Home | History | Annotate | Download | only in ec
      1 /* Copyright (c) 2015, Google Inc.
      2  *
      3  * Permission to use, copy, modify, and/or distribute this software for any
      4  * purpose with or without fee is hereby granted, provided that the above
      5  * copyright notice and this permission notice appear in all copies.
      6  *
      7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
      8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
      9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
     12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
     13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
     14 
     15 /* A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
     16  *
     17  * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
     18  * and Adam Langley's public domain 64-bit C implementation of curve25519. */
     19 
     20 #include <openssl/base.h>
     21 
     22 #if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS) && \
     23     !defined(OPENSSL_SMALL)
     24 
     25 #include <openssl/bn.h>
     26 #include <openssl/ec.h>
     27 #include <openssl/err.h>
     28 #include <openssl/mem.h>
     29 #include <openssl/obj.h>
     30 
     31 #include <string.h>
     32 
     33 #include "internal.h"
     34 
     35 
     36 typedef uint8_t u8;
     37 typedef uint64_t u64;
     38 typedef int64_t s64;
     39 
     40 /* Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
     41  * using 64-bit coefficients called 'limbs', and sometimes (for multiplication
     42  * results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
     43  * 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-limb
     44  * representation is an 'felem'; a 7-widelimb representation is a 'widefelem'.
     45  * Even within felems, bits of adjacent limbs overlap, and we don't always
     46  * reduce the representations: we ensure that inputs to each felem
     47  * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, and
     48  * fit into a 128-bit word without overflow. The coefficients are then again
     49  * partially reduced to obtain an felem satisfying a_i < 2^57. We only reduce
     50  * to the unique minimal representation at the end of the computation. */
     51 
     52 typedef uint64_t limb;
     53 typedef __uint128_t widelimb;
     54 
     55 typedef limb felem[4];
     56 typedef widelimb widefelem[7];
     57 
     58 /* Field element represented as a byte arrary. 28*8 = 224 bits is also the
     59  * group order size for the elliptic curve, and we also use this type for
     60  * scalars for point multiplication. */
     61 typedef u8 felem_bytearray[28];
     62 
     63 static const felem_bytearray nistp224_curve_params[5] = {
     64     {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
     65      0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
     66      0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
     67     {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
     68      0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
     69      0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
     70     {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
     71      0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, 0x27, 0x0B,
     72      0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
     73     {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
     74      0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, 0x34, 0x32,
     75      0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
     76     {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
     77      0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, 0x44, 0xd5,
     78      0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}};
     79 
     80 /* Precomputed multiples of the standard generator
     81  * Points are given in coordinates (X, Y, Z) where Z normally is 1
     82  * (0 for the point at infinity).
     83  * For each field element, slice a_0 is word 0, etc.
     84  *
     85  * The table has 2 * 16 elements, starting with the following:
     86  * index | bits    | point
     87  * ------+---------+------------------------------
     88  *     0 | 0 0 0 0 | 0G
     89  *     1 | 0 0 0 1 | 1G
     90  *     2 | 0 0 1 0 | 2^56G
     91  *     3 | 0 0 1 1 | (2^56 + 1)G
     92  *     4 | 0 1 0 0 | 2^112G
     93  *     5 | 0 1 0 1 | (2^112 + 1)G
     94  *     6 | 0 1 1 0 | (2^112 + 2^56)G
     95  *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
     96  *     8 | 1 0 0 0 | 2^168G
     97  *     9 | 1 0 0 1 | (2^168 + 1)G
     98  *    10 | 1 0 1 0 | (2^168 + 2^56)G
     99  *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
    100  *    12 | 1 1 0 0 | (2^168 + 2^112)G
    101  *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
    102  *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
    103  *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
    104  * followed by a copy of this with each element multiplied by 2^28.
    105  *
    106  * The reason for this is so that we can clock bits into four different
    107  * locations when doing simple scalar multiplies against the base point,
    108  * and then another four locations using the second 16 elements. */
    109 static const felem g_pre_comp[2][16][3] = {
    110     {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
    111      {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
    112       {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
    113       {1, 0, 0, 0}},
    114      {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
    115       {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
    116       {1, 0, 0, 0}},
    117      {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
    118       {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
    119       {1, 0, 0, 0}},
    120      {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
    121       {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
    122       {1, 0, 0, 0}},
    123      {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
    124       {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
    125       {1, 0, 0, 0}},
    126      {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
    127       {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
    128       {1, 0, 0, 0}},
    129      {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
    130       {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
    131       {1, 0, 0, 0}},
    132      {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
    133       {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
    134       {1, 0, 0, 0}},
    135      {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
    136       {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
    137       {1, 0, 0, 0}},
    138      {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
    139       {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
    140       {1, 0, 0, 0}},
    141      {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
    142       {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
    143       {1, 0, 0, 0}},
    144      {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
    145       {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
    146       {1, 0, 0, 0}},
    147      {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
    148       {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
    149       {1, 0, 0, 0}},
    150      {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
    151       {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
    152       {1, 0, 0, 0}},
    153      {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
    154       {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
    155       {1, 0, 0, 0}}},
    156     {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
    157      {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
    158       {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
    159       {1, 0, 0, 0}},
    160      {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
    161       {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
    162       {1, 0, 0, 0}},
    163      {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
    164       {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
    165       {1, 0, 0, 0}},
    166      {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
    167       {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
    168       {1, 0, 0, 0}},
    169      {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
    170       {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
    171       {1, 0, 0, 0}},
    172      {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
    173       {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
    174       {1, 0, 0, 0}},
    175      {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
    176       {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
    177       {1, 0, 0, 0}},
    178      {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
    179       {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
    180       {1, 0, 0, 0}},
    181      {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
    182       {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
    183       {1, 0, 0, 0}},
    184      {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
    185       {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
    186       {1, 0, 0, 0}},
    187      {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
    188       {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
    189       {1, 0, 0, 0}},
    190      {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
    191       {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
    192       {1, 0, 0, 0}},
    193      {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
    194       {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
    195       {1, 0, 0, 0}},
    196      {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
    197       {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
    198       {1, 0, 0, 0}},
    199      {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
    200       {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
    201       {1, 0, 0, 0}}}};
    202 
    203 /* Helper functions to convert field elements to/from internal representation */
    204 static void bin28_to_felem(felem out, const u8 in[28]) {
    205   out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
    206   out[1] = (*((const uint64_t *)(in + 7))) & 0x00ffffffffffffff;
    207   out[2] = (*((const uint64_t *)(in + 14))) & 0x00ffffffffffffff;
    208   out[3] = (*((const uint64_t *)(in + 20))) >> 8;
    209 }
    210 
    211 static void felem_to_bin28(u8 out[28], const felem in) {
    212   unsigned i;
    213   for (i = 0; i < 7; ++i) {
    214     out[i] = in[0] >> (8 * i);
    215     out[i + 7] = in[1] >> (8 * i);
    216     out[i + 14] = in[2] >> (8 * i);
    217     out[i + 21] = in[3] >> (8 * i);
    218   }
    219 }
    220 
    221 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
    222 static void flip_endian(u8 *out, const u8 *in, unsigned len) {
    223   unsigned i;
    224   for (i = 0; i < len; ++i) {
    225     out[i] = in[len - 1 - i];
    226   }
    227 }
    228 
    229 /* From OpenSSL BIGNUM to internal representation */
    230 static int BN_to_felem(felem out, const BIGNUM *bn) {
    231   /* BN_bn2bin eats leading zeroes */
    232   felem_bytearray b_out;
    233   memset(b_out, 0, sizeof(b_out));
    234   unsigned num_bytes = BN_num_bytes(bn);
    235   if (num_bytes > sizeof(b_out) ||
    236       BN_is_negative(bn)) {
    237     OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
    238     return 0;
    239   }
    240 
    241   felem_bytearray b_in;
    242   num_bytes = BN_bn2bin(bn, b_in);
    243   flip_endian(b_out, b_in, num_bytes);
    244   bin28_to_felem(out, b_out);
    245   return 1;
    246 }
    247 
    248 /* From internal representation to OpenSSL BIGNUM */
    249 static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) {
    250   felem_bytearray b_in, b_out;
    251   felem_to_bin28(b_in, in);
    252   flip_endian(b_out, b_in, sizeof(b_out));
    253   return BN_bin2bn(b_out, sizeof(b_out), out);
    254 }
    255 
    256 /* Field operations, using the internal representation of field elements.
    257  * NB! These operations are specific to our point multiplication and cannot be
    258  * expected to be correct in general - e.g., multiplication with a large scalar
    259  * will cause an overflow. */
    260 
    261 static void felem_one(felem out) {
    262   out[0] = 1;
    263   out[1] = 0;
    264   out[2] = 0;
    265   out[3] = 0;
    266 }
    267 
    268 static void felem_assign(felem out, const felem in) {
    269   out[0] = in[0];
    270   out[1] = in[1];
    271   out[2] = in[2];
    272   out[3] = in[3];
    273 }
    274 
    275 /* Sum two field elements: out += in */
    276 static void felem_sum(felem out, const felem in) {
    277   out[0] += in[0];
    278   out[1] += in[1];
    279   out[2] += in[2];
    280   out[3] += in[3];
    281 }
    282 
    283 /* Get negative value: out = -in */
    284 /* Assumes in[i] < 2^57 */
    285 static void felem_neg(felem out, const felem in) {
    286   static const limb two58p2 = (((limb)1) << 58) + (((limb)1) << 2);
    287   static const limb two58m2 = (((limb)1) << 58) - (((limb)1) << 2);
    288   static const limb two58m42m2 =
    289       (((limb)1) << 58) - (((limb)1) << 42) - (((limb)1) << 2);
    290 
    291   /* Set to 0 mod 2^224-2^96+1 to ensure out > in */
    292   out[0] = two58p2 - in[0];
    293   out[1] = two58m42m2 - in[1];
    294   out[2] = two58m2 - in[2];
    295   out[3] = two58m2 - in[3];
    296 }
    297 
    298 /* Subtract field elements: out -= in */
    299 /* Assumes in[i] < 2^57 */
    300 static void felem_diff(felem out, const felem in) {
    301   static const limb two58p2 = (((limb)1) << 58) + (((limb)1) << 2);
    302   static const limb two58m2 = (((limb)1) << 58) - (((limb)1) << 2);
    303   static const limb two58m42m2 =
    304       (((limb)1) << 58) - (((limb)1) << 42) - (((limb)1) << 2);
    305 
    306   /* Add 0 mod 2^224-2^96+1 to ensure out > in */
    307   out[0] += two58p2;
    308   out[1] += two58m42m2;
    309   out[2] += two58m2;
    310   out[3] += two58m2;
    311 
    312   out[0] -= in[0];
    313   out[1] -= in[1];
    314   out[2] -= in[2];
    315   out[3] -= in[3];
    316 }
    317 
    318 /* Subtract in unreduced 128-bit mode: out -= in */
    319 /* Assumes in[i] < 2^119 */
    320 static void widefelem_diff(widefelem out, const widefelem in) {
    321   static const widelimb two120 = ((widelimb)1) << 120;
    322   static const widelimb two120m64 =
    323       (((widelimb)1) << 120) - (((widelimb)1) << 64);
    324   static const widelimb two120m104m64 =
    325       (((widelimb)1) << 120) - (((widelimb)1) << 104) - (((widelimb)1) << 64);
    326 
    327   /* Add 0 mod 2^224-2^96+1 to ensure out > in */
    328   out[0] += two120;
    329   out[1] += two120m64;
    330   out[2] += two120m64;
    331   out[3] += two120;
    332   out[4] += two120m104m64;
    333   out[5] += two120m64;
    334   out[6] += two120m64;
    335 
    336   out[0] -= in[0];
    337   out[1] -= in[1];
    338   out[2] -= in[2];
    339   out[3] -= in[3];
    340   out[4] -= in[4];
    341   out[5] -= in[5];
    342   out[6] -= in[6];
    343 }
    344 
    345 /* Subtract in mixed mode: out128 -= in64 */
    346 /* in[i] < 2^63 */
    347 static void felem_diff_128_64(widefelem out, const felem in) {
    348   static const widelimb two64p8 = (((widelimb)1) << 64) + (((widelimb)1) << 8);
    349   static const widelimb two64m8 = (((widelimb)1) << 64) - (((widelimb)1) << 8);
    350   static const widelimb two64m48m8 =
    351       (((widelimb)1) << 64) - (((widelimb)1) << 48) - (((widelimb)1) << 8);
    352 
    353   /* Add 0 mod 2^224-2^96+1 to ensure out > in */
    354   out[0] += two64p8;
    355   out[1] += two64m48m8;
    356   out[2] += two64m8;
    357   out[3] += two64m8;
    358 
    359   out[0] -= in[0];
    360   out[1] -= in[1];
    361   out[2] -= in[2];
    362   out[3] -= in[3];
    363 }
    364 
    365 /* Multiply a field element by a scalar: out = out * scalar
    366  * The scalars we actually use are small, so results fit without overflow */
    367 static void felem_scalar(felem out, const limb scalar) {
    368   out[0] *= scalar;
    369   out[1] *= scalar;
    370   out[2] *= scalar;
    371   out[3] *= scalar;
    372 }
    373 
    374 /* Multiply an unreduced field element by a scalar: out = out * scalar
    375  * The scalars we actually use are small, so results fit without overflow */
    376 static void widefelem_scalar(widefelem out, const widelimb scalar) {
    377   out[0] *= scalar;
    378   out[1] *= scalar;
    379   out[2] *= scalar;
    380   out[3] *= scalar;
    381   out[4] *= scalar;
    382   out[5] *= scalar;
    383   out[6] *= scalar;
    384 }
    385 
    386 /* Square a field element: out = in^2 */
    387 static void felem_square(widefelem out, const felem in) {
    388   limb tmp0, tmp1, tmp2;
    389   tmp0 = 2 * in[0];
    390   tmp1 = 2 * in[1];
    391   tmp2 = 2 * in[2];
    392   out[0] = ((widelimb)in[0]) * in[0];
    393   out[1] = ((widelimb)in[0]) * tmp1;
    394   out[2] = ((widelimb)in[0]) * tmp2 + ((widelimb)in[1]) * in[1];
    395   out[3] = ((widelimb)in[3]) * tmp0 + ((widelimb)in[1]) * tmp2;
    396   out[4] = ((widelimb)in[3]) * tmp1 + ((widelimb)in[2]) * in[2];
    397   out[5] = ((widelimb)in[3]) * tmp2;
    398   out[6] = ((widelimb)in[3]) * in[3];
    399 }
    400 
    401 /* Multiply two field elements: out = in1 * in2 */
    402 static void felem_mul(widefelem out, const felem in1, const felem in2) {
    403   out[0] = ((widelimb)in1[0]) * in2[0];
    404   out[1] = ((widelimb)in1[0]) * in2[1] + ((widelimb)in1[1]) * in2[0];
    405   out[2] = ((widelimb)in1[0]) * in2[2] + ((widelimb)in1[1]) * in2[1] +
    406            ((widelimb)in1[2]) * in2[0];
    407   out[3] = ((widelimb)in1[0]) * in2[3] + ((widelimb)in1[1]) * in2[2] +
    408            ((widelimb)in1[2]) * in2[1] + ((widelimb)in1[3]) * in2[0];
    409   out[4] = ((widelimb)in1[1]) * in2[3] + ((widelimb)in1[2]) * in2[2] +
    410            ((widelimb)in1[3]) * in2[1];
    411   out[5] = ((widelimb)in1[2]) * in2[3] + ((widelimb)in1[3]) * in2[2];
    412   out[6] = ((widelimb)in1[3]) * in2[3];
    413 }
    414 
    415 /* Reduce seven 128-bit coefficients to four 64-bit coefficients.
    416  * Requires in[i] < 2^126,
    417  * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
    418 static void felem_reduce(felem out, const widefelem in) {
    419   static const widelimb two127p15 =
    420       (((widelimb)1) << 127) + (((widelimb)1) << 15);
    421   static const widelimb two127m71 =
    422       (((widelimb)1) << 127) - (((widelimb)1) << 71);
    423   static const widelimb two127m71m55 =
    424       (((widelimb)1) << 127) - (((widelimb)1) << 71) - (((widelimb)1) << 55);
    425   widelimb output[5];
    426 
    427   /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
    428   output[0] = in[0] + two127p15;
    429   output[1] = in[1] + two127m71m55;
    430   output[2] = in[2] + two127m71;
    431   output[3] = in[3];
    432   output[4] = in[4];
    433 
    434   /* Eliminate in[4], in[5], in[6] */
    435   output[4] += in[6] >> 16;
    436   output[3] += (in[6] & 0xffff) << 40;
    437   output[2] -= in[6];
    438 
    439   output[3] += in[5] >> 16;
    440   output[2] += (in[5] & 0xffff) << 40;
    441   output[1] -= in[5];
    442 
    443   output[2] += output[4] >> 16;
    444   output[1] += (output[4] & 0xffff) << 40;
    445   output[0] -= output[4];
    446 
    447   /* Carry 2 -> 3 -> 4 */
    448   output[3] += output[2] >> 56;
    449   output[2] &= 0x00ffffffffffffff;
    450 
    451   output[4] = output[3] >> 56;
    452   output[3] &= 0x00ffffffffffffff;
    453 
    454   /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
    455 
    456   /* Eliminate output[4] */
    457   output[2] += output[4] >> 16;
    458   /* output[2] < 2^56 + 2^56 = 2^57 */
    459   output[1] += (output[4] & 0xffff) << 40;
    460   output[0] -= output[4];
    461 
    462   /* Carry 0 -> 1 -> 2 -> 3 */
    463   output[1] += output[0] >> 56;
    464   out[0] = output[0] & 0x00ffffffffffffff;
    465 
    466   output[2] += output[1] >> 56;
    467   /* output[2] < 2^57 + 2^72 */
    468   out[1] = output[1] & 0x00ffffffffffffff;
    469   output[3] += output[2] >> 56;
    470   /* output[3] <= 2^56 + 2^16 */
    471   out[2] = output[2] & 0x00ffffffffffffff;
    472 
    473   /* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
    474    * out[3] <= 2^56 + 2^16 (due to final carry),
    475    * so out < 2*p */
    476   out[3] = output[3];
    477 }
    478 
    479 static void felem_square_reduce(felem out, const felem in) {
    480   widefelem tmp;
    481   felem_square(tmp, in);
    482   felem_reduce(out, tmp);
    483 }
    484 
    485 static void felem_mul_reduce(felem out, const felem in1, const felem in2) {
    486   widefelem tmp;
    487   felem_mul(tmp, in1, in2);
    488   felem_reduce(out, tmp);
    489 }
    490 
    491 /* Reduce to unique minimal representation.
    492  * Requires 0 <= in < 2*p (always call felem_reduce first) */
    493 static void felem_contract(felem out, const felem in) {
    494   static const int64_t two56 = ((limb)1) << 56;
    495   /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
    496   /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
    497   int64_t tmp[4], a;
    498   tmp[0] = in[0];
    499   tmp[1] = in[1];
    500   tmp[2] = in[2];
    501   tmp[3] = in[3];
    502   /* Case 1: a = 1 iff in >= 2^224 */
    503   a = (in[3] >> 56);
    504   tmp[0] -= a;
    505   tmp[1] += a << 40;
    506   tmp[3] &= 0x00ffffffffffffff;
    507   /* Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
    508    * the lower part is non-zero */
    509   a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
    510       (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
    511   a &= 0x00ffffffffffffff;
    512   /* turn a into an all-one mask (if a = 0) or an all-zero mask */
    513   a = (a - 1) >> 63;
    514   /* subtract 2^224 - 2^96 + 1 if a is all-one */
    515   tmp[3] &= a ^ 0xffffffffffffffff;
    516   tmp[2] &= a ^ 0xffffffffffffffff;
    517   tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
    518   tmp[0] -= 1 & a;
    519 
    520   /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
    521    * be non-zero, so we only need one step */
    522   a = tmp[0] >> 63;
    523   tmp[0] += two56 & a;
    524   tmp[1] -= 1 & a;
    525 
    526   /* carry 1 -> 2 -> 3 */
    527   tmp[2] += tmp[1] >> 56;
    528   tmp[1] &= 0x00ffffffffffffff;
    529 
    530   tmp[3] += tmp[2] >> 56;
    531   tmp[2] &= 0x00ffffffffffffff;
    532 
    533   /* Now 0 <= out < p */
    534   out[0] = tmp[0];
    535   out[1] = tmp[1];
    536   out[2] = tmp[2];
    537   out[3] = tmp[3];
    538 }
    539 
    540 /* Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
    541  * elements are reduced to in < 2^225, so we only need to check three cases: 0,
    542  * 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 */
    543 static limb felem_is_zero(const felem in) {
    544   limb zero = in[0] | in[1] | in[2] | in[3];
    545   zero = (((int64_t)(zero)-1) >> 63) & 1;
    546 
    547   limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
    548                      (in[2] ^ 0x00ffffffffffffff) |
    549                      (in[3] ^ 0x00ffffffffffffff);
    550   two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
    551   limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
    552                      (in[2] ^ 0x00ffffffffffffff) |
    553                      (in[3] ^ 0x01ffffffffffffff);
    554   two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
    555   return (zero | two224m96p1 | two225m97p2);
    556 }
    557 
    558 static limb felem_is_zero_int(const felem in) {
    559   return (int)(felem_is_zero(in) & ((limb)1));
    560 }
    561 
    562 /* Invert a field element */
    563 /* Computation chain copied from djb's code */
    564 static void felem_inv(felem out, const felem in) {
    565   felem ftmp, ftmp2, ftmp3, ftmp4;
    566   widefelem tmp;
    567   unsigned i;
    568 
    569   felem_square(tmp, in);
    570   felem_reduce(ftmp, tmp); /* 2 */
    571   felem_mul(tmp, in, ftmp);
    572   felem_reduce(ftmp, tmp); /* 2^2 - 1 */
    573   felem_square(tmp, ftmp);
    574   felem_reduce(ftmp, tmp); /* 2^3 - 2 */
    575   felem_mul(tmp, in, ftmp);
    576   felem_reduce(ftmp, tmp); /* 2^3 - 1 */
    577   felem_square(tmp, ftmp);
    578   felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
    579   felem_square(tmp, ftmp2);
    580   felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
    581   felem_square(tmp, ftmp2);
    582   felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
    583   felem_mul(tmp, ftmp2, ftmp);
    584   felem_reduce(ftmp, tmp); /* 2^6 - 1 */
    585   felem_square(tmp, ftmp);
    586   felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
    587   for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */
    588     felem_square(tmp, ftmp2);
    589     felem_reduce(ftmp2, tmp);
    590   }
    591   felem_mul(tmp, ftmp2, ftmp);
    592   felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
    593   felem_square(tmp, ftmp2);
    594   felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
    595   for (i = 0; i < 11; ++i) {/* 2^24 - 2^12 */
    596     felem_square(tmp, ftmp3);
    597     felem_reduce(ftmp3, tmp);
    598   }
    599   felem_mul(tmp, ftmp3, ftmp2);
    600   felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
    601   felem_square(tmp, ftmp2);
    602   felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
    603   for (i = 0; i < 23; ++i) {/* 2^48 - 2^24 */
    604     felem_square(tmp, ftmp3);
    605     felem_reduce(ftmp3, tmp);
    606   }
    607   felem_mul(tmp, ftmp3, ftmp2);
    608   felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
    609   felem_square(tmp, ftmp3);
    610   felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
    611   for (i = 0; i < 47; ++i) {/* 2^96 - 2^48 */
    612     felem_square(tmp, ftmp4);
    613     felem_reduce(ftmp4, tmp);
    614   }
    615   felem_mul(tmp, ftmp3, ftmp4);
    616   felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
    617   felem_square(tmp, ftmp3);
    618   felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
    619   for (i = 0; i < 23; ++i) {/* 2^120 - 2^24 */
    620     felem_square(tmp, ftmp4);
    621     felem_reduce(ftmp4, tmp);
    622   }
    623   felem_mul(tmp, ftmp2, ftmp4);
    624   felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
    625   for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */
    626     felem_square(tmp, ftmp2);
    627     felem_reduce(ftmp2, tmp);
    628   }
    629   felem_mul(tmp, ftmp2, ftmp);
    630   felem_reduce(ftmp, tmp); /* 2^126 - 1 */
    631   felem_square(tmp, ftmp);
    632   felem_reduce(ftmp, tmp); /* 2^127 - 2 */
    633   felem_mul(tmp, ftmp, in);
    634   felem_reduce(ftmp, tmp); /* 2^127 - 1 */
    635   for (i = 0; i < 97; ++i) {/* 2^224 - 2^97 */
    636     felem_square(tmp, ftmp);
    637     felem_reduce(ftmp, tmp);
    638   }
    639   felem_mul(tmp, ftmp, ftmp3);
    640   felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
    641 }
    642 
    643 /* Copy in constant time:
    644  * if icopy == 1, copy in to out,
    645  * if icopy == 0, copy out to itself. */
    646 static void copy_conditional(felem out, const felem in, limb icopy) {
    647   unsigned i;
    648   /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
    649   const limb copy = -icopy;
    650   for (i = 0; i < 4; ++i) {
    651     const limb tmp = copy & (in[i] ^ out[i]);
    652     out[i] ^= tmp;
    653   }
    654 }
    655 
    656 /* ELLIPTIC CURVE POINT OPERATIONS
    657  *
    658  * Points are represented in Jacobian projective coordinates:
    659  * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
    660  * or to the point at infinity if Z == 0. */
    661 
    662 /* Double an elliptic curve point:
    663  * (X', Y', Z') = 2 * (X, Y, Z), where
    664  * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
    665  * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
    666  * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
    667  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
    668  * while x_out == y_in is not (maybe this works, but it's not tested). */
    669 static void point_double(felem x_out, felem y_out, felem z_out,
    670                          const felem x_in, const felem y_in, const felem z_in) {
    671   widefelem tmp, tmp2;
    672   felem delta, gamma, beta, alpha, ftmp, ftmp2;
    673 
    674   felem_assign(ftmp, x_in);
    675   felem_assign(ftmp2, x_in);
    676 
    677   /* delta = z^2 */
    678   felem_square(tmp, z_in);
    679   felem_reduce(delta, tmp);
    680 
    681   /* gamma = y^2 */
    682   felem_square(tmp, y_in);
    683   felem_reduce(gamma, tmp);
    684 
    685   /* beta = x*gamma */
    686   felem_mul(tmp, x_in, gamma);
    687   felem_reduce(beta, tmp);
    688 
    689   /* alpha = 3*(x-delta)*(x+delta) */
    690   felem_diff(ftmp, delta);
    691   /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
    692   felem_sum(ftmp2, delta);
    693   /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
    694   felem_scalar(ftmp2, 3);
    695   /* ftmp2[i] < 3 * 2^58 < 2^60 */
    696   felem_mul(tmp, ftmp, ftmp2);
    697   /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
    698   felem_reduce(alpha, tmp);
    699 
    700   /* x' = alpha^2 - 8*beta */
    701   felem_square(tmp, alpha);
    702   /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
    703   felem_assign(ftmp, beta);
    704   felem_scalar(ftmp, 8);
    705   /* ftmp[i] < 8 * 2^57 = 2^60 */
    706   felem_diff_128_64(tmp, ftmp);
    707   /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
    708   felem_reduce(x_out, tmp);
    709 
    710   /* z' = (y + z)^2 - gamma - delta */
    711   felem_sum(delta, gamma);
    712   /* delta[i] < 2^57 + 2^57 = 2^58 */
    713   felem_assign(ftmp, y_in);
    714   felem_sum(ftmp, z_in);
    715   /* ftmp[i] < 2^57 + 2^57 = 2^58 */
    716   felem_square(tmp, ftmp);
    717   /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
    718   felem_diff_128_64(tmp, delta);
    719   /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
    720   felem_reduce(z_out, tmp);
    721 
    722   /* y' = alpha*(4*beta - x') - 8*gamma^2 */
    723   felem_scalar(beta, 4);
    724   /* beta[i] < 4 * 2^57 = 2^59 */
    725   felem_diff(beta, x_out);
    726   /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
    727   felem_mul(tmp, alpha, beta);
    728   /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
    729   felem_square(tmp2, gamma);
    730   /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
    731   widefelem_scalar(tmp2, 8);
    732   /* tmp2[i] < 8 * 2^116 = 2^119 */
    733   widefelem_diff(tmp, tmp2);
    734   /* tmp[i] < 2^119 + 2^120 < 2^121 */
    735   felem_reduce(y_out, tmp);
    736 }
    737 
    738 /* Add two elliptic curve points:
    739  * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
    740  * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
    741  * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
    742  * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
    743  * X_1)^2 - X_3) -
    744  *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
    745  * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
    746  *
    747  * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. */
    748 
    749 /* This function is not entirely constant-time: it includes a branch for
    750  * checking whether the two input points are equal, (while not equal to the
    751  * point at infinity). This case never happens during single point
    752  * multiplication, so there is no timing leak for ECDH or ECDSA signing. */
    753 static void point_add(felem x3, felem y3, felem z3, const felem x1,
    754                       const felem y1, const felem z1, const int mixed,
    755                       const felem x2, const felem y2, const felem z2) {
    756   felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
    757   widefelem tmp, tmp2;
    758   limb z1_is_zero, z2_is_zero, x_equal, y_equal;
    759 
    760   if (!mixed) {
    761     /* ftmp2 = z2^2 */
    762     felem_square(tmp, z2);
    763     felem_reduce(ftmp2, tmp);
    764 
    765     /* ftmp4 = z2^3 */
    766     felem_mul(tmp, ftmp2, z2);
    767     felem_reduce(ftmp4, tmp);
    768 
    769     /* ftmp4 = z2^3*y1 */
    770     felem_mul(tmp2, ftmp4, y1);
    771     felem_reduce(ftmp4, tmp2);
    772 
    773     /* ftmp2 = z2^2*x1 */
    774     felem_mul(tmp2, ftmp2, x1);
    775     felem_reduce(ftmp2, tmp2);
    776   } else {
    777     /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
    778 
    779     /* ftmp4 = z2^3*y1 */
    780     felem_assign(ftmp4, y1);
    781 
    782     /* ftmp2 = z2^2*x1 */
    783     felem_assign(ftmp2, x1);
    784   }
    785 
    786   /* ftmp = z1^2 */
    787   felem_square(tmp, z1);
    788   felem_reduce(ftmp, tmp);
    789 
    790   /* ftmp3 = z1^3 */
    791   felem_mul(tmp, ftmp, z1);
    792   felem_reduce(ftmp3, tmp);
    793 
    794   /* tmp = z1^3*y2 */
    795   felem_mul(tmp, ftmp3, y2);
    796   /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
    797 
    798   /* ftmp3 = z1^3*y2 - z2^3*y1 */
    799   felem_diff_128_64(tmp, ftmp4);
    800   /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
    801   felem_reduce(ftmp3, tmp);
    802 
    803   /* tmp = z1^2*x2 */
    804   felem_mul(tmp, ftmp, x2);
    805   /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
    806 
    807   /* ftmp = z1^2*x2 - z2^2*x1 */
    808   felem_diff_128_64(tmp, ftmp2);
    809   /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
    810   felem_reduce(ftmp, tmp);
    811 
    812   /* the formulae are incorrect if the points are equal
    813    * so we check for this and do doubling if this happens */
    814   x_equal = felem_is_zero(ftmp);
    815   y_equal = felem_is_zero(ftmp3);
    816   z1_is_zero = felem_is_zero(z1);
    817   z2_is_zero = felem_is_zero(z2);
    818   /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
    819   if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
    820     point_double(x3, y3, z3, x1, y1, z1);
    821     return;
    822   }
    823 
    824   /* ftmp5 = z1*z2 */
    825   if (!mixed) {
    826     felem_mul(tmp, z1, z2);
    827     felem_reduce(ftmp5, tmp);
    828   } else {
    829     /* special case z2 = 0 is handled later */
    830     felem_assign(ftmp5, z1);
    831   }
    832 
    833   /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
    834   felem_mul(tmp, ftmp, ftmp5);
    835   felem_reduce(z_out, tmp);
    836 
    837   /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
    838   felem_assign(ftmp5, ftmp);
    839   felem_square(tmp, ftmp);
    840   felem_reduce(ftmp, tmp);
    841 
    842   /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
    843   felem_mul(tmp, ftmp, ftmp5);
    844   felem_reduce(ftmp5, tmp);
    845 
    846   /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
    847   felem_mul(tmp, ftmp2, ftmp);
    848   felem_reduce(ftmp2, tmp);
    849 
    850   /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
    851   felem_mul(tmp, ftmp4, ftmp5);
    852   /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
    853 
    854   /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
    855   felem_square(tmp2, ftmp3);
    856   /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
    857 
    858   /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
    859   felem_diff_128_64(tmp2, ftmp5);
    860   /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
    861 
    862   /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
    863   felem_assign(ftmp5, ftmp2);
    864   felem_scalar(ftmp5, 2);
    865   /* ftmp5[i] < 2 * 2^57 = 2^58 */
    866 
    867   /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
    868      2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
    869   felem_diff_128_64(tmp2, ftmp5);
    870   /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
    871   felem_reduce(x_out, tmp2);
    872 
    873   /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
    874   felem_diff(ftmp2, x_out);
    875   /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
    876 
    877   /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
    878   felem_mul(tmp2, ftmp3, ftmp2);
    879   /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
    880 
    881   /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
    882      z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
    883   widefelem_diff(tmp2, tmp);
    884   /* tmp2[i] < 2^118 + 2^120 < 2^121 */
    885   felem_reduce(y_out, tmp2);
    886 
    887   /* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
    888    * the point at infinity, so we need to check for this separately */
    889 
    890   /* if point 1 is at infinity, copy point 2 to output, and vice versa */
    891   copy_conditional(x_out, x2, z1_is_zero);
    892   copy_conditional(x_out, x1, z2_is_zero);
    893   copy_conditional(y_out, y2, z1_is_zero);
    894   copy_conditional(y_out, y1, z2_is_zero);
    895   copy_conditional(z_out, z2, z1_is_zero);
    896   copy_conditional(z_out, z1, z2_is_zero);
    897   felem_assign(x3, x_out);
    898   felem_assign(y3, y_out);
    899   felem_assign(z3, z_out);
    900 }
    901 
    902 /* select_point selects the |idx|th point from a precomputation table and
    903  * copies it to out. */
    904 static void select_point(const u64 idx, unsigned int size,
    905                          const felem pre_comp[/*size*/][3], felem out[3]) {
    906   unsigned i, j;
    907   limb *outlimbs = &out[0][0];
    908   memset(outlimbs, 0, 3 * sizeof(felem));
    909 
    910   for (i = 0; i < size; i++) {
    911     const limb *inlimbs = &pre_comp[i][0][0];
    912     u64 mask = i ^ idx;
    913     mask |= mask >> 4;
    914     mask |= mask >> 2;
    915     mask |= mask >> 1;
    916     mask &= 1;
    917     mask--;
    918     for (j = 0; j < 4 * 3; j++) {
    919       outlimbs[j] |= inlimbs[j] & mask;
    920     }
    921   }
    922 }
    923 
    924 /* get_bit returns the |i|th bit in |in| */
    925 static char get_bit(const felem_bytearray in, unsigned i) {
    926   if (i >= 224) {
    927     return 0;
    928   }
    929   return (in[i >> 3] >> (i & 7)) & 1;
    930 }
    931 
    932 /* Interleaved point multiplication using precomputed point multiples:
    933  * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
    934  * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
    935  * of the generator, using certain (large) precomputed multiples in g_pre_comp.
    936  * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
    937 static void batch_mul(felem x_out, felem y_out, felem z_out,
    938                       const felem_bytearray scalars[],
    939                       const unsigned num_points, const u8 *g_scalar,
    940                       const int mixed, const felem pre_comp[][17][3]) {
    941   int i, skip;
    942   unsigned num;
    943   unsigned gen_mul = (g_scalar != NULL);
    944   felem nq[3], tmp[4];
    945   u64 bits;
    946   u8 sign, digit;
    947 
    948   /* set nq to the point at infinity */
    949   memset(nq, 0, 3 * sizeof(felem));
    950 
    951   /* Loop over all scalars msb-to-lsb, interleaving additions
    952    * of multiples of the generator (two in each of the last 28 rounds)
    953    * and additions of other points multiples (every 5th round). */
    954   skip = 1; /* save two point operations in the first round */
    955   for (i = (num_points ? 220 : 27); i >= 0; --i) {
    956     /* double */
    957     if (!skip) {
    958       point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
    959     }
    960 
    961     /* add multiples of the generator */
    962     if (gen_mul && (i <= 27)) {
    963       /* first, look 28 bits upwards */
    964       bits = get_bit(g_scalar, i + 196) << 3;
    965       bits |= get_bit(g_scalar, i + 140) << 2;
    966       bits |= get_bit(g_scalar, i + 84) << 1;
    967       bits |= get_bit(g_scalar, i + 28);
    968       /* select the point to add, in constant time */
    969       select_point(bits, 16, g_pre_comp[1], tmp);
    970 
    971       if (!skip) {
    972         point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
    973                   tmp[0], tmp[1], tmp[2]);
    974       } else {
    975         memcpy(nq, tmp, 3 * sizeof(felem));
    976         skip = 0;
    977       }
    978 
    979       /* second, look at the current position */
    980       bits = get_bit(g_scalar, i + 168) << 3;
    981       bits |= get_bit(g_scalar, i + 112) << 2;
    982       bits |= get_bit(g_scalar, i + 56) << 1;
    983       bits |= get_bit(g_scalar, i);
    984       /* select the point to add, in constant time */
    985       select_point(bits, 16, g_pre_comp[0], tmp);
    986       point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, tmp[0],
    987                 tmp[1], tmp[2]);
    988     }
    989 
    990     /* do other additions every 5 doublings */
    991     if (num_points && (i % 5 == 0)) {
    992       /* loop over all scalars */
    993       for (num = 0; num < num_points; ++num) {
    994         bits = get_bit(scalars[num], i + 4) << 5;
    995         bits |= get_bit(scalars[num], i + 3) << 4;
    996         bits |= get_bit(scalars[num], i + 2) << 3;
    997         bits |= get_bit(scalars[num], i + 1) << 2;
    998         bits |= get_bit(scalars[num], i) << 1;
    999         bits |= get_bit(scalars[num], i - 1);
   1000         ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
   1001 
   1002         /* select the point to add or subtract */
   1003         select_point(digit, 17, pre_comp[num], tmp);
   1004         felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
   1005         copy_conditional(tmp[1], tmp[3], sign);
   1006 
   1007         if (!skip) {
   1008           point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], mixed, tmp[0],
   1009                     tmp[1], tmp[2]);
   1010         } else {
   1011           memcpy(nq, tmp, 3 * sizeof(felem));
   1012           skip = 0;
   1013         }
   1014       }
   1015     }
   1016   }
   1017   felem_assign(x_out, nq[0]);
   1018   felem_assign(y_out, nq[1]);
   1019   felem_assign(z_out, nq[2]);
   1020 }
   1021 
   1022 int ec_GFp_nistp224_group_init(EC_GROUP *group) {
   1023   int ret;
   1024   ret = ec_GFp_simple_group_init(group);
   1025   group->a_is_minus3 = 1;
   1026   return ret;
   1027 }
   1028 
   1029 int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
   1030                                     const BIGNUM *a, const BIGNUM *b,
   1031                                     BN_CTX *ctx) {
   1032   int ret = 0;
   1033   BN_CTX *new_ctx = NULL;
   1034   BIGNUM *curve_p, *curve_a, *curve_b;
   1035 
   1036   if (ctx == NULL) {
   1037     ctx = BN_CTX_new();
   1038     new_ctx = ctx;
   1039     if (ctx == NULL) {
   1040       return 0;
   1041     }
   1042   }
   1043   BN_CTX_start(ctx);
   1044   if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
   1045       ((curve_a = BN_CTX_get(ctx)) == NULL) ||
   1046       ((curve_b = BN_CTX_get(ctx)) == NULL)) {
   1047     goto err;
   1048   }
   1049   BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
   1050   BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
   1051   BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
   1052   if (BN_cmp(curve_p, p) ||
   1053       BN_cmp(curve_a, a) ||
   1054       BN_cmp(curve_b, b)) {
   1055     OPENSSL_PUT_ERROR(EC, EC_R_WRONG_CURVE_PARAMETERS);
   1056     goto err;
   1057   }
   1058   ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
   1059 
   1060 err:
   1061   BN_CTX_end(ctx);
   1062   BN_CTX_free(new_ctx);
   1063   return ret;
   1064 }
   1065 
   1066 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
   1067  * (X', Y') = (X/Z^2, Y/Z^3) */
   1068 int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
   1069                                                  const EC_POINT *point,
   1070                                                  BIGNUM *x, BIGNUM *y,
   1071                                                  BN_CTX *ctx) {
   1072   felem z1, z2, x_in, y_in, x_out, y_out;
   1073   widefelem tmp;
   1074 
   1075   if (EC_POINT_is_at_infinity(group, point)) {
   1076     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
   1077     return 0;
   1078   }
   1079 
   1080   if (!BN_to_felem(x_in, &point->X) ||
   1081       !BN_to_felem(y_in, &point->Y) ||
   1082       !BN_to_felem(z1, &point->Z)) {
   1083     return 0;
   1084   }
   1085 
   1086   felem_inv(z2, z1);
   1087   felem_square(tmp, z2);
   1088   felem_reduce(z1, tmp);
   1089   felem_mul(tmp, x_in, z1);
   1090   felem_reduce(x_in, tmp);
   1091   felem_contract(x_out, x_in);
   1092   if (x != NULL && !felem_to_BN(x, x_out)) {
   1093     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1094     return 0;
   1095   }
   1096 
   1097   felem_mul(tmp, z1, z2);
   1098   felem_reduce(z1, tmp);
   1099   felem_mul(tmp, y_in, z1);
   1100   felem_reduce(y_in, tmp);
   1101   felem_contract(y_out, y_in);
   1102   if (y != NULL && !felem_to_BN(y, y_out)) {
   1103     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1104     return 0;
   1105   }
   1106 
   1107   return 1;
   1108 }
   1109 
   1110 static void make_points_affine(size_t num, felem points[/*num*/][3],
   1111                                felem tmp_felems[/*num+1*/]) {
   1112   /* Runs in constant time, unless an input is the point at infinity
   1113    * (which normally shouldn't happen). */
   1114   ec_GFp_nistp_points_make_affine_internal(
   1115       num, points, sizeof(felem), tmp_felems, (void (*)(void *))felem_one,
   1116       (int (*)(const void *))felem_is_zero_int,
   1117       (void (*)(void *, const void *))felem_assign,
   1118       (void (*)(void *, const void *))felem_square_reduce,
   1119       (void (*)(void *, const void *, const void *))felem_mul_reduce,
   1120       (void (*)(void *, const void *))felem_inv,
   1121       (void (*)(void *, const void *))felem_contract);
   1122 }
   1123 
   1124 int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
   1125                                const BIGNUM *g_scalar, const EC_POINT *p_,
   1126                                const BIGNUM *p_scalar_, BN_CTX *ctx) {
   1127   /* TODO: This function used to take |points| and |scalars| as arrays of
   1128    * |num| elements. The code below should be simplified to work in terms of
   1129    * |p_| and |p_scalar_|. */
   1130   size_t num = p_ != NULL ? 1 : 0;
   1131   const EC_POINT **points = p_ != NULL ? &p_ : NULL;
   1132   BIGNUM const *const *scalars = p_ != NULL ? &p_scalar_ : NULL;
   1133 
   1134   int ret = 0;
   1135   int j;
   1136   unsigned i;
   1137   int mixed = 0;
   1138   BN_CTX *new_ctx = NULL;
   1139   BIGNUM *x, *y, *z, *tmp_scalar;
   1140   felem_bytearray g_secret;
   1141   felem_bytearray *secrets = NULL;
   1142   felem(*pre_comp)[17][3] = NULL;
   1143   felem *tmp_felems = NULL;
   1144   felem_bytearray tmp;
   1145   unsigned num_bytes;
   1146   size_t num_points = num;
   1147   felem x_in, y_in, z_in, x_out, y_out, z_out;
   1148   const EC_POINT *p = NULL;
   1149   const BIGNUM *p_scalar = NULL;
   1150 
   1151   if (ctx == NULL) {
   1152     ctx = BN_CTX_new();
   1153     new_ctx = ctx;
   1154     if (ctx == NULL) {
   1155       return 0;
   1156     }
   1157   }
   1158 
   1159   BN_CTX_start(ctx);
   1160   if ((x = BN_CTX_get(ctx)) == NULL ||
   1161       (y = BN_CTX_get(ctx)) == NULL ||
   1162       (z = BN_CTX_get(ctx)) == NULL ||
   1163       (tmp_scalar = BN_CTX_get(ctx)) == NULL) {
   1164     goto err;
   1165   }
   1166 
   1167   if (num_points > 0) {
   1168     if (num_points >= 3) {
   1169       /* unless we precompute multiples for just one or two points,
   1170        * converting those into affine form is time well spent  */
   1171       mixed = 1;
   1172     }
   1173     secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
   1174     pre_comp = OPENSSL_malloc(num_points * sizeof(felem[17][3]));
   1175     if (mixed) {
   1176       tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem));
   1177     }
   1178     if (secrets == NULL ||
   1179         pre_comp == NULL ||
   1180         (mixed && tmp_felems == NULL)) {
   1181       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
   1182       goto err;
   1183     }
   1184 
   1185     /* we treat NULL scalars as 0, and NULL points as points at infinity,
   1186      * i.e., they contribute nothing to the linear combination */
   1187     memset(secrets, 0, num_points * sizeof(felem_bytearray));
   1188     memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
   1189     for (i = 0; i < num_points; ++i) {
   1190       if (i == num) {
   1191         /* the generator */
   1192         p = EC_GROUP_get0_generator(group);
   1193         p_scalar = g_scalar;
   1194       } else {
   1195         /* the i^th point */
   1196         p = points[i];
   1197         p_scalar = scalars[i];
   1198       }
   1199 
   1200       if (p_scalar != NULL && p != NULL) {
   1201         /* reduce g_scalar to 0 <= g_scalar < 2^224 */
   1202         if (BN_num_bits(p_scalar) > 224 || BN_is_negative(p_scalar)) {
   1203           /* this is an unusual input, and we don't guarantee
   1204            * constant-timeness */
   1205           if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) {
   1206             OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1207             goto err;
   1208           }
   1209           num_bytes = BN_bn2bin(tmp_scalar, tmp);
   1210         } else {
   1211           num_bytes = BN_bn2bin(p_scalar, tmp);
   1212         }
   1213 
   1214         flip_endian(secrets[i], tmp, num_bytes);
   1215         /* precompute multiples */
   1216         if (!BN_to_felem(x_out, &p->X) ||
   1217             !BN_to_felem(y_out, &p->Y) ||
   1218             !BN_to_felem(z_out, &p->Z)) {
   1219           goto err;
   1220         }
   1221 
   1222         felem_assign(pre_comp[i][1][0], x_out);
   1223         felem_assign(pre_comp[i][1][1], y_out);
   1224         felem_assign(pre_comp[i][1][2], z_out);
   1225 
   1226         for (j = 2; j <= 16; ++j) {
   1227           if (j & 1) {
   1228             point_add(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
   1229                       pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
   1230                       0, pre_comp[i][j - 1][0], pre_comp[i][j - 1][1],
   1231                       pre_comp[i][j - 1][2]);
   1232           } else {
   1233             point_double(pre_comp[i][j][0], pre_comp[i][j][1],
   1234                          pre_comp[i][j][2], pre_comp[i][j / 2][0],
   1235                          pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]);
   1236           }
   1237         }
   1238       }
   1239     }
   1240 
   1241     if (mixed) {
   1242       make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
   1243     }
   1244   }
   1245 
   1246   if (g_scalar != NULL) {
   1247     memset(g_secret, 0, sizeof(g_secret));
   1248     /* reduce g_scalar to 0 <= g_scalar < 2^224 */
   1249     if (BN_num_bits(g_scalar) > 224 || BN_is_negative(g_scalar)) {
   1250       /* this is an unusual input, and we don't guarantee constant-timeness */
   1251       if (!BN_nnmod(tmp_scalar, g_scalar, &group->order, ctx)) {
   1252         OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1253         goto err;
   1254       }
   1255       num_bytes = BN_bn2bin(tmp_scalar, tmp);
   1256     } else {
   1257       num_bytes = BN_bn2bin(g_scalar, tmp);
   1258     }
   1259 
   1260     flip_endian(g_secret, tmp, num_bytes);
   1261   }
   1262   batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets,
   1263             num_points, g_scalar != NULL ? g_secret : NULL, mixed,
   1264             (const felem(*)[17][3])pre_comp);
   1265 
   1266   /* reduce the output to its unique minimal representation */
   1267   felem_contract(x_in, x_out);
   1268   felem_contract(y_in, y_out);
   1269   felem_contract(z_in, z_out);
   1270   if (!felem_to_BN(x, x_in) ||
   1271       !felem_to_BN(y, y_in) ||
   1272       !felem_to_BN(z, z_in)) {
   1273     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1274     goto err;
   1275   }
   1276   ret = ec_point_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
   1277 
   1278 err:
   1279   BN_CTX_end(ctx);
   1280   BN_CTX_free(new_ctx);
   1281   OPENSSL_free(secrets);
   1282   OPENSSL_free(pre_comp);
   1283   OPENSSL_free(tmp_felems);
   1284   return ret;
   1285 }
   1286 
   1287 const EC_METHOD *EC_GFp_nistp224_method(void) {
   1288   static const EC_METHOD ret = {ec_GFp_nistp224_group_init,
   1289                                 ec_GFp_simple_group_finish,
   1290                                 ec_GFp_simple_group_clear_finish,
   1291                                 ec_GFp_simple_group_copy,
   1292                                 ec_GFp_nistp224_group_set_curve,
   1293                                 ec_GFp_nistp224_point_get_affine_coordinates,
   1294                                 ec_GFp_nistp224_points_mul,
   1295                                 0 /* check_pub_key_order */,
   1296                                 ec_GFp_simple_field_mul,
   1297                                 ec_GFp_simple_field_sqr,
   1298                                 0 /* field_encode */,
   1299                                 0 /* field_decode */,
   1300                                 0 /* field_set_to_one */};
   1301 
   1302   return &ret;
   1303 }
   1304 
   1305 #endif  /* 64_BIT && !WINDOWS && !SMALL */
   1306