !obj->IsJSGlobalObject()); 2408 // There should be no hash table embedded. They would require rehashing. 2409 CHECK(!obj->IsHashTable()); 2410 // We expect no instantiated function objects or contexts. 2411 CHECK(!obj->IsJSFunction() && !obj->IsContext()); 2412 2413 SerializeGeneric(obj, how_to_code, where_to_point); 2414 } 2415 2416 2417 void CodeSerializer::SerializeGeneric(HeapObject* heap_object, 2418 HowToCode how_to_code, 2419 WhereToPoint where_to_point) { 2420 // Object has not yet been serialized. Serialize it here. 2421 ObjectSerializer serializer(this, heap_object, sink_, how_to_code, 2422 where_to_point); 2423 serializer.Serialize(); 2424 } 2425 2426 2427 void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code, 2428 WhereToPoint where_to_point) { 2429 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) || 2430 (how_to_code == kPlain && where_to_point == kInnerPointer) || 2431 (how_to_code == kFromCode && where_to_point == kInnerPointer)); 2432 DCHECK_LT(builtin_index, Builtins::builtin_count); 2433 DCHECK_LE(0, builtin_index); 2434 2435 if (FLAG_trace_serializer) { 2436 PrintF(" Encoding builtin: %s\n", 2437 isolate()->builtins()->name(builtin_index)); 2438 } 2439 2440 sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin"); 2441 sink_->PutInt(builtin_index, "builtin_index"); 2442 } 2443 2444 2445 void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code, 2446 WhereToPoint where_to_point) { 2447 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) || 2448 (how_to_code == kPlain && where_to_point == kInnerPointer) || 2449 (how_to_code == kFromCode && where_to_point == kInnerPointer)); 2450 DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache); 2451 DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null()); 2452 2453 int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex; 2454 2455 if (FLAG_trace_serializer) { 2456 PrintF(" Encoding code stub %s as %d\n", 2457 CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key)), index); 2458 } 2459 2460 sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub"); 2461 sink_->PutInt(index, "CodeStub key"); 2462 } 2463 2464 2465 void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code, 2466 WhereToPoint where_to_point) { 2467 // The IC may be implemented as a stub. 2468 uint32_t stub_key = ic->stub_key(); 2469 if (stub_key != CodeStub::NoCacheKey()) { 2470 if (FLAG_trace_serializer) { 2471 PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind())); 2472 } 2473 SerializeCodeStub(stub_key, how_to_code, where_to_point); 2474 return; 2475 } 2476 // The IC may be implemented as builtin. Only real builtins have an 2477 // actual builtin_index value attached (otherwise it's just garbage). 2478 // Compare to make sure we are really dealing with a builtin. 2479 int builtin_index = ic->builtin_index(); 2480 if (builtin_index < Builtins::builtin_count) { 2481 Builtins::Name name = static_cast<Builtins::Name>(builtin_index); 2482 Code* builtin = isolate()->builtins()->builtin(name); 2483 if (builtin == ic) { 2484 if (FLAG_trace_serializer) { 2485 PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind())); 2486 } 2487 DCHECK(ic->kind() == Code::KEYED_LOAD_IC || 2488 ic->kind() == Code::KEYED_STORE_IC); 2489 SerializeBuiltin(builtin_index, how_to_code, where_to_point); 2490 return; 2491 } 2492 } 2493 // The IC may also just be a piece of code kept in the non_monomorphic_cache. 2494 // In that case, just serialize as a normal code object. 2495 if (FLAG_trace_serializer) { 2496 PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind())); 2497 } 2498 DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC); 2499 SerializeGeneric(ic, how_to_code, where_to_point); 2500 } 2501 2502 2503 int CodeSerializer::AddCodeStubKey(uint32_t stub_key) { 2504 // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2). 2505 int index = 0; 2506 while (index < stub_keys_.length()) { 2507 if (stub_keys_[index] == stub_key) return index; 2508 index++; 2509 } 2510 stub_keys_.Add(stub_key); 2511 return index; 2512 } 2513 2514 2515 MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize( 2516 Isolate* isolate, ScriptData* cached_data, Handle<String> source) { 2517 base::ElapsedTimer timer; 2518 if (FLAG_profile_deserialization) timer.Start(); 2519 2520 HandleScope scope(isolate); 2521 2522 base::SmartPointer<SerializedCodeData> scd( 2523 SerializedCodeData::FromCachedData(isolate, cached_data, *source)); 2524 if (scd.is_empty()) { 2525 if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n"); 2526 DCHECK(cached_data->rejected()); 2527 return MaybeHandle<SharedFunctionInfo>(); 2528 } 2529 2530 // Prepare and register list of attached objects. 2531 Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys(); 2532 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New( 2533 code_stub_keys.length() + kCodeStubsBaseIndex); 2534 attached_objects[kSourceObjectIndex] = source; 2535 for (int i = 0; i < code_stub_keys.length(); i++) { 2536 attached_objects[i + kCodeStubsBaseIndex] = 2537 CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked(); 2538 } 2539 2540 Deserializer deserializer(scd.get()); 2541 deserializer.SetAttachedObjects(attached_objects); 2542 2543 // Deserialize. 2544 Handle<SharedFunctionInfo> result; 2545 if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) { 2546 // Deserializing may fail if the reservations cannot be fulfilled. 2547 if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n"); 2548 return MaybeHandle<SharedFunctionInfo>(); 2549 } 2550 2551 if (FLAG_profile_deserialization) { 2552 double ms = timer.Elapsed().InMillisecondsF(); 2553 int length = cached_data->length(); 2554 PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms); 2555 } 2556 result->set_deserialized(true); 2557 2558 if (isolate->logger()->is_logging_code_events() || 2559 isolate->cpu_profiler()->is_profiling()) { 2560 String* name = isolate->heap()->empty_string(); 2561 if (result->script()->IsScript()) { 2562 Script* script = Script::cast(result->script()); 2563 if (script->name()->IsString()) name = String::cast(script->name()); 2564 } 2565 isolate->logger()->CodeCreateEvent(Logger::SCRIPT_TAG, result->code(), 2566 *result, NULL, name); 2567 } 2568 return scope.CloseAndEscape(result); 2569 } 2570 2571 2572 void SerializedData::AllocateData(int size) { 2573 DCHECK(!owns_data_); 2574 data_ = NewArray<byte>(size); 2575 size_ = size; 2576 owns_data_ = true; 2577 DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment)); 2578 } 2579 2580 2581 SnapshotData::SnapshotData(const Serializer& ser) { 2582 DisallowHeapAllocation no_gc; 2583 List<Reservation> reservations; 2584 ser.EncodeReservations(&reservations); 2585 const List<byte>& payload = ser.sink()->data(); 2586 2587 // Calculate sizes. 2588 int reservation_size = reservations.length() * kInt32Size; 2589 int size = kHeaderSize + reservation_size + payload.length(); 2590 2591 // Allocate backing store and create result data. 2592 AllocateData(size); 2593 2594 // Set header values. 2595 SetMagicNumber(ser.isolate()); 2596 SetHeaderValue(kCheckSumOffset, Version::Hash()); 2597 SetHeaderValue(kNumReservationsOffset, reservations.length()); 2598 SetHeaderValue(kPayloadLengthOffset, payload.length()); 2599 2600 // Copy reservation chunk sizes. 2601 CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()), 2602 reservation_size); 2603 2604 // Copy serialized data. 2605 CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(), 2606 static_cast<size_t>(payload.length())); 2607 } 2608 2609 2610 bool SnapshotData::IsSane() { 2611 return GetHeaderValue(kCheckSumOffset) == Version::Hash(); 2612 } 2613 2614 2615 Vector<const SerializedData::Reservation> SnapshotData::Reservations() const { 2616 return Vector<const Reservation>( 2617 reinterpret_cast<const Reservation*>(data_ + kHeaderSize), 2618 GetHeaderValue(kNumReservationsOffset)); 2619 } 2620 2621 2622 Vector<const byte> SnapshotData::Payload() const { 2623 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; 2624 const byte* payload = data_ + kHeaderSize + reservations_size; 2625 int length = GetHeaderValue(kPayloadLengthOffset); 2626 DCHECK_EQ(data_ + size_, payload + length); 2627 return Vector<const byte>(payload, length); 2628 } 2629 2630 2631 class Checksum { 2632 public: 2633 explicit Checksum(Vector<const byte> payload) { 2634 #ifdef MEMORY_SANITIZER 2635 // Computing the checksum includes padding bytes for objects like strings. 2636 // Mark every object as initialized in the code serializer. 2637 MSAN_MEMORY_IS_INITIALIZED(payload.start(), payload.length()); 2638 #endif // MEMORY_SANITIZER 2639 // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit. 2640 uintptr_t a = 1; 2641 uintptr_t b = 0; 2642 const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start()); 2643 DCHECK(IsAligned(payload.length(), kIntptrSize)); 2644 const uintptr_t* end = cur + payload.length() / kIntptrSize; 2645 while (cur < end) { 2646 // Unsigned overflow expected and intended. 2647 a += *cur++; 2648 b += a; 2649 } 2650 #if V8_HOST_ARCH_64_BIT 2651 a ^= a >> 32; 2652 b ^= b >> 32; 2653 #endif // V8_HOST_ARCH_64_BIT 2654 a_ = static_cast<uint32_t>(a); 2655 b_ = static_cast<uint32_t>(b); 2656 } 2657 2658 bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; } 2659 2660 uint32_t a() const { return a_; } 2661 uint32_t b() const { return b_; } 2662 2663 private: 2664 uint32_t a_; 2665 uint32_t b_; 2666 2667 DISALLOW_COPY_AND_ASSIGN(Checksum); 2668 }; 2669 2670 2671 SerializedCodeData::SerializedCodeData(const List<byte>& payload, 2672 const CodeSerializer& cs) { 2673 DisallowHeapAllocation no_gc; 2674 const List<uint32_t>* stub_keys = cs.stub_keys(); 2675 2676 List<Reservation> reservations; 2677 cs.EncodeReservations(&reservations); 2678 2679 // Calculate sizes. 2680 int reservation_size = reservations.length() * kInt32Size; 2681 int num_stub_keys = stub_keys->length(); 2682 int stub_keys_size = stub_keys->length() * kInt32Size; 2683 int payload_offset = kHeaderSize + reservation_size + stub_keys_size; 2684 int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset); 2685 int size = padded_payload_offset + payload.length(); 2686 2687 // Allocate backing store and create result data. 2688 AllocateData(size); 2689 2690 // Set header values. 2691 SetMagicNumber(cs.isolate()); 2692 SetHeaderValue(kVersionHashOffset, Version::Hash()); 2693 SetHeaderValue(kSourceHashOffset, SourceHash(cs.source())); 2694 SetHeaderValue(kCpuFeaturesOffset, 2695 static_cast<uint32_t>(CpuFeatures::SupportedFeatures())); 2696 SetHeaderValue(kFlagHashOffset, FlagList::Hash()); 2697 SetHeaderValue(kNumReservationsOffset, reservations.length()); 2698 SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys); 2699 SetHeaderValue(kPayloadLengthOffset, payload.length()); 2700 2701 Checksum checksum(payload.ToConstVector()); 2702 SetHeaderValue(kChecksum1Offset, checksum.a()); 2703 SetHeaderValue(kChecksum2Offset, checksum.b()); 2704 2705 // Copy reservation chunk sizes. 2706 CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()), 2707 reservation_size); 2708 2709 // Copy code stub keys. 2710 CopyBytes(data_ + kHeaderSize + reservation_size, 2711 reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size); 2712 2713 memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset); 2714 2715 // Copy serialized data. 2716 CopyBytes(data_ + padded_payload_offset, payload.begin(), 2717 static_cast<size_t>(payload.length())); 2718 } 2719 2720 2721 SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck( 2722 Isolate* isolate, String* source) const { 2723 uint32_t magic_number = GetMagicNumber(); 2724 if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH; 2725 uint32_t version_hash = GetHeaderValue(kVersionHashOffset); 2726 uint32_t source_hash = GetHeaderValue(kSourceHashOffset); 2727 uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset); 2728 uint32_t flags_hash = GetHeaderValue(kFlagHashOffset); 2729 uint32_t c1 = GetHeaderValue(kChecksum1Offset); 2730 uint32_t c2 = GetHeaderValue(kChecksum2Offset); 2731 if (version_hash != Version::Hash()) return VERSION_MISMATCH; 2732 if (source_hash != SourceHash(source)) return SOURCE_MISMATCH; 2733 if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) { 2734 return CPU_FEATURES_MISMATCH; 2735 } 2736 if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH; 2737 if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH; 2738 return CHECK_SUCCESS; 2739 } 2740 2741 2742 uint32_t SerializedCodeData::SourceHash(String* source) const { 2743 return source->length(); 2744 } 2745 2746 2747 // Return ScriptData object and relinquish ownership over it to the caller. 2748 ScriptData* SerializedCodeData::GetScriptData() { 2749 DCHECK(owns_data_); 2750 ScriptData* result = new ScriptData(data_, size_); 2751 result->AcquireDataOwnership(); 2752 owns_data_ = false; 2753 data_ = NULL; 2754 return result; 2755 } 2756 2757 2758 Vector<const SerializedData::Reservation> SerializedCodeData::Reservations() 2759 const { 2760 return Vector<const Reservation>( 2761 reinterpret_cast<const Reservation*>(data_ + kHeaderSize), 2762 GetHeaderValue(kNumReservationsOffset)); 2763 } 2764 2765 2766 Vector<const byte> SerializedCodeData::Payload() const { 2767 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; 2768 int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size; 2769 int payload_offset = kHeaderSize + reservations_size + code_stubs_size; 2770 int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset); 2771 const byte* payload = data_ + padded_payload_offset; 2772 DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment)); 2773 int length = GetHeaderValue(kPayloadLengthOffset); 2774 DCHECK_EQ(data_ + size_, payload + length); 2775 return Vector<const byte>(payload, length); 2776 } 2777 2778 2779 Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const { 2780 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; 2781 const byte* start = data_ + kHeaderSize + reservations_size; 2782 return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start), 2783 GetHeaderValue(kNumCodeStubKeysOffset)); 2784 } 2785 2786 2787 SerializedCodeData::SerializedCodeData(ScriptData* data) 2788 : SerializedData(const_cast<byte*>(data->data()), data->length()) {} 2789 2790 2791 SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate, 2792 ScriptData* cached_data, 2793 String* source) { 2794 DisallowHeapAllocation no_gc; 2795 SerializedCodeData* scd = new SerializedCodeData(cached_data); 2796 SanityCheckResult r = scd->SanityCheck(isolate, source); 2797 if (r == CHECK_SUCCESS) return scd; 2798 cached_data->Reject(); 2799 source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r); 2800 delete scd; 2801 return NULL; 2802 } 2803 } // namespace internal 2804 } // namespace v8 2805