1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines common loop utility functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopInfo.h" 15 #include "llvm/Analysis/ScalarEvolution.h" 16 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/Module.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/IR/ValueHandle.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Transforms/Utils/LoopUtils.h" 23 24 using namespace llvm; 25 using namespace llvm::PatternMatch; 26 27 #define DEBUG_TYPE "loop-utils" 28 29 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 30 SmallPtrSetImpl<Instruction *> &Set) { 31 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 32 if (!Set.count(dyn_cast<Instruction>(*Use))) 33 return false; 34 return true; 35 } 36 37 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 38 switch (Kind) { 39 default: 40 break; 41 case RK_IntegerAdd: 42 case RK_IntegerMult: 43 case RK_IntegerOr: 44 case RK_IntegerAnd: 45 case RK_IntegerXor: 46 case RK_IntegerMinMax: 47 return true; 48 } 49 return false; 50 } 51 52 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 53 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 54 } 55 56 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 57 switch (Kind) { 58 default: 59 break; 60 case RK_IntegerAdd: 61 case RK_IntegerMult: 62 case RK_FloatAdd: 63 case RK_FloatMult: 64 return true; 65 } 66 return false; 67 } 68 69 Instruction * 70 RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT, 71 SmallPtrSetImpl<Instruction *> &Visited, 72 SmallPtrSetImpl<Instruction *> &CI) { 73 if (!Phi->hasOneUse()) 74 return Phi; 75 76 const APInt *M = nullptr; 77 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 78 79 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 80 // with a new integer type of the corresponding bit width. 81 if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)), 82 m_And(m_APInt(M), m_Instruction(I))))) { 83 int32_t Bits = (*M + 1).exactLogBase2(); 84 if (Bits > 0) { 85 RT = IntegerType::get(Phi->getContext(), Bits); 86 Visited.insert(Phi); 87 CI.insert(J); 88 return J; 89 } 90 } 91 return Phi; 92 } 93 94 bool RecurrenceDescriptor::getSourceExtensionKind( 95 Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned, 96 SmallPtrSetImpl<Instruction *> &Visited, 97 SmallPtrSetImpl<Instruction *> &CI) { 98 99 SmallVector<Instruction *, 8> Worklist; 100 bool FoundOneOperand = false; 101 unsigned DstSize = RT->getPrimitiveSizeInBits(); 102 Worklist.push_back(Exit); 103 104 // Traverse the instructions in the reduction expression, beginning with the 105 // exit value. 106 while (!Worklist.empty()) { 107 Instruction *I = Worklist.pop_back_val(); 108 for (Use &U : I->operands()) { 109 110 // Terminate the traversal if the operand is not an instruction, or we 111 // reach the starting value. 112 Instruction *J = dyn_cast<Instruction>(U.get()); 113 if (!J || J == Start) 114 continue; 115 116 // Otherwise, investigate the operation if it is also in the expression. 117 if (Visited.count(J)) { 118 Worklist.push_back(J); 119 continue; 120 } 121 122 // If the operand is not in Visited, it is not a reduction operation, but 123 // it does feed into one. Make sure it is either a single-use sign- or 124 // zero-extend instruction. 125 CastInst *Cast = dyn_cast<CastInst>(J); 126 bool IsSExtInst = isa<SExtInst>(J); 127 if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst)) 128 return false; 129 130 // Ensure the source type of the extend is no larger than the reduction 131 // type. It is not necessary for the types to be identical. 132 unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 133 if (SrcSize > DstSize) 134 return false; 135 136 // Furthermore, ensure that all such extends are of the same kind. 137 if (FoundOneOperand) { 138 if (IsSigned != IsSExtInst) 139 return false; 140 } else { 141 FoundOneOperand = true; 142 IsSigned = IsSExtInst; 143 } 144 145 // Lastly, if the source type of the extend matches the reduction type, 146 // add the extend to CI so that we can avoid accounting for it in the 147 // cost model. 148 if (SrcSize == DstSize) 149 CI.insert(Cast); 150 } 151 } 152 return true; 153 } 154 155 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 156 Loop *TheLoop, bool HasFunNoNaNAttr, 157 RecurrenceDescriptor &RedDes) { 158 if (Phi->getNumIncomingValues() != 2) 159 return false; 160 161 // Reduction variables are only found in the loop header block. 162 if (Phi->getParent() != TheLoop->getHeader()) 163 return false; 164 165 // Obtain the reduction start value from the value that comes from the loop 166 // preheader. 167 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 168 169 // ExitInstruction is the single value which is used outside the loop. 170 // We only allow for a single reduction value to be used outside the loop. 171 // This includes users of the reduction, variables (which form a cycle 172 // which ends in the phi node). 173 Instruction *ExitInstruction = nullptr; 174 // Indicates that we found a reduction operation in our scan. 175 bool FoundReduxOp = false; 176 177 // We start with the PHI node and scan for all of the users of this 178 // instruction. All users must be instructions that can be used as reduction 179 // variables (such as ADD). We must have a single out-of-block user. The cycle 180 // must include the original PHI. 181 bool FoundStartPHI = false; 182 183 // To recognize min/max patterns formed by a icmp select sequence, we store 184 // the number of instruction we saw from the recognized min/max pattern, 185 // to make sure we only see exactly the two instructions. 186 unsigned NumCmpSelectPatternInst = 0; 187 InstDesc ReduxDesc(false, nullptr); 188 189 // Data used for determining if the recurrence has been type-promoted. 190 Type *RecurrenceType = Phi->getType(); 191 SmallPtrSet<Instruction *, 4> CastInsts; 192 Instruction *Start = Phi; 193 bool IsSigned = false; 194 195 SmallPtrSet<Instruction *, 8> VisitedInsts; 196 SmallVector<Instruction *, 8> Worklist; 197 198 // Return early if the recurrence kind does not match the type of Phi. If the 199 // recurrence kind is arithmetic, we attempt to look through AND operations 200 // resulting from the type promotion performed by InstCombine. Vector 201 // operations are not limited to the legal integer widths, so we may be able 202 // to evaluate the reduction in the narrower width. 203 if (RecurrenceType->isFloatingPointTy()) { 204 if (!isFloatingPointRecurrenceKind(Kind)) 205 return false; 206 } else { 207 if (!isIntegerRecurrenceKind(Kind)) 208 return false; 209 if (isArithmeticRecurrenceKind(Kind)) 210 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 211 } 212 213 Worklist.push_back(Start); 214 VisitedInsts.insert(Start); 215 216 // A value in the reduction can be used: 217 // - By the reduction: 218 // - Reduction operation: 219 // - One use of reduction value (safe). 220 // - Multiple use of reduction value (not safe). 221 // - PHI: 222 // - All uses of the PHI must be the reduction (safe). 223 // - Otherwise, not safe. 224 // - By one instruction outside of the loop (safe). 225 // - By further instructions outside of the loop (not safe). 226 // - By an instruction that is not part of the reduction (not safe). 227 // This is either: 228 // * An instruction type other than PHI or the reduction operation. 229 // * A PHI in the header other than the initial PHI. 230 while (!Worklist.empty()) { 231 Instruction *Cur = Worklist.back(); 232 Worklist.pop_back(); 233 234 // No Users. 235 // If the instruction has no users then this is a broken chain and can't be 236 // a reduction variable. 237 if (Cur->use_empty()) 238 return false; 239 240 bool IsAPhi = isa<PHINode>(Cur); 241 242 // A header PHI use other than the original PHI. 243 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 244 return false; 245 246 // Reductions of instructions such as Div, and Sub is only possible if the 247 // LHS is the reduction variable. 248 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 249 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 250 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 251 return false; 252 253 // Any reduction instruction must be of one of the allowed kinds. We ignore 254 // the starting value (the Phi or an AND instruction if the Phi has been 255 // type-promoted). 256 if (Cur != Start) { 257 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 258 if (!ReduxDesc.isRecurrence()) 259 return false; 260 } 261 262 // A reduction operation must only have one use of the reduction value. 263 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 264 hasMultipleUsesOf(Cur, VisitedInsts)) 265 return false; 266 267 // All inputs to a PHI node must be a reduction value. 268 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 269 return false; 270 271 if (Kind == RK_IntegerMinMax && 272 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 273 ++NumCmpSelectPatternInst; 274 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 275 ++NumCmpSelectPatternInst; 276 277 // Check whether we found a reduction operator. 278 FoundReduxOp |= !IsAPhi && Cur != Start; 279 280 // Process users of current instruction. Push non-PHI nodes after PHI nodes 281 // onto the stack. This way we are going to have seen all inputs to PHI 282 // nodes once we get to them. 283 SmallVector<Instruction *, 8> NonPHIs; 284 SmallVector<Instruction *, 8> PHIs; 285 for (User *U : Cur->users()) { 286 Instruction *UI = cast<Instruction>(U); 287 288 // Check if we found the exit user. 289 BasicBlock *Parent = UI->getParent(); 290 if (!TheLoop->contains(Parent)) { 291 // Exit if you find multiple outside users or if the header phi node is 292 // being used. In this case the user uses the value of the previous 293 // iteration, in which case we would loose "VF-1" iterations of the 294 // reduction operation if we vectorize. 295 if (ExitInstruction != nullptr || Cur == Phi) 296 return false; 297 298 // The instruction used by an outside user must be the last instruction 299 // before we feed back to the reduction phi. Otherwise, we loose VF-1 300 // operations on the value. 301 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 302 return false; 303 304 ExitInstruction = Cur; 305 continue; 306 } 307 308 // Process instructions only once (termination). Each reduction cycle 309 // value must only be used once, except by phi nodes and min/max 310 // reductions which are represented as a cmp followed by a select. 311 InstDesc IgnoredVal(false, nullptr); 312 if (VisitedInsts.insert(UI).second) { 313 if (isa<PHINode>(UI)) 314 PHIs.push_back(UI); 315 else 316 NonPHIs.push_back(UI); 317 } else if (!isa<PHINode>(UI) && 318 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 319 !isa<SelectInst>(UI)) || 320 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) 321 return false; 322 323 // Remember that we completed the cycle. 324 if (UI == Phi) 325 FoundStartPHI = true; 326 } 327 Worklist.append(PHIs.begin(), PHIs.end()); 328 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 329 } 330 331 // This means we have seen one but not the other instruction of the 332 // pattern or more than just a select and cmp. 333 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 334 NumCmpSelectPatternInst != 2) 335 return false; 336 337 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 338 return false; 339 340 // If we think Phi may have been type-promoted, we also need to ensure that 341 // all source operands of the reduction are either SExtInsts or ZEstInsts. If 342 // so, we will be able to evaluate the reduction in the narrower bit width. 343 if (Start != Phi) 344 if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType, 345 IsSigned, VisitedInsts, CastInsts)) 346 return false; 347 348 // We found a reduction var if we have reached the original phi node and we 349 // only have a single instruction with out-of-loop users. 350 351 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 352 // is saved as part of the RecurrenceDescriptor. 353 354 // Save the description of this reduction variable. 355 RecurrenceDescriptor RD( 356 RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), 357 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 358 RedDes = RD; 359 360 return true; 361 } 362 363 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 364 /// pattern corresponding to a min(X, Y) or max(X, Y). 365 RecurrenceDescriptor::InstDesc 366 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 367 368 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 369 "Expect a select instruction"); 370 Instruction *Cmp = nullptr; 371 SelectInst *Select = nullptr; 372 373 // We must handle the select(cmp()) as a single instruction. Advance to the 374 // select. 375 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 376 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 377 return InstDesc(false, I); 378 return InstDesc(Select, Prev.getMinMaxKind()); 379 } 380 381 // Only handle single use cases for now. 382 if (!(Select = dyn_cast<SelectInst>(I))) 383 return InstDesc(false, I); 384 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 385 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 386 return InstDesc(false, I); 387 if (!Cmp->hasOneUse()) 388 return InstDesc(false, I); 389 390 Value *CmpLeft; 391 Value *CmpRight; 392 393 // Look for a min/max pattern. 394 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 395 return InstDesc(Select, MRK_UIntMin); 396 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 397 return InstDesc(Select, MRK_UIntMax); 398 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 399 return InstDesc(Select, MRK_SIntMax); 400 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 401 return InstDesc(Select, MRK_SIntMin); 402 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 403 return InstDesc(Select, MRK_FloatMin); 404 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 405 return InstDesc(Select, MRK_FloatMax); 406 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 407 return InstDesc(Select, MRK_FloatMin); 408 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 409 return InstDesc(Select, MRK_FloatMax); 410 411 return InstDesc(false, I); 412 } 413 414 RecurrenceDescriptor::InstDesc 415 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 416 InstDesc &Prev, bool HasFunNoNaNAttr) { 417 bool FP = I->getType()->isFloatingPointTy(); 418 Instruction *UAI = Prev.getUnsafeAlgebraInst(); 419 if (!UAI && FP && !I->hasUnsafeAlgebra()) 420 UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 421 422 switch (I->getOpcode()) { 423 default: 424 return InstDesc(false, I); 425 case Instruction::PHI: 426 return InstDesc(I, Prev.getMinMaxKind()); 427 case Instruction::Sub: 428 case Instruction::Add: 429 return InstDesc(Kind == RK_IntegerAdd, I); 430 case Instruction::Mul: 431 return InstDesc(Kind == RK_IntegerMult, I); 432 case Instruction::And: 433 return InstDesc(Kind == RK_IntegerAnd, I); 434 case Instruction::Or: 435 return InstDesc(Kind == RK_IntegerOr, I); 436 case Instruction::Xor: 437 return InstDesc(Kind == RK_IntegerXor, I); 438 case Instruction::FMul: 439 return InstDesc(Kind == RK_FloatMult, I, UAI); 440 case Instruction::FSub: 441 case Instruction::FAdd: 442 return InstDesc(Kind == RK_FloatAdd, I, UAI); 443 case Instruction::FCmp: 444 case Instruction::ICmp: 445 case Instruction::Select: 446 if (Kind != RK_IntegerMinMax && 447 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 448 return InstDesc(false, I); 449 return isMinMaxSelectCmpPattern(I, Prev); 450 } 451 } 452 453 bool RecurrenceDescriptor::hasMultipleUsesOf( 454 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { 455 unsigned NumUses = 0; 456 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 457 ++Use) { 458 if (Insts.count(dyn_cast<Instruction>(*Use))) 459 ++NumUses; 460 if (NumUses > 1) 461 return true; 462 } 463 464 return false; 465 } 466 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 467 RecurrenceDescriptor &RedDes) { 468 469 bool HasFunNoNaNAttr = false; 470 BasicBlock *Header = TheLoop->getHeader(); 471 Function &F = *Header->getParent(); 472 if (F.hasFnAttribute("no-nans-fp-math")) 473 HasFunNoNaNAttr = 474 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 475 476 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 477 DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 478 return true; 479 } 480 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 481 DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 482 return true; 483 } 484 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { 485 DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 486 return true; 487 } 488 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { 489 DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 490 return true; 491 } 492 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { 493 DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 494 return true; 495 } 496 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, 497 RedDes)) { 498 DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 499 return true; 500 } 501 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 502 DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 503 return true; 504 } 505 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 506 DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 507 return true; 508 } 509 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { 510 DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); 511 return true; 512 } 513 // Not a reduction of known type. 514 return false; 515 } 516 517 /// This function returns the identity element (or neutral element) for 518 /// the operation K. 519 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 520 Type *Tp) { 521 switch (K) { 522 case RK_IntegerXor: 523 case RK_IntegerAdd: 524 case RK_IntegerOr: 525 // Adding, Xoring, Oring zero to a number does not change it. 526 return ConstantInt::get(Tp, 0); 527 case RK_IntegerMult: 528 // Multiplying a number by 1 does not change it. 529 return ConstantInt::get(Tp, 1); 530 case RK_IntegerAnd: 531 // AND-ing a number with an all-1 value does not change it. 532 return ConstantInt::get(Tp, -1, true); 533 case RK_FloatMult: 534 // Multiplying a number by 1 does not change it. 535 return ConstantFP::get(Tp, 1.0L); 536 case RK_FloatAdd: 537 // Adding zero to a number does not change it. 538 return ConstantFP::get(Tp, 0.0L); 539 default: 540 llvm_unreachable("Unknown recurrence kind"); 541 } 542 } 543 544 /// This function translates the recurrence kind to an LLVM binary operator. 545 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 546 switch (Kind) { 547 case RK_IntegerAdd: 548 return Instruction::Add; 549 case RK_IntegerMult: 550 return Instruction::Mul; 551 case RK_IntegerOr: 552 return Instruction::Or; 553 case RK_IntegerAnd: 554 return Instruction::And; 555 case RK_IntegerXor: 556 return Instruction::Xor; 557 case RK_FloatMult: 558 return Instruction::FMul; 559 case RK_FloatAdd: 560 return Instruction::FAdd; 561 case RK_IntegerMinMax: 562 return Instruction::ICmp; 563 case RK_FloatMinMax: 564 return Instruction::FCmp; 565 default: 566 llvm_unreachable("Unknown recurrence operation"); 567 } 568 } 569 570 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, 571 MinMaxRecurrenceKind RK, 572 Value *Left, Value *Right) { 573 CmpInst::Predicate P = CmpInst::ICMP_NE; 574 switch (RK) { 575 default: 576 llvm_unreachable("Unknown min/max recurrence kind"); 577 case MRK_UIntMin: 578 P = CmpInst::ICMP_ULT; 579 break; 580 case MRK_UIntMax: 581 P = CmpInst::ICMP_UGT; 582 break; 583 case MRK_SIntMin: 584 P = CmpInst::ICMP_SLT; 585 break; 586 case MRK_SIntMax: 587 P = CmpInst::ICMP_SGT; 588 break; 589 case MRK_FloatMin: 590 P = CmpInst::FCMP_OLT; 591 break; 592 case MRK_FloatMax: 593 P = CmpInst::FCMP_OGT; 594 break; 595 } 596 597 // We only match FP sequences with unsafe algebra, so we can unconditionally 598 // set it on any generated instructions. 599 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 600 FastMathFlags FMF; 601 FMF.setUnsafeAlgebra(); 602 Builder.SetFastMathFlags(FMF); 603 604 Value *Cmp; 605 if (RK == MRK_FloatMin || RK == MRK_FloatMax) 606 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 607 else 608 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 609 610 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 611 return Select; 612 } 613 614 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 615 ConstantInt *Step) 616 : StartValue(Start), IK(K), StepValue(Step) { 617 assert(IK != IK_NoInduction && "Not an induction"); 618 assert(StartValue && "StartValue is null"); 619 assert(StepValue && !StepValue->isZero() && "StepValue is zero"); 620 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 621 "StartValue is not a pointer for pointer induction"); 622 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 623 "StartValue is not an integer for integer induction"); 624 assert(StepValue->getType()->isIntegerTy() && 625 "StepValue is not an integer"); 626 } 627 628 int InductionDescriptor::getConsecutiveDirection() const { 629 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) 630 return StepValue->getSExtValue(); 631 return 0; 632 } 633 634 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index) const { 635 switch (IK) { 636 case IK_IntInduction: 637 assert(Index->getType() == StartValue->getType() && 638 "Index type does not match StartValue type"); 639 if (StepValue->isMinusOne()) 640 return B.CreateSub(StartValue, Index); 641 if (!StepValue->isOne()) 642 Index = B.CreateMul(Index, StepValue); 643 return B.CreateAdd(StartValue, Index); 644 645 case IK_PtrInduction: 646 assert(Index->getType() == StepValue->getType() && 647 "Index type does not match StepValue type"); 648 if (StepValue->isMinusOne()) 649 Index = B.CreateNeg(Index); 650 else if (!StepValue->isOne()) 651 Index = B.CreateMul(Index, StepValue); 652 return B.CreateGEP(nullptr, StartValue, Index); 653 654 case IK_NoInduction: 655 return nullptr; 656 } 657 llvm_unreachable("invalid enum"); 658 } 659 660 bool InductionDescriptor::isInductionPHI(PHINode *Phi, ScalarEvolution *SE, 661 InductionDescriptor &D) { 662 Type *PhiTy = Phi->getType(); 663 // We only handle integer and pointer inductions variables. 664 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 665 return false; 666 667 // Check that the PHI is consecutive. 668 const SCEV *PhiScev = SE->getSCEV(Phi); 669 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 670 if (!AR) { 671 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 672 return false; 673 } 674 675 assert(AR->getLoop()->getHeader() == Phi->getParent() && 676 "PHI is an AddRec for a different loop?!"); 677 Value *StartValue = 678 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 679 const SCEV *Step = AR->getStepRecurrence(*SE); 680 // Calculate the pointer stride and check if it is consecutive. 681 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 682 if (!C) 683 return false; 684 685 ConstantInt *CV = C->getValue(); 686 if (PhiTy->isIntegerTy()) { 687 D = InductionDescriptor(StartValue, IK_IntInduction, CV); 688 return true; 689 } 690 691 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 692 Type *PointerElementType = PhiTy->getPointerElementType(); 693 // The pointer stride cannot be determined if the pointer element type is not 694 // sized. 695 if (!PointerElementType->isSized()) 696 return false; 697 698 const DataLayout &DL = Phi->getModule()->getDataLayout(); 699 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 700 if (!Size) 701 return false; 702 703 int64_t CVSize = CV->getSExtValue(); 704 if (CVSize % Size) 705 return false; 706 auto *StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size); 707 708 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); 709 return true; 710 } 711 712 /// \brief Returns the instructions that use values defined in the loop. 713 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 714 SmallVector<Instruction *, 8> UsedOutside; 715 716 for (auto *Block : L->getBlocks()) 717 // FIXME: I believe that this could use copy_if if the Inst reference could 718 // be adapted into a pointer. 719 for (auto &Inst : *Block) { 720 auto Users = Inst.users(); 721 if (std::any_of(Users.begin(), Users.end(), [&](User *U) { 722 auto *Use = cast<Instruction>(U); 723 return !L->contains(Use->getParent()); 724 })) 725 UsedOutside.push_back(&Inst); 726 } 727 728 return UsedOutside; 729 } 730