Home | History | Annotate | Download | only in text
      1 /*
      2  * Copyright (c) 1996, 2006, Oracle and/or its affiliates. All rights reserved.
      3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      4  *
      5  * This code is free software; you can redistribute it and/or modify it
      6  * under the terms of the GNU General Public License version 2 only, as
      7  * published by the Free Software Foundation.  Oracle designates this
      8  * particular file as subject to the "Classpath" exception as provided
      9  * by Oracle in the LICENSE file that accompanied this code.
     10  *
     11  * This code is distributed in the hope that it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     14  * version 2 for more details (a copy is included in the LICENSE file that
     15  * accompanied this code).
     16  *
     17  * You should have received a copy of the GNU General Public License version
     18  * 2 along with this work; if not, write to the Free Software Foundation,
     19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     20  *
     21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     22  * or visit www.oracle.com if you need additional information or have any
     23  * questions.
     24  */
     25 
     26 /*
     27  * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
     28  * (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved
     29  *
     30  *   The original version of this source code and documentation is copyrighted
     31  * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
     32  * materials are provided under terms of a License Agreement between Taligent
     33  * and Sun. This technology is protected by multiple US and International
     34  * patents. This notice and attribution to Taligent may not be removed.
     35  *   Taligent is a registered trademark of Taligent, Inc.
     36  *
     37  */
     38 
     39 package java.text;
     40 
     41 import java.math.BigDecimal;
     42 import java.math.BigInteger;
     43 import java.math.RoundingMode;
     44 
     45 /**
     46  * Digit List. Private to DecimalFormat.
     47  * Handles the transcoding
     48  * between numeric values and strings of characters.  Only handles
     49  * non-negative numbers.  The division of labor between DigitList and
     50  * DecimalFormat is that DigitList handles the radix 10 representation
     51  * issues; DecimalFormat handles the locale-specific issues such as
     52  * positive/negative, grouping, decimal point, currency, and so on.
     53  *
     54  * A DigitList is really a representation of a floating point value.
     55  * It may be an integer value; we assume that a double has sufficient
     56  * precision to represent all digits of a long.
     57  *
     58  * The DigitList representation consists of a string of characters,
     59  * which are the digits radix 10, from '0' to '9'.  It also has a radix
     60  * 10 exponent associated with it.  The value represented by a DigitList
     61  * object can be computed by mulitplying the fraction f, where 0 <= f < 1,
     62  * derived by placing all the digits of the list to the right of the
     63  * decimal point, by 10^exponent.
     64  *
     65  * @see  Locale
     66  * @see  Format
     67  * @see  NumberFormat
     68  * @see  DecimalFormat
     69  * @see  ChoiceFormat
     70  * @see  MessageFormat
     71  * @author       Mark Davis, Alan Liu
     72  */
     73 final class DigitList implements Cloneable {
     74     /**
     75      * The maximum number of significant digits in an IEEE 754 double, that
     76      * is, in a Java double.  This must not be increased, or garbage digits
     77      * will be generated, and should not be decreased, or accuracy will be lost.
     78      */
     79     public static final int MAX_COUNT = 19; // == Long.toString(Long.MAX_VALUE).length()
     80 
     81     /**
     82      * These data members are intentionally public and can be set directly.
     83      *
     84      * The value represented is given by placing the decimal point before
     85      * digits[decimalAt].  If decimalAt is < 0, then leading zeros between
     86      * the decimal point and the first nonzero digit are implied.  If decimalAt
     87      * is > count, then trailing zeros between the digits[count-1] and the
     88      * decimal point are implied.
     89      *
     90      * Equivalently, the represented value is given by f * 10^decimalAt.  Here
     91      * f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
     92      * the right of the decimal.
     93      *
     94      * DigitList is normalized, so if it is non-zero, figits[0] is non-zero.  We
     95      * don't allow denormalized numbers because our exponent is effectively of
     96      * unlimited magnitude.  The count value contains the number of significant
     97      * digits present in digits[].
     98      *
     99      * Zero is represented by any DigitList with count == 0 or with each digits[i]
    100      * for all i <= count == '0'.
    101      */
    102     public int decimalAt = 0;
    103     public int count = 0;
    104     public char[] digits = new char[MAX_COUNT];
    105 
    106     private char[] data;
    107     private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
    108     private boolean isNegative = false;
    109 
    110     /**
    111      * Return true if the represented number is zero.
    112      */
    113     boolean isZero() {
    114         for (int i=0; i < count; ++i) {
    115             if (digits[i] != '0') {
    116                 return false;
    117             }
    118         }
    119         return true;
    120     }
    121 
    122     /**
    123      * Set the rounding mode
    124      */
    125     void setRoundingMode(RoundingMode r) {
    126         roundingMode = r;
    127     }
    128 
    129     /**
    130      * Clears out the digits.
    131      * Use before appending them.
    132      * Typically, you set a series of digits with append, then at the point
    133      * you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
    134      * then go on appending digits.
    135      */
    136     public void clear () {
    137         decimalAt = 0;
    138         count = 0;
    139     }
    140 
    141     /**
    142      * Appends a digit to the list, extending the list when necessary.
    143      */
    144     public void append(char digit) {
    145         if (count == digits.length) {
    146             char[] data = new char[count + 100];
    147             System.arraycopy(digits, 0, data, 0, count);
    148             digits = data;
    149         }
    150         digits[count++] = digit;
    151     }
    152 
    153     /**
    154      * Utility routine to get the value of the digit list
    155      * If (count == 0) this throws a NumberFormatException, which
    156      * mimics Long.parseLong().
    157      */
    158     public final double getDouble() {
    159         if (count == 0) {
    160             return 0.0;
    161         }
    162 
    163         StringBuffer temp = getStringBuffer();
    164         temp.append('.');
    165         temp.append(digits, 0, count);
    166         temp.append('E');
    167         temp.append(decimalAt);
    168         return Double.parseDouble(temp.toString());
    169     }
    170 
    171     /**
    172      * Utility routine to get the value of the digit list.
    173      * If (count == 0) this returns 0, unlike Long.parseLong().
    174      */
    175     public final long getLong() {
    176         // for now, simple implementation; later, do proper IEEE native stuff
    177 
    178         if (count == 0) {
    179             return 0;
    180         }
    181 
    182         // We have to check for this, because this is the one NEGATIVE value
    183         // we represent.  If we tried to just pass the digits off to parseLong,
    184         // we'd get a parse failure.
    185         if (isLongMIN_VALUE()) {
    186             return Long.MIN_VALUE;
    187         }
    188 
    189         StringBuffer temp = getStringBuffer();
    190         temp.append(digits, 0, count);
    191         for (int i = count; i < decimalAt; ++i) {
    192             temp.append('0');
    193         }
    194         return Long.parseLong(temp.toString());
    195     }
    196 
    197     public final BigDecimal getBigDecimal() {
    198         if (count == 0) {
    199             if (decimalAt == 0) {
    200                 return BigDecimal.ZERO;
    201             } else {
    202                 return new BigDecimal("0E" + decimalAt);
    203             }
    204         }
    205 
    206        if (decimalAt == count) {
    207            return new BigDecimal(digits, 0, count);
    208        } else {
    209            return new BigDecimal(digits, 0, count).scaleByPowerOfTen(decimalAt - count);
    210        }
    211     }
    212 
    213     /**
    214      * Return true if the number represented by this object can fit into
    215      * a long.
    216      * @param isPositive true if this number should be regarded as positive
    217      * @param ignoreNegativeZero true if -0 should be regarded as identical to
    218      * +0; otherwise they are considered distinct
    219      * @return true if this number fits into a Java long
    220      */
    221     boolean fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero) {
    222         // Figure out if the result will fit in a long.  We have to
    223         // first look for nonzero digits after the decimal point;
    224         // then check the size.  If the digit count is 18 or less, then
    225         // the value can definitely be represented as a long.  If it is 19
    226         // then it may be too large.
    227 
    228         // Trim trailing zeros.  This does not change the represented value.
    229         while (count > 0 && digits[count - 1] == '0') {
    230             --count;
    231         }
    232 
    233         if (count == 0) {
    234             // Positive zero fits into a long, but negative zero can only
    235             // be represented as a double. - bug 4162852
    236             return isPositive || ignoreNegativeZero;
    237         }
    238 
    239         if (decimalAt < count || decimalAt > MAX_COUNT) {
    240             return false;
    241         }
    242 
    243         if (decimalAt < MAX_COUNT) return true;
    244 
    245         // At this point we have decimalAt == count, and count == MAX_COUNT.
    246         // The number will overflow if it is larger than 9223372036854775807
    247         // or smaller than -9223372036854775808.
    248         for (int i=0; i<count; ++i) {
    249             char dig = digits[i], max = LONG_MIN_REP[i];
    250             if (dig > max) return false;
    251             if (dig < max) return true;
    252         }
    253 
    254         // At this point the first count digits match.  If decimalAt is less
    255         // than count, then the remaining digits are zero, and we return true.
    256         if (count < decimalAt) return true;
    257 
    258         // Now we have a representation of Long.MIN_VALUE, without the leading
    259         // negative sign.  If this represents a positive value, then it does
    260         // not fit; otherwise it fits.
    261         return !isPositive;
    262     }
    263 
    264     /**
    265      * Set the digit list to a representation of the given double value.
    266      * This method supports fixed-point notation.
    267      * @param isNegative Boolean value indicating whether the number is negative.
    268      * @param source Value to be converted; must not be Inf, -Inf, Nan,
    269      * or a value <= 0.
    270      * @param maximumFractionDigits The most fractional digits which should
    271      * be converted.
    272      */
    273     public final void set(boolean isNegative, double source, int maximumFractionDigits) {
    274         set(isNegative, source, maximumFractionDigits, true);
    275     }
    276 
    277     /**
    278      * Set the digit list to a representation of the given double value.
    279      * This method supports both fixed-point and exponential notation.
    280      * @param isNegative Boolean value indicating whether the number is negative.
    281      * @param source Value to be converted; must not be Inf, -Inf, Nan,
    282      * or a value <= 0.
    283      * @param maximumDigits The most fractional or total digits which should
    284      * be converted.
    285      * @param fixedPoint If true, then maximumDigits is the maximum
    286      * fractional digits to be converted.  If false, total digits.
    287      */
    288     final void set(boolean isNegative, double source, int maximumDigits, boolean fixedPoint) {
    289         set(isNegative, Double.toString(source), maximumDigits, fixedPoint);
    290     }
    291 
    292     /**
    293      * Generate a representation of the form DDDDD, DDDDD.DDDDD, or
    294      * DDDDDE+/-DDDDD.
    295      */
    296     final void set(boolean isNegative, String s, int maximumDigits, boolean fixedPoint) {
    297         this.isNegative = isNegative;
    298         int len = s.length();
    299         char[] source = getDataChars(len);
    300         s.getChars(0, len, source, 0);
    301 
    302         decimalAt = -1;
    303         count = 0;
    304         int exponent = 0;
    305         // Number of zeros between decimal point and first non-zero digit after
    306         // decimal point, for numbers < 1.
    307         int leadingZerosAfterDecimal = 0;
    308         boolean nonZeroDigitSeen = false;
    309 
    310         for (int i = 0; i < len; ) {
    311             char c = source[i++];
    312             if (c == '.') {
    313                 decimalAt = count;
    314             } else if (c == 'e' || c == 'E') {
    315                 exponent = parseInt(source, i, len);
    316                 break;
    317             } else {
    318                 if (!nonZeroDigitSeen) {
    319                     nonZeroDigitSeen = (c != '0');
    320                     if (!nonZeroDigitSeen && decimalAt != -1)
    321                         ++leadingZerosAfterDecimal;
    322                 }
    323                 if (nonZeroDigitSeen) {
    324                     digits[count++] = c;
    325                 }
    326             }
    327         }
    328         if (decimalAt == -1) {
    329             decimalAt = count;
    330         }
    331         if (nonZeroDigitSeen) {
    332             decimalAt += exponent - leadingZerosAfterDecimal;
    333         }
    334 
    335         if (fixedPoint) {
    336             // The negative of the exponent represents the number of leading
    337             // zeros between the decimal and the first non-zero digit, for
    338             // a value < 0.1 (e.g., for 0.00123, -decimalAt == 2).  If this
    339             // is more than the maximum fraction digits, then we have an underflow
    340             // for the printed representation.
    341             if (-decimalAt > maximumDigits) {
    342                 // Handle an underflow to zero when we round something like
    343                 // 0.0009 to 2 fractional digits.
    344                 count = 0;
    345                 return;
    346             } else if (-decimalAt == maximumDigits) {
    347                 // If we round 0.0009 to 3 fractional digits, then we have to
    348                 // create a new one digit in the least significant location.
    349                 if (shouldRoundUp(0)) {
    350                     count = 1;
    351                     ++decimalAt;
    352                     digits[0] = '1';
    353                 } else {
    354                     count = 0;
    355                 }
    356                 return;
    357             }
    358             // else fall through
    359         }
    360 
    361         // Eliminate trailing zeros.
    362         while (count > 1 && digits[count - 1] == '0') {
    363             --count;
    364         }
    365 
    366         // Eliminate digits beyond maximum digits to be displayed.
    367         // Round up if appropriate.
    368         round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits);
    369     }
    370 
    371     /**
    372      * Round the representation to the given number of digits.
    373      * @param maximumDigits The maximum number of digits to be shown.
    374      * Upon return, count will be less than or equal to maximumDigits.
    375      */
    376     private final void round(int maximumDigits) {
    377         // Eliminate digits beyond maximum digits to be displayed.
    378         // Round up if appropriate.
    379         if (maximumDigits >= 0 && maximumDigits < count) {
    380             if (shouldRoundUp(maximumDigits)) {
    381                 // Rounding up involved incrementing digits from LSD to MSD.
    382                 // In most cases this is simple, but in a worst case situation
    383                 // (9999..99) we have to adjust the decimalAt value.
    384                 for (;;) {
    385                     --maximumDigits;
    386                     if (maximumDigits < 0) {
    387                         // We have all 9's, so we increment to a single digit
    388                         // of one and adjust the exponent.
    389                         digits[0] = '1';
    390                         ++decimalAt;
    391                         maximumDigits = 0; // Adjust the count
    392                         break;
    393                     }
    394 
    395                     ++digits[maximumDigits];
    396                     if (digits[maximumDigits] <= '9') break;
    397                     // digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
    398                 }
    399                 ++maximumDigits; // Increment for use as count
    400             }
    401             count = maximumDigits;
    402 
    403             // Eliminate trailing zeros.
    404             while (count > 1 && digits[count-1] == '0') {
    405                 --count;
    406             }
    407         }
    408     }
    409 
    410 
    411     /**
    412      * Return true if truncating the representation to the given number
    413      * of digits will result in an increment to the last digit.  This
    414      * method implements the rounding modes defined in the
    415      * java.math.RoundingMode class.
    416      * [bnf]
    417      * @param maximumDigits the number of digits to keep, from 0 to
    418      * <code>count-1</code>.  If 0, then all digits are rounded away, and
    419      * this method returns true if a one should be generated (e.g., formatting
    420      * 0.09 with "#.#").
    421      * @exception ArithmeticException if rounding is needed with rounding
    422      *            mode being set to RoundingMode.UNNECESSARY
    423      * @return true if digit <code>maximumDigits-1</code> should be
    424      * incremented
    425      */
    426     private boolean shouldRoundUp(int maximumDigits) {
    427         if (maximumDigits < count) {
    428             switch(roundingMode) {
    429             case UP:
    430                 for (int i=maximumDigits; i<count; ++i) {
    431                     if (digits[i] != '0') {
    432                         return true;
    433                     }
    434                 }
    435                 break;
    436             case DOWN:
    437                 break;
    438             case CEILING:
    439                 for (int i=maximumDigits; i<count; ++i) {
    440                     if (digits[i] != '0') {
    441                         return !isNegative;
    442                     }
    443                 }
    444                 break;
    445             case FLOOR:
    446                 for (int i=maximumDigits; i<count; ++i) {
    447                     if (digits[i] != '0') {
    448                         return isNegative;
    449                     }
    450                 }
    451                 break;
    452             case HALF_UP:
    453                 if (digits[maximumDigits] >= '5') {
    454                     return true;
    455                 }
    456                 break;
    457             case HALF_DOWN:
    458                 if (digits[maximumDigits] > '5') {
    459                     return true;
    460                 } else if (digits[maximumDigits] == '5' ) {
    461                     for (int i=maximumDigits+1; i<count; ++i) {
    462                         if (digits[i] != '0') {
    463                             return true;
    464                         }
    465                     }
    466                 }
    467                 break;
    468             case HALF_EVEN:
    469                 // Implement IEEE half-even rounding
    470                 if (digits[maximumDigits] > '5') {
    471                     return true;
    472                 } else if (digits[maximumDigits] == '5' ) {
    473                     for (int i=maximumDigits+1; i<count; ++i) {
    474                         if (digits[i] != '0') {
    475                             return true;
    476                         }
    477                     }
    478                     return maximumDigits > 0 && (digits[maximumDigits-1] % 2 != 0);
    479                 }
    480                 break;
    481             case UNNECESSARY:
    482                 for (int i=maximumDigits; i<count; ++i) {
    483                     if (digits[i] != '0') {
    484                         throw new ArithmeticException(
    485                             "Rounding needed with the rounding mode being set to RoundingMode.UNNECESSARY");
    486                     }
    487                 }
    488                 break;
    489             default:
    490                 assert false;
    491             }
    492         }
    493         return false;
    494     }
    495 
    496     /**
    497      * Utility routine to set the value of the digit list from a long
    498      */
    499     public final void set(boolean isNegative, long source) {
    500         set(isNegative, source, 0);
    501     }
    502 
    503     /**
    504      * Set the digit list to a representation of the given long value.
    505      * @param isNegative Boolean value indicating whether the number is negative.
    506      * @param source Value to be converted; must be >= 0 or ==
    507      * Long.MIN_VALUE.
    508      * @param maximumDigits The most digits which should be converted.
    509      * If maximumDigits is lower than the number of significant digits
    510      * in source, the representation will be rounded.  Ignored if <= 0.
    511      */
    512     public final void set(boolean isNegative, long source, int maximumDigits) {
    513         this.isNegative = isNegative;
    514 
    515         // This method does not expect a negative number. However,
    516         // "source" can be a Long.MIN_VALUE (-9223372036854775808),
    517         // if the number being formatted is a Long.MIN_VALUE.  In that
    518         // case, it will be formatted as -Long.MIN_VALUE, a number
    519         // which is outside the legal range of a long, but which can
    520         // be represented by DigitList.
    521         if (source <= 0) {
    522             if (source == Long.MIN_VALUE) {
    523                 decimalAt = count = MAX_COUNT;
    524                 System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
    525             } else {
    526                 decimalAt = count = 0; // Values <= 0 format as zero
    527             }
    528         } else {
    529             // Rewritten to improve performance.  I used to call
    530             // Long.toString(), which was about 4x slower than this code.
    531             int left = MAX_COUNT;
    532             int right;
    533             while (source > 0) {
    534                 digits[--left] = (char)('0' + (source % 10));
    535                 source /= 10;
    536             }
    537             decimalAt = MAX_COUNT - left;
    538             // Don't copy trailing zeros.  We are guaranteed that there is at
    539             // least one non-zero digit, so we don't have to check lower bounds.
    540             for (right = MAX_COUNT - 1; digits[right] == '0'; --right)
    541                 ;
    542             count = right - left + 1;
    543             System.arraycopy(digits, left, digits, 0, count);
    544         }
    545         if (maximumDigits > 0) round(maximumDigits);
    546     }
    547 
    548     /**
    549      * Set the digit list to a representation of the given BigDecimal value.
    550      * This method supports both fixed-point and exponential notation.
    551      * @param isNegative Boolean value indicating whether the number is negative.
    552      * @param source Value to be converted; must not be a value <= 0.
    553      * @param maximumDigits The most fractional or total digits which should
    554      * be converted.
    555      * @param fixedPoint If true, then maximumDigits is the maximum
    556      * fractional digits to be converted.  If false, total digits.
    557      */
    558     final void set(boolean isNegative, BigDecimal source, int maximumDigits, boolean fixedPoint) {
    559         String s = source.toString();
    560         extendDigits(s.length());
    561 
    562         set(isNegative, s, maximumDigits, fixedPoint);
    563     }
    564 
    565     /**
    566      * Set the digit list to a representation of the given BigInteger value.
    567      * @param isNegative Boolean value indicating whether the number is negative.
    568      * @param source Value to be converted; must be >= 0.
    569      * @param maximumDigits The most digits which should be converted.
    570      * If maximumDigits is lower than the number of significant digits
    571      * in source, the representation will be rounded.  Ignored if <= 0.
    572      */
    573     final void set(boolean isNegative, BigInteger source, int maximumDigits) {
    574         this.isNegative = isNegative;
    575         String s = source.toString();
    576         int len = s.length();
    577         extendDigits(len);
    578         s.getChars(0, len, digits, 0);
    579 
    580         decimalAt = len;
    581         int right;
    582         for (right = len - 1; right >= 0 && digits[right] == '0'; --right)
    583             ;
    584         count = right + 1;
    585 
    586         if (maximumDigits > 0) {
    587             round(maximumDigits);
    588         }
    589     }
    590 
    591     /**
    592      * equality test between two digit lists.
    593      */
    594     public boolean equals(Object obj) {
    595         if (this == obj)                      // quick check
    596             return true;
    597         if (!(obj instanceof DigitList))         // (1) same object?
    598             return false;
    599         DigitList other = (DigitList) obj;
    600         if (count != other.count ||
    601         decimalAt != other.decimalAt)
    602             return false;
    603         for (int i = 0; i < count; i++)
    604             if (digits[i] != other.digits[i])
    605                 return false;
    606         return true;
    607     }
    608 
    609     /**
    610      * Generates the hash code for the digit list.
    611      */
    612     public int hashCode() {
    613         int hashcode = decimalAt;
    614 
    615         for (int i = 0; i < count; i++) {
    616             hashcode = hashcode * 37 + digits[i];
    617         }
    618 
    619         return hashcode;
    620     }
    621 
    622     /**
    623      * Creates a copy of this object.
    624      * @return a clone of this instance.
    625      */
    626     public Object clone() {
    627         try {
    628             DigitList other = (DigitList) super.clone();
    629             char[] newDigits = new char[digits.length];
    630             System.arraycopy(digits, 0, newDigits, 0, digits.length);
    631             other.digits = newDigits;
    632             other.tempBuffer = null;
    633             return other;
    634         } catch (CloneNotSupportedException e) {
    635             throw new InternalError();
    636         }
    637     }
    638 
    639     /**
    640      * Returns true if this DigitList represents Long.MIN_VALUE;
    641      * false, otherwise.  This is required so that getLong() works.
    642      */
    643     private boolean isLongMIN_VALUE() {
    644         if (decimalAt != count || count != MAX_COUNT) {
    645             return false;
    646         }
    647 
    648         for (int i = 0; i < count; ++i) {
    649             if (digits[i] != LONG_MIN_REP[i]) return false;
    650         }
    651 
    652         return true;
    653     }
    654 
    655     private static final int parseInt(char[] str, int offset, int strLen) {
    656         char c;
    657         boolean positive = true;
    658         if ((c = str[offset]) == '-') {
    659             positive = false;
    660             offset++;
    661         } else if (c == '+') {
    662             offset++;
    663         }
    664 
    665         int value = 0;
    666         while (offset < strLen) {
    667             c = str[offset++];
    668             if (c >= '0' && c <= '9') {
    669                 value = value * 10 + (c - '0');
    670             } else {
    671                 break;
    672             }
    673         }
    674         return positive ? value : -value;
    675     }
    676 
    677     // The digit part of -9223372036854775808L
    678     private static final char[] LONG_MIN_REP = "9223372036854775808".toCharArray();
    679 
    680     public String toString() {
    681         if (isZero()) {
    682             return "0";
    683         }
    684         StringBuffer buf = getStringBuffer();
    685         buf.append("0.");
    686         buf.append(digits, 0, count);
    687         buf.append("x10^");
    688         buf.append(decimalAt);
    689         return buf.toString();
    690     }
    691 
    692     private StringBuffer tempBuffer;
    693 
    694     private StringBuffer getStringBuffer() {
    695         if (tempBuffer == null) {
    696             tempBuffer = new StringBuffer(MAX_COUNT);
    697         } else {
    698             tempBuffer.setLength(0);
    699         }
    700         return tempBuffer;
    701     }
    702 
    703     private void extendDigits(int len) {
    704         if (len > digits.length) {
    705             digits = new char[len];
    706         }
    707     }
    708 
    709     private final char[] getDataChars(int length) {
    710         if (data == null || data.length < length) {
    711             data = new char[length];
    712         }
    713         return data;
    714     }
    715 }
    716