Home | History | Annotate | Download | only in products
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_GENERAL_BLOCK_PANEL_H
     11 #define EIGEN_GENERAL_BLOCK_PANEL_H
     12 
     13 namespace Eigen {
     14 
     15 namespace internal {
     16 
     17 template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs=false, bool _ConjRhs=false>
     18 class gebp_traits;
     19 
     20 
     21 /** \internal \returns b if a<=0, and returns a otherwise. */
     22 inline std::ptrdiff_t manage_caching_sizes_helper(std::ptrdiff_t a, std::ptrdiff_t b)
     23 {
     24   return a<=0 ? b : a;
     25 }
     26 
     27 /** \internal */
     28 inline void manage_caching_sizes(Action action, std::ptrdiff_t* l1=0, std::ptrdiff_t* l2=0)
     29 {
     30   static std::ptrdiff_t m_l1CacheSize = 0;
     31   static std::ptrdiff_t m_l2CacheSize = 0;
     32   if(m_l2CacheSize==0)
     33   {
     34     m_l1CacheSize = manage_caching_sizes_helper(queryL1CacheSize(),8 * 1024);
     35     m_l2CacheSize = manage_caching_sizes_helper(queryTopLevelCacheSize(),1*1024*1024);
     36   }
     37 
     38   if(action==SetAction)
     39   {
     40     // set the cpu cache size and cache all block sizes from a global cache size in byte
     41     eigen_internal_assert(l1!=0 && l2!=0);
     42     m_l1CacheSize = *l1;
     43     m_l2CacheSize = *l2;
     44   }
     45   else if(action==GetAction)
     46   {
     47     eigen_internal_assert(l1!=0 && l2!=0);
     48     *l1 = m_l1CacheSize;
     49     *l2 = m_l2CacheSize;
     50   }
     51   else
     52   {
     53     eigen_internal_assert(false);
     54   }
     55 }
     56 
     57 /** \brief Computes the blocking parameters for a m x k times k x n matrix product
     58   *
     59   * \param[in,out] k Input: the third dimension of the product. Output: the blocking size along the same dimension.
     60   * \param[in,out] m Input: the number of rows of the left hand side. Output: the blocking size along the same dimension.
     61   * \param[in,out] n Input: the number of columns of the right hand side. Output: the blocking size along the same dimension.
     62   *
     63   * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar,
     64   * this function computes the blocking size parameters along the respective dimensions
     65   * for matrix products and related algorithms. The blocking sizes depends on various
     66   * parameters:
     67   * - the L1 and L2 cache sizes,
     68   * - the register level blocking sizes defined by gebp_traits,
     69   * - the number of scalars that fit into a packet (when vectorization is enabled).
     70   *
     71   * \sa setCpuCacheSizes */
     72 template<typename LhsScalar, typename RhsScalar, int KcFactor, typename SizeType>
     73 void computeProductBlockingSizes(SizeType& k, SizeType& m, SizeType& n)
     74 {
     75   EIGEN_UNUSED_VARIABLE(n);
     76   // Explanations:
     77   // Let's recall the product algorithms form kc x nc horizontal panels B' on the rhs and
     78   // mc x kc blocks A' on the lhs. A' has to fit into L2 cache. Moreover, B' is processed
     79   // per kc x nr vertical small panels where nr is the blocking size along the n dimension
     80   // at the register level. For vectorization purpose, these small vertical panels are unpacked,
     81   // e.g., each coefficient is replicated to fit a packet. This small vertical panel has to
     82   // stay in L1 cache.
     83   std::ptrdiff_t l1, l2;
     84 
     85   typedef gebp_traits<LhsScalar,RhsScalar> Traits;
     86   enum {
     87     kdiv = KcFactor * 2 * Traits::nr
     88          * Traits::RhsProgress * sizeof(RhsScalar),
     89     mr = gebp_traits<LhsScalar,RhsScalar>::mr,
     90     mr_mask = (0xffffffff/mr)*mr
     91   };
     92 
     93   manage_caching_sizes(GetAction, &l1, &l2);
     94   k = std::min<SizeType>(k, l1/kdiv);
     95   SizeType _m = k>0 ? l2/(4 * sizeof(LhsScalar) * k) : 0;
     96   if(_m<m) m = _m & mr_mask;
     97 }
     98 
     99 template<typename LhsScalar, typename RhsScalar, typename SizeType>
    100 inline void computeProductBlockingSizes(SizeType& k, SizeType& m, SizeType& n)
    101 {
    102   computeProductBlockingSizes<LhsScalar,RhsScalar,1>(k, m, n);
    103 }
    104 
    105 #ifdef EIGEN_HAS_FUSE_CJMADD
    106   #define MADD(CJ,A,B,C,T)  C = CJ.pmadd(A,B,C);
    107 #else
    108 
    109   // FIXME (a bit overkill maybe ?)
    110 
    111   template<typename CJ, typename A, typename B, typename C, typename T> struct gebp_madd_selector {
    112     EIGEN_ALWAYS_INLINE static void run(const CJ& cj, A& a, B& b, C& c, T& /*t*/)
    113     {
    114       c = cj.pmadd(a,b,c);
    115     }
    116   };
    117 
    118   template<typename CJ, typename T> struct gebp_madd_selector<CJ,T,T,T,T> {
    119     EIGEN_ALWAYS_INLINE static void run(const CJ& cj, T& a, T& b, T& c, T& t)
    120     {
    121       t = b; t = cj.pmul(a,t); c = padd(c,t);
    122     }
    123   };
    124 
    125   template<typename CJ, typename A, typename B, typename C, typename T>
    126   EIGEN_STRONG_INLINE void gebp_madd(const CJ& cj, A& a, B& b, C& c, T& t)
    127   {
    128     gebp_madd_selector<CJ,A,B,C,T>::run(cj,a,b,c,t);
    129   }
    130 
    131   #define MADD(CJ,A,B,C,T)  gebp_madd(CJ,A,B,C,T);
    132 //   #define MADD(CJ,A,B,C,T)  T = B; T = CJ.pmul(A,T); C = padd(C,T);
    133 #endif
    134 
    135 /* Vectorization logic
    136  *  real*real: unpack rhs to constant packets, ...
    137  *
    138  *  cd*cd : unpack rhs to (b_r,b_r), (b_i,b_i), mul to get (a_r b_r,a_i b_r) (a_r b_i,a_i b_i),
    139  *          storing each res packet into two packets (2x2),
    140  *          at the end combine them: swap the second and addsub them
    141  *  cf*cf : same but with 2x4 blocks
    142  *  cplx*real : unpack rhs to constant packets, ...
    143  *  real*cplx : load lhs as (a0,a0,a1,a1), and mul as usual
    144  */
    145 template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs, bool _ConjRhs>
    146 class gebp_traits
    147 {
    148 public:
    149   typedef _LhsScalar LhsScalar;
    150   typedef _RhsScalar RhsScalar;
    151   typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
    152 
    153   enum {
    154     ConjLhs = _ConjLhs,
    155     ConjRhs = _ConjRhs,
    156     Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
    157     LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
    158     RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
    159     ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
    160 
    161     NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
    162 
    163     // register block size along the N direction (must be either 2 or 4)
    164     nr = NumberOfRegisters/4,
    165 
    166     // register block size along the M direction (currently, this one cannot be modified)
    167     mr = 2 * LhsPacketSize,
    168 
    169     WorkSpaceFactor = nr * RhsPacketSize,
    170 
    171     LhsProgress = LhsPacketSize,
    172     RhsProgress = RhsPacketSize
    173   };
    174 
    175   typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
    176   typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
    177   typedef typename packet_traits<ResScalar>::type  _ResPacket;
    178 
    179   typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
    180   typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
    181   typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
    182 
    183   typedef ResPacket AccPacket;
    184 
    185   EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
    186   {
    187     p = pset1<ResPacket>(ResScalar(0));
    188   }
    189 
    190   EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
    191   {
    192     for(DenseIndex k=0; k<n; k++)
    193       pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
    194   }
    195 
    196   EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
    197   {
    198     dest = pload<RhsPacket>(b);
    199   }
    200 
    201   EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
    202   {
    203     dest = pload<LhsPacket>(a);
    204   }
    205 
    206   EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, AccPacket& tmp) const
    207   {
    208     tmp = b; tmp = pmul(a,tmp); c = padd(c,tmp);
    209   }
    210 
    211   EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
    212   {
    213     r = pmadd(c,alpha,r);
    214   }
    215 
    216 protected:
    217 //   conj_helper<LhsScalar,RhsScalar,ConjLhs,ConjRhs> cj;
    218 //   conj_helper<LhsPacket,RhsPacket,ConjLhs,ConjRhs> pcj;
    219 };
    220 
    221 template<typename RealScalar, bool _ConjLhs>
    222 class gebp_traits<std::complex<RealScalar>, RealScalar, _ConjLhs, false>
    223 {
    224 public:
    225   typedef std::complex<RealScalar> LhsScalar;
    226   typedef RealScalar RhsScalar;
    227   typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
    228 
    229   enum {
    230     ConjLhs = _ConjLhs,
    231     ConjRhs = false,
    232     Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
    233     LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
    234     RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
    235     ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
    236 
    237     NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
    238     nr = NumberOfRegisters/4,
    239     mr = 2 * LhsPacketSize,
    240     WorkSpaceFactor = nr*RhsPacketSize,
    241 
    242     LhsProgress = LhsPacketSize,
    243     RhsProgress = RhsPacketSize
    244   };
    245 
    246   typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
    247   typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
    248   typedef typename packet_traits<ResScalar>::type  _ResPacket;
    249 
    250   typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
    251   typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
    252   typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
    253 
    254   typedef ResPacket AccPacket;
    255 
    256   EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
    257   {
    258     p = pset1<ResPacket>(ResScalar(0));
    259   }
    260 
    261   EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
    262   {
    263     for(DenseIndex k=0; k<n; k++)
    264       pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
    265   }
    266 
    267   EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
    268   {
    269     dest = pload<RhsPacket>(b);
    270   }
    271 
    272   EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
    273   {
    274     dest = pload<LhsPacket>(a);
    275   }
    276 
    277   EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
    278   {
    279     madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
    280   }
    281 
    282   EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
    283   {
    284     tmp = b; tmp = pmul(a.v,tmp); c.v = padd(c.v,tmp);
    285   }
    286 
    287   EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
    288   {
    289     c += a * b;
    290   }
    291 
    292   EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
    293   {
    294     r = cj.pmadd(c,alpha,r);
    295   }
    296 
    297 protected:
    298   conj_helper<ResPacket,ResPacket,ConjLhs,false> cj;
    299 };
    300 
    301 template<typename RealScalar, bool _ConjLhs, bool _ConjRhs>
    302 class gebp_traits<std::complex<RealScalar>, std::complex<RealScalar>, _ConjLhs, _ConjRhs >
    303 {
    304 public:
    305   typedef std::complex<RealScalar>  Scalar;
    306   typedef std::complex<RealScalar>  LhsScalar;
    307   typedef std::complex<RealScalar>  RhsScalar;
    308   typedef std::complex<RealScalar>  ResScalar;
    309 
    310   enum {
    311     ConjLhs = _ConjLhs,
    312     ConjRhs = _ConjRhs,
    313     Vectorizable = packet_traits<RealScalar>::Vectorizable
    314                 && packet_traits<Scalar>::Vectorizable,
    315     RealPacketSize  = Vectorizable ? packet_traits<RealScalar>::size : 1,
    316     ResPacketSize   = Vectorizable ? packet_traits<ResScalar>::size : 1,
    317 
    318     nr = 2,
    319     mr = 2 * ResPacketSize,
    320     WorkSpaceFactor = Vectorizable ? 2*nr*RealPacketSize : nr,
    321 
    322     LhsProgress = ResPacketSize,
    323     RhsProgress = Vectorizable ? 2*ResPacketSize : 1
    324   };
    325 
    326   typedef typename packet_traits<RealScalar>::type RealPacket;
    327   typedef typename packet_traits<Scalar>::type     ScalarPacket;
    328   struct DoublePacket
    329   {
    330     RealPacket first;
    331     RealPacket second;
    332   };
    333 
    334   typedef typename conditional<Vectorizable,RealPacket,  Scalar>::type LhsPacket;
    335   typedef typename conditional<Vectorizable,DoublePacket,Scalar>::type RhsPacket;
    336   typedef typename conditional<Vectorizable,ScalarPacket,Scalar>::type ResPacket;
    337   typedef typename conditional<Vectorizable,DoublePacket,Scalar>::type AccPacket;
    338 
    339   EIGEN_STRONG_INLINE void initAcc(Scalar& p) { p = Scalar(0); }
    340 
    341   EIGEN_STRONG_INLINE void initAcc(DoublePacket& p)
    342   {
    343     p.first   = pset1<RealPacket>(RealScalar(0));
    344     p.second  = pset1<RealPacket>(RealScalar(0));
    345   }
    346 
    347   /* Unpack the rhs coeff such that each complex coefficient is spread into
    348    * two packects containing respectively the real and imaginary coefficient
    349    * duplicated as many time as needed: (x+iy) => [x, ..., x] [y, ..., y]
    350    */
    351   EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const Scalar* rhs, Scalar* b)
    352   {
    353     for(DenseIndex k=0; k<n; k++)
    354     {
    355       if(Vectorizable)
    356       {
    357         pstore1<RealPacket>((RealScalar*)&b[k*ResPacketSize*2+0],             real(rhs[k]));
    358         pstore1<RealPacket>((RealScalar*)&b[k*ResPacketSize*2+ResPacketSize], imag(rhs[k]));
    359       }
    360       else
    361         b[k] = rhs[k];
    362     }
    363   }
    364 
    365   EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, ResPacket& dest) const { dest = *b; }
    366 
    367   EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, DoublePacket& dest) const
    368   {
    369     dest.first  = pload<RealPacket>((const RealScalar*)b);
    370     dest.second = pload<RealPacket>((const RealScalar*)(b+ResPacketSize));
    371   }
    372 
    373   // nothing special here
    374   EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
    375   {
    376     dest = pload<LhsPacket>((const typename unpacket_traits<LhsPacket>::type*)(a));
    377   }
    378 
    379   EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, DoublePacket& c, RhsPacket& /*tmp*/) const
    380   {
    381     c.first   = padd(pmul(a,b.first), c.first);
    382     c.second  = padd(pmul(a,b.second),c.second);
    383   }
    384 
    385   EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, ResPacket& c, RhsPacket& /*tmp*/) const
    386   {
    387     c = cj.pmadd(a,b,c);
    388   }
    389 
    390   EIGEN_STRONG_INLINE void acc(const Scalar& c, const Scalar& alpha, Scalar& r) const { r += alpha * c; }
    391 
    392   EIGEN_STRONG_INLINE void acc(const DoublePacket& c, const ResPacket& alpha, ResPacket& r) const
    393   {
    394     // assemble c
    395     ResPacket tmp;
    396     if((!ConjLhs)&&(!ConjRhs))
    397     {
    398       tmp = pcplxflip(pconj(ResPacket(c.second)));
    399       tmp = padd(ResPacket(c.first),tmp);
    400     }
    401     else if((!ConjLhs)&&(ConjRhs))
    402     {
    403       tmp = pconj(pcplxflip(ResPacket(c.second)));
    404       tmp = padd(ResPacket(c.first),tmp);
    405     }
    406     else if((ConjLhs)&&(!ConjRhs))
    407     {
    408       tmp = pcplxflip(ResPacket(c.second));
    409       tmp = padd(pconj(ResPacket(c.first)),tmp);
    410     }
    411     else if((ConjLhs)&&(ConjRhs))
    412     {
    413       tmp = pcplxflip(ResPacket(c.second));
    414       tmp = psub(pconj(ResPacket(c.first)),tmp);
    415     }
    416 
    417     r = pmadd(tmp,alpha,r);
    418   }
    419 
    420 protected:
    421   conj_helper<LhsScalar,RhsScalar,ConjLhs,ConjRhs> cj;
    422 };
    423 
    424 template<typename RealScalar, bool _ConjRhs>
    425 class gebp_traits<RealScalar, std::complex<RealScalar>, false, _ConjRhs >
    426 {
    427 public:
    428   typedef std::complex<RealScalar>  Scalar;
    429   typedef RealScalar  LhsScalar;
    430   typedef Scalar      RhsScalar;
    431   typedef Scalar      ResScalar;
    432 
    433   enum {
    434     ConjLhs = false,
    435     ConjRhs = _ConjRhs,
    436     Vectorizable = packet_traits<RealScalar>::Vectorizable
    437                 && packet_traits<Scalar>::Vectorizable,
    438     LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
    439     RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
    440     ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
    441 
    442     NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
    443     nr = 4,
    444     mr = 2*ResPacketSize,
    445     WorkSpaceFactor = nr*RhsPacketSize,
    446 
    447     LhsProgress = ResPacketSize,
    448     RhsProgress = ResPacketSize
    449   };
    450 
    451   typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
    452   typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
    453   typedef typename packet_traits<ResScalar>::type  _ResPacket;
    454 
    455   typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
    456   typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
    457   typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
    458 
    459   typedef ResPacket AccPacket;
    460 
    461   EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
    462   {
    463     p = pset1<ResPacket>(ResScalar(0));
    464   }
    465 
    466   EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
    467   {
    468     for(DenseIndex k=0; k<n; k++)
    469       pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
    470   }
    471 
    472   EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
    473   {
    474     dest = pload<RhsPacket>(b);
    475   }
    476 
    477   EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
    478   {
    479     dest = ploaddup<LhsPacket>(a);
    480   }
    481 
    482   EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
    483   {
    484     madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
    485   }
    486 
    487   EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
    488   {
    489     tmp = b; tmp.v = pmul(a,tmp.v); c = padd(c,tmp);
    490   }
    491 
    492   EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
    493   {
    494     c += a * b;
    495   }
    496 
    497   EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
    498   {
    499     r = cj.pmadd(alpha,c,r);
    500   }
    501 
    502 protected:
    503   conj_helper<ResPacket,ResPacket,false,ConjRhs> cj;
    504 };
    505 
    506 /* optimized GEneral packed Block * packed Panel product kernel
    507  *
    508  * Mixing type logic: C += A * B
    509  *  |  A  |  B  | comments
    510  *  |real |cplx | no vectorization yet, would require to pack A with duplication
    511  *  |cplx |real | easy vectorization
    512  */
    513 template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
    514 struct gebp_kernel
    515 {
    516   typedef gebp_traits<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> Traits;
    517   typedef typename Traits::ResScalar ResScalar;
    518   typedef typename Traits::LhsPacket LhsPacket;
    519   typedef typename Traits::RhsPacket RhsPacket;
    520   typedef typename Traits::ResPacket ResPacket;
    521   typedef typename Traits::AccPacket AccPacket;
    522 
    523   enum {
    524     Vectorizable  = Traits::Vectorizable,
    525     LhsProgress   = Traits::LhsProgress,
    526     RhsProgress   = Traits::RhsProgress,
    527     ResPacketSize = Traits::ResPacketSize
    528   };
    529 
    530   EIGEN_DONT_INLINE
    531   void operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index rows, Index depth, Index cols, ResScalar alpha,
    532                   Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0, RhsScalar* unpackedB=0);
    533 };
    534 
    535 template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
    536 EIGEN_DONT_INLINE
    537 void gebp_kernel<LhsScalar,RhsScalar,Index,mr,nr,ConjugateLhs,ConjugateRhs>
    538   ::operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index rows, Index depth, Index cols, ResScalar alpha,
    539                Index strideA, Index strideB, Index offsetA, Index offsetB, RhsScalar* unpackedB)
    540   {
    541     Traits traits;
    542 
    543     if(strideA==-1) strideA = depth;
    544     if(strideB==-1) strideB = depth;
    545     conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
    546 //     conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
    547     Index packet_cols = (cols/nr) * nr;
    548     const Index peeled_mc = (rows/mr)*mr;
    549     // FIXME:
    550     const Index peeled_mc2 = peeled_mc + (rows-peeled_mc >= LhsProgress ? LhsProgress : 0);
    551     const Index peeled_kc = (depth/4)*4;
    552 
    553     if(unpackedB==0)
    554       unpackedB = const_cast<RhsScalar*>(blockB - strideB * nr * RhsProgress);
    555 
    556     // loops on each micro vertical panel of rhs (depth x nr)
    557     for(Index j2=0; j2<packet_cols; j2+=nr)
    558     {
    559       traits.unpackRhs(depth*nr,&blockB[j2*strideB+offsetB*nr],unpackedB);
    560 
    561       // loops on each largest micro horizontal panel of lhs (mr x depth)
    562       // => we select a mr x nr micro block of res which is entirely
    563       //    stored into mr/packet_size x nr registers.
    564       for(Index i=0; i<peeled_mc; i+=mr)
    565       {
    566         const LhsScalar* blA = &blockA[i*strideA+offsetA*mr];
    567         prefetch(&blA[0]);
    568 
    569         // gets res block as register
    570         AccPacket C0, C1, C2, C3, C4, C5, C6, C7;
    571                   traits.initAcc(C0);
    572                   traits.initAcc(C1);
    573         if(nr==4) traits.initAcc(C2);
    574         if(nr==4) traits.initAcc(C3);
    575                   traits.initAcc(C4);
    576                   traits.initAcc(C5);
    577         if(nr==4) traits.initAcc(C6);
    578         if(nr==4) traits.initAcc(C7);
    579 
    580         ResScalar* r0 = &res[(j2+0)*resStride + i];
    581         ResScalar* r1 = r0 + resStride;
    582         ResScalar* r2 = r1 + resStride;
    583         ResScalar* r3 = r2 + resStride;
    584 
    585         prefetch(r0+16);
    586         prefetch(r1+16);
    587         prefetch(r2+16);
    588         prefetch(r3+16);
    589 
    590         // performs "inner" product
    591         // TODO let's check wether the folowing peeled loop could not be
    592         //      optimized via optimal prefetching from one loop to the other
    593         const RhsScalar* blB = unpackedB;
    594         for(Index k=0; k<peeled_kc; k+=4)
    595         {
    596           if(nr==2)
    597           {
    598             LhsPacket A0, A1;
    599             RhsPacket B_0;
    600             RhsPacket T0;
    601 
    602 EIGEN_ASM_COMMENT("mybegin2");
    603             traits.loadLhs(&blA[0*LhsProgress], A0);
    604             traits.loadLhs(&blA[1*LhsProgress], A1);
    605             traits.loadRhs(&blB[0*RhsProgress], B_0);
    606             traits.madd(A0,B_0,C0,T0);
    607             traits.madd(A1,B_0,C4,B_0);
    608             traits.loadRhs(&blB[1*RhsProgress], B_0);
    609             traits.madd(A0,B_0,C1,T0);
    610             traits.madd(A1,B_0,C5,B_0);
    611 
    612             traits.loadLhs(&blA[2*LhsProgress], A0);
    613             traits.loadLhs(&blA[3*LhsProgress], A1);
    614             traits.loadRhs(&blB[2*RhsProgress], B_0);
    615             traits.madd(A0,B_0,C0,T0);
    616             traits.madd(A1,B_0,C4,B_0);
    617             traits.loadRhs(&blB[3*RhsProgress], B_0);
    618             traits.madd(A0,B_0,C1,T0);
    619             traits.madd(A1,B_0,C5,B_0);
    620 
    621             traits.loadLhs(&blA[4*LhsProgress], A0);
    622             traits.loadLhs(&blA[5*LhsProgress], A1);
    623             traits.loadRhs(&blB[4*RhsProgress], B_0);
    624             traits.madd(A0,B_0,C0,T0);
    625             traits.madd(A1,B_0,C4,B_0);
    626             traits.loadRhs(&blB[5*RhsProgress], B_0);
    627             traits.madd(A0,B_0,C1,T0);
    628             traits.madd(A1,B_0,C5,B_0);
    629 
    630             traits.loadLhs(&blA[6*LhsProgress], A0);
    631             traits.loadLhs(&blA[7*LhsProgress], A1);
    632             traits.loadRhs(&blB[6*RhsProgress], B_0);
    633             traits.madd(A0,B_0,C0,T0);
    634             traits.madd(A1,B_0,C4,B_0);
    635             traits.loadRhs(&blB[7*RhsProgress], B_0);
    636             traits.madd(A0,B_0,C1,T0);
    637             traits.madd(A1,B_0,C5,B_0);
    638 EIGEN_ASM_COMMENT("myend");
    639           }
    640           else
    641           {
    642 EIGEN_ASM_COMMENT("mybegin4");
    643             LhsPacket A0, A1;
    644             RhsPacket B_0, B1, B2, B3;
    645             RhsPacket T0;
    646 
    647             traits.loadLhs(&blA[0*LhsProgress], A0);
    648             traits.loadLhs(&blA[1*LhsProgress], A1);
    649             traits.loadRhs(&blB[0*RhsProgress], B_0);
    650             traits.loadRhs(&blB[1*RhsProgress], B1);
    651 
    652             traits.madd(A0,B_0,C0,T0);
    653             traits.loadRhs(&blB[2*RhsProgress], B2);
    654             traits.madd(A1,B_0,C4,B_0);
    655             traits.loadRhs(&blB[3*RhsProgress], B3);
    656             traits.loadRhs(&blB[4*RhsProgress], B_0);
    657             traits.madd(A0,B1,C1,T0);
    658             traits.madd(A1,B1,C5,B1);
    659             traits.loadRhs(&blB[5*RhsProgress], B1);
    660             traits.madd(A0,B2,C2,T0);
    661             traits.madd(A1,B2,C6,B2);
    662             traits.loadRhs(&blB[6*RhsProgress], B2);
    663             traits.madd(A0,B3,C3,T0);
    664             traits.loadLhs(&blA[2*LhsProgress], A0);
    665             traits.madd(A1,B3,C7,B3);
    666             traits.loadLhs(&blA[3*LhsProgress], A1);
    667             traits.loadRhs(&blB[7*RhsProgress], B3);
    668             traits.madd(A0,B_0,C0,T0);
    669             traits.madd(A1,B_0,C4,B_0);
    670             traits.loadRhs(&blB[8*RhsProgress], B_0);
    671             traits.madd(A0,B1,C1,T0);
    672             traits.madd(A1,B1,C5,B1);
    673             traits.loadRhs(&blB[9*RhsProgress], B1);
    674             traits.madd(A0,B2,C2,T0);
    675             traits.madd(A1,B2,C6,B2);
    676             traits.loadRhs(&blB[10*RhsProgress], B2);
    677             traits.madd(A0,B3,C3,T0);
    678             traits.loadLhs(&blA[4*LhsProgress], A0);
    679             traits.madd(A1,B3,C7,B3);
    680             traits.loadLhs(&blA[5*LhsProgress], A1);
    681             traits.loadRhs(&blB[11*RhsProgress], B3);
    682 
    683             traits.madd(A0,B_0,C0,T0);
    684             traits.madd(A1,B_0,C4,B_0);
    685             traits.loadRhs(&blB[12*RhsProgress], B_0);
    686             traits.madd(A0,B1,C1,T0);
    687             traits.madd(A1,B1,C5,B1);
    688             traits.loadRhs(&blB[13*RhsProgress], B1);
    689             traits.madd(A0,B2,C2,T0);
    690             traits.madd(A1,B2,C6,B2);
    691             traits.loadRhs(&blB[14*RhsProgress], B2);
    692             traits.madd(A0,B3,C3,T0);
    693             traits.loadLhs(&blA[6*LhsProgress], A0);
    694             traits.madd(A1,B3,C7,B3);
    695             traits.loadLhs(&blA[7*LhsProgress], A1);
    696             traits.loadRhs(&blB[15*RhsProgress], B3);
    697             traits.madd(A0,B_0,C0,T0);
    698             traits.madd(A1,B_0,C4,B_0);
    699             traits.madd(A0,B1,C1,T0);
    700             traits.madd(A1,B1,C5,B1);
    701             traits.madd(A0,B2,C2,T0);
    702             traits.madd(A1,B2,C6,B2);
    703             traits.madd(A0,B3,C3,T0);
    704             traits.madd(A1,B3,C7,B3);
    705           }
    706 
    707           blB += 4*nr*RhsProgress;
    708           blA += 4*mr;
    709         }
    710         // process remaining peeled loop
    711         for(Index k=peeled_kc; k<depth; k++)
    712         {
    713           if(nr==2)
    714           {
    715             LhsPacket A0, A1;
    716             RhsPacket B_0;
    717             RhsPacket T0;
    718 
    719             traits.loadLhs(&blA[0*LhsProgress], A0);
    720             traits.loadLhs(&blA[1*LhsProgress], A1);
    721             traits.loadRhs(&blB[0*RhsProgress], B_0);
    722             traits.madd(A0,B_0,C0,T0);
    723             traits.madd(A1,B_0,C4,B_0);
    724             traits.loadRhs(&blB[1*RhsProgress], B_0);
    725             traits.madd(A0,B_0,C1,T0);
    726             traits.madd(A1,B_0,C5,B_0);
    727           }
    728           else
    729           {
    730             LhsPacket A0, A1;
    731             RhsPacket B_0, B1, B2, B3;
    732             RhsPacket T0;
    733 
    734             traits.loadLhs(&blA[0*LhsProgress], A0);
    735             traits.loadLhs(&blA[1*LhsProgress], A1);
    736             traits.loadRhs(&blB[0*RhsProgress], B_0);
    737             traits.loadRhs(&blB[1*RhsProgress], B1);
    738 
    739             traits.madd(A0,B_0,C0,T0);
    740             traits.loadRhs(&blB[2*RhsProgress], B2);
    741             traits.madd(A1,B_0,C4,B_0);
    742             traits.loadRhs(&blB[3*RhsProgress], B3);
    743             traits.madd(A0,B1,C1,T0);
    744             traits.madd(A1,B1,C5,B1);
    745             traits.madd(A0,B2,C2,T0);
    746             traits.madd(A1,B2,C6,B2);
    747             traits.madd(A0,B3,C3,T0);
    748             traits.madd(A1,B3,C7,B3);
    749           }
    750 
    751           blB += nr*RhsProgress;
    752           blA += mr;
    753         }
    754 
    755         if(nr==4)
    756         {
    757           ResPacket R0, R1, R2, R3, R4, R5, R6;
    758           ResPacket alphav = pset1<ResPacket>(alpha);
    759 
    760           R0 = ploadu<ResPacket>(r0);
    761           R1 = ploadu<ResPacket>(r1);
    762           R2 = ploadu<ResPacket>(r2);
    763           R3 = ploadu<ResPacket>(r3);
    764           R4 = ploadu<ResPacket>(r0 + ResPacketSize);
    765           R5 = ploadu<ResPacket>(r1 + ResPacketSize);
    766           R6 = ploadu<ResPacket>(r2 + ResPacketSize);
    767           traits.acc(C0, alphav, R0);
    768           pstoreu(r0, R0);
    769           R0 = ploadu<ResPacket>(r3 + ResPacketSize);
    770 
    771           traits.acc(C1, alphav, R1);
    772           traits.acc(C2, alphav, R2);
    773           traits.acc(C3, alphav, R3);
    774           traits.acc(C4, alphav, R4);
    775           traits.acc(C5, alphav, R5);
    776           traits.acc(C6, alphav, R6);
    777           traits.acc(C7, alphav, R0);
    778 
    779           pstoreu(r1, R1);
    780           pstoreu(r2, R2);
    781           pstoreu(r3, R3);
    782           pstoreu(r0 + ResPacketSize, R4);
    783           pstoreu(r1 + ResPacketSize, R5);
    784           pstoreu(r2 + ResPacketSize, R6);
    785           pstoreu(r3 + ResPacketSize, R0);
    786         }
    787         else
    788         {
    789           ResPacket R0, R1, R4;
    790           ResPacket alphav = pset1<ResPacket>(alpha);
    791 
    792           R0 = ploadu<ResPacket>(r0);
    793           R1 = ploadu<ResPacket>(r1);
    794           R4 = ploadu<ResPacket>(r0 + ResPacketSize);
    795           traits.acc(C0, alphav, R0);
    796           pstoreu(r0, R0);
    797           R0 = ploadu<ResPacket>(r1 + ResPacketSize);
    798           traits.acc(C1, alphav, R1);
    799           traits.acc(C4, alphav, R4);
    800           traits.acc(C5, alphav, R0);
    801           pstoreu(r1, R1);
    802           pstoreu(r0 + ResPacketSize, R4);
    803           pstoreu(r1 + ResPacketSize, R0);
    804         }
    805 
    806       }
    807 
    808       if(rows-peeled_mc>=LhsProgress)
    809       {
    810         Index i = peeled_mc;
    811         const LhsScalar* blA = &blockA[i*strideA+offsetA*LhsProgress];
    812         prefetch(&blA[0]);
    813 
    814         // gets res block as register
    815         AccPacket C0, C1, C2, C3;
    816                   traits.initAcc(C0);
    817                   traits.initAcc(C1);
    818         if(nr==4) traits.initAcc(C2);
    819         if(nr==4) traits.initAcc(C3);
    820 
    821         // performs "inner" product
    822         const RhsScalar* blB = unpackedB;
    823         for(Index k=0; k<peeled_kc; k+=4)
    824         {
    825           if(nr==2)
    826           {
    827             LhsPacket A0;
    828             RhsPacket B_0, B1;
    829 
    830             traits.loadLhs(&blA[0*LhsProgress], A0);
    831             traits.loadRhs(&blB[0*RhsProgress], B_0);
    832             traits.loadRhs(&blB[1*RhsProgress], B1);
    833             traits.madd(A0,B_0,C0,B_0);
    834             traits.loadRhs(&blB[2*RhsProgress], B_0);
    835             traits.madd(A0,B1,C1,B1);
    836             traits.loadLhs(&blA[1*LhsProgress], A0);
    837             traits.loadRhs(&blB[3*RhsProgress], B1);
    838             traits.madd(A0,B_0,C0,B_0);
    839             traits.loadRhs(&blB[4*RhsProgress], B_0);
    840             traits.madd(A0,B1,C1,B1);
    841             traits.loadLhs(&blA[2*LhsProgress], A0);
    842             traits.loadRhs(&blB[5*RhsProgress], B1);
    843             traits.madd(A0,B_0,C0,B_0);
    844             traits.loadRhs(&blB[6*RhsProgress], B_0);
    845             traits.madd(A0,B1,C1,B1);
    846             traits.loadLhs(&blA[3*LhsProgress], A0);
    847             traits.loadRhs(&blB[7*RhsProgress], B1);
    848             traits.madd(A0,B_0,C0,B_0);
    849             traits.madd(A0,B1,C1,B1);
    850           }
    851           else
    852           {
    853             LhsPacket A0;
    854             RhsPacket B_0, B1, B2, B3;
    855 
    856             traits.loadLhs(&blA[0*LhsProgress], A0);
    857             traits.loadRhs(&blB[0*RhsProgress], B_0);
    858             traits.loadRhs(&blB[1*RhsProgress], B1);
    859 
    860             traits.madd(A0,B_0,C0,B_0);
    861             traits.loadRhs(&blB[2*RhsProgress], B2);
    862             traits.loadRhs(&blB[3*RhsProgress], B3);
    863             traits.loadRhs(&blB[4*RhsProgress], B_0);
    864             traits.madd(A0,B1,C1,B1);
    865             traits.loadRhs(&blB[5*RhsProgress], B1);
    866             traits.madd(A0,B2,C2,B2);
    867             traits.loadRhs(&blB[6*RhsProgress], B2);
    868             traits.madd(A0,B3,C3,B3);
    869             traits.loadLhs(&blA[1*LhsProgress], A0);
    870             traits.loadRhs(&blB[7*RhsProgress], B3);
    871             traits.madd(A0,B_0,C0,B_0);
    872             traits.loadRhs(&blB[8*RhsProgress], B_0);
    873             traits.madd(A0,B1,C1,B1);
    874             traits.loadRhs(&blB[9*RhsProgress], B1);
    875             traits.madd(A0,B2,C2,B2);
    876             traits.loadRhs(&blB[10*RhsProgress], B2);
    877             traits.madd(A0,B3,C3,B3);
    878             traits.loadLhs(&blA[2*LhsProgress], A0);
    879             traits.loadRhs(&blB[11*RhsProgress], B3);
    880 
    881             traits.madd(A0,B_0,C0,B_0);
    882             traits.loadRhs(&blB[12*RhsProgress], B_0);
    883             traits.madd(A0,B1,C1,B1);
    884             traits.loadRhs(&blB[13*RhsProgress], B1);
    885             traits.madd(A0,B2,C2,B2);
    886             traits.loadRhs(&blB[14*RhsProgress], B2);
    887             traits.madd(A0,B3,C3,B3);
    888 
    889             traits.loadLhs(&blA[3*LhsProgress], A0);
    890             traits.loadRhs(&blB[15*RhsProgress], B3);
    891             traits.madd(A0,B_0,C0,B_0);
    892             traits.madd(A0,B1,C1,B1);
    893             traits.madd(A0,B2,C2,B2);
    894             traits.madd(A0,B3,C3,B3);
    895           }
    896 
    897           blB += nr*4*RhsProgress;
    898           blA += 4*LhsProgress;
    899         }
    900         // process remaining peeled loop
    901         for(Index k=peeled_kc; k<depth; k++)
    902         {
    903           if(nr==2)
    904           {
    905             LhsPacket A0;
    906             RhsPacket B_0, B1;
    907 
    908             traits.loadLhs(&blA[0*LhsProgress], A0);
    909             traits.loadRhs(&blB[0*RhsProgress], B_0);
    910             traits.loadRhs(&blB[1*RhsProgress], B1);
    911             traits.madd(A0,B_0,C0,B_0);
    912             traits.madd(A0,B1,C1,B1);
    913           }
    914           else
    915           {
    916             LhsPacket A0;
    917             RhsPacket B_0, B1, B2, B3;
    918 
    919             traits.loadLhs(&blA[0*LhsProgress], A0);
    920             traits.loadRhs(&blB[0*RhsProgress], B_0);
    921             traits.loadRhs(&blB[1*RhsProgress], B1);
    922             traits.loadRhs(&blB[2*RhsProgress], B2);
    923             traits.loadRhs(&blB[3*RhsProgress], B3);
    924 
    925             traits.madd(A0,B_0,C0,B_0);
    926             traits.madd(A0,B1,C1,B1);
    927             traits.madd(A0,B2,C2,B2);
    928             traits.madd(A0,B3,C3,B3);
    929           }
    930 
    931           blB += nr*RhsProgress;
    932           blA += LhsProgress;
    933         }
    934 
    935         ResPacket R0, R1, R2, R3;
    936         ResPacket alphav = pset1<ResPacket>(alpha);
    937 
    938         ResScalar* r0 = &res[(j2+0)*resStride + i];
    939         ResScalar* r1 = r0 + resStride;
    940         ResScalar* r2 = r1 + resStride;
    941         ResScalar* r3 = r2 + resStride;
    942 
    943                   R0 = ploadu<ResPacket>(r0);
    944                   R1 = ploadu<ResPacket>(r1);
    945         if(nr==4) R2 = ploadu<ResPacket>(r2);
    946         if(nr==4) R3 = ploadu<ResPacket>(r3);
    947 
    948                   traits.acc(C0, alphav, R0);
    949                   traits.acc(C1, alphav, R1);
    950         if(nr==4) traits.acc(C2, alphav, R2);
    951         if(nr==4) traits.acc(C3, alphav, R3);
    952 
    953                   pstoreu(r0, R0);
    954                   pstoreu(r1, R1);
    955         if(nr==4) pstoreu(r2, R2);
    956         if(nr==4) pstoreu(r3, R3);
    957       }
    958       for(Index i=peeled_mc2; i<rows; i++)
    959       {
    960         const LhsScalar* blA = &blockA[i*strideA+offsetA];
    961         prefetch(&blA[0]);
    962 
    963         // gets a 1 x nr res block as registers
    964         ResScalar C0(0), C1(0), C2(0), C3(0);
    965         // TODO directly use blockB ???
    966         const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
    967         for(Index k=0; k<depth; k++)
    968         {
    969           if(nr==2)
    970           {
    971             LhsScalar A0;
    972             RhsScalar B_0, B1;
    973 
    974             A0 = blA[k];
    975             B_0 = blB[0];
    976             B1 = blB[1];
    977             MADD(cj,A0,B_0,C0,B_0);
    978             MADD(cj,A0,B1,C1,B1);
    979           }
    980           else
    981           {
    982             LhsScalar A0;
    983             RhsScalar B_0, B1, B2, B3;
    984 
    985             A0 = blA[k];
    986             B_0 = blB[0];
    987             B1 = blB[1];
    988             B2 = blB[2];
    989             B3 = blB[3];
    990 
    991             MADD(cj,A0,B_0,C0,B_0);
    992             MADD(cj,A0,B1,C1,B1);
    993             MADD(cj,A0,B2,C2,B2);
    994             MADD(cj,A0,B3,C3,B3);
    995           }
    996 
    997           blB += nr;
    998         }
    999                   res[(j2+0)*resStride + i] += alpha*C0;
   1000                   res[(j2+1)*resStride + i] += alpha*C1;
   1001         if(nr==4) res[(j2+2)*resStride + i] += alpha*C2;
   1002         if(nr==4) res[(j2+3)*resStride + i] += alpha*C3;
   1003       }
   1004     }
   1005     // process remaining rhs/res columns one at a time
   1006     // => do the same but with nr==1
   1007     for(Index j2=packet_cols; j2<cols; j2++)
   1008     {
   1009       // unpack B
   1010       traits.unpackRhs(depth, &blockB[j2*strideB+offsetB], unpackedB);
   1011 
   1012       for(Index i=0; i<peeled_mc; i+=mr)
   1013       {
   1014         const LhsScalar* blA = &blockA[i*strideA+offsetA*mr];
   1015         prefetch(&blA[0]);
   1016 
   1017         // TODO move the res loads to the stores
   1018 
   1019         // get res block as registers
   1020         AccPacket C0, C4;
   1021         traits.initAcc(C0);
   1022         traits.initAcc(C4);
   1023 
   1024         const RhsScalar* blB = unpackedB;
   1025         for(Index k=0; k<depth; k++)
   1026         {
   1027           LhsPacket A0, A1;
   1028           RhsPacket B_0;
   1029           RhsPacket T0;
   1030 
   1031           traits.loadLhs(&blA[0*LhsProgress], A0);
   1032           traits.loadLhs(&blA[1*LhsProgress], A1);
   1033           traits.loadRhs(&blB[0*RhsProgress], B_0);
   1034           traits.madd(A0,B_0,C0,T0);
   1035           traits.madd(A1,B_0,C4,B_0);
   1036 
   1037           blB += RhsProgress;
   1038           blA += 2*LhsProgress;
   1039         }
   1040         ResPacket R0, R4;
   1041         ResPacket alphav = pset1<ResPacket>(alpha);
   1042 
   1043         ResScalar* r0 = &res[(j2+0)*resStride + i];
   1044 
   1045         R0 = ploadu<ResPacket>(r0);
   1046         R4 = ploadu<ResPacket>(r0+ResPacketSize);
   1047 
   1048         traits.acc(C0, alphav, R0);
   1049         traits.acc(C4, alphav, R4);
   1050 
   1051         pstoreu(r0,               R0);
   1052         pstoreu(r0+ResPacketSize, R4);
   1053       }
   1054       if(rows-peeled_mc>=LhsProgress)
   1055       {
   1056         Index i = peeled_mc;
   1057         const LhsScalar* blA = &blockA[i*strideA+offsetA*LhsProgress];
   1058         prefetch(&blA[0]);
   1059 
   1060         AccPacket C0;
   1061         traits.initAcc(C0);
   1062 
   1063         const RhsScalar* blB = unpackedB;
   1064         for(Index k=0; k<depth; k++)
   1065         {
   1066           LhsPacket A0;
   1067           RhsPacket B_0;
   1068           traits.loadLhs(blA, A0);
   1069           traits.loadRhs(blB, B_0);
   1070           traits.madd(A0, B_0, C0, B_0);
   1071           blB += RhsProgress;
   1072           blA += LhsProgress;
   1073         }
   1074 
   1075         ResPacket alphav = pset1<ResPacket>(alpha);
   1076         ResPacket R0 = ploadu<ResPacket>(&res[(j2+0)*resStride + i]);
   1077         traits.acc(C0, alphav, R0);
   1078         pstoreu(&res[(j2+0)*resStride + i], R0);
   1079       }
   1080       for(Index i=peeled_mc2; i<rows; i++)
   1081       {
   1082         const LhsScalar* blA = &blockA[i*strideA+offsetA];
   1083         prefetch(&blA[0]);
   1084 
   1085         // gets a 1 x 1 res block as registers
   1086         ResScalar C0(0);
   1087         // FIXME directly use blockB ??
   1088         const RhsScalar* blB = &blockB[j2*strideB+offsetB];
   1089         for(Index k=0; k<depth; k++)
   1090         {
   1091           LhsScalar A0 = blA[k];
   1092           RhsScalar B_0 = blB[k];
   1093           MADD(cj, A0, B_0, C0, B_0);
   1094         }
   1095         res[(j2+0)*resStride + i] += alpha*C0;
   1096       }
   1097     }
   1098   }
   1099 
   1100 
   1101 #undef CJMADD
   1102 
   1103 // pack a block of the lhs
   1104 // The traversal is as follow (mr==4):
   1105 //   0  4  8 12 ...
   1106 //   1  5  9 13 ...
   1107 //   2  6 10 14 ...
   1108 //   3  7 11 15 ...
   1109 //
   1110 //  16 20 24 28 ...
   1111 //  17 21 25 29 ...
   1112 //  18 22 26 30 ...
   1113 //  19 23 27 31 ...
   1114 //
   1115 //  32 33 34 35 ...
   1116 //  36 36 38 39 ...
   1117 template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder, bool Conjugate, bool PanelMode>
   1118 struct gemm_pack_lhs
   1119 {
   1120   EIGEN_DONT_INLINE void operator()(Scalar* blockA, const Scalar* EIGEN_RESTRICT _lhs, Index lhsStride, Index depth, Index rows, Index stride=0, Index offset=0);
   1121 };
   1122 
   1123 template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder, bool Conjugate, bool PanelMode>
   1124 EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, Pack1, Pack2, StorageOrder, Conjugate, PanelMode>
   1125   ::operator()(Scalar* blockA, const Scalar* EIGEN_RESTRICT _lhs, Index lhsStride, Index depth, Index rows, Index stride, Index offset)
   1126 {
   1127   typedef typename packet_traits<Scalar>::type Packet;
   1128   enum { PacketSize = packet_traits<Scalar>::size };
   1129 
   1130   EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS");
   1131   EIGEN_UNUSED_VARIABLE(stride)
   1132   EIGEN_UNUSED_VARIABLE(offset)
   1133   eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
   1134   eigen_assert( (StorageOrder==RowMajor) || ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) );
   1135   conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
   1136   const_blas_data_mapper<Scalar, Index, StorageOrder> lhs(_lhs,lhsStride);
   1137   Index count = 0;
   1138   Index peeled_mc = (rows/Pack1)*Pack1;
   1139   for(Index i=0; i<peeled_mc; i+=Pack1)
   1140   {
   1141     if(PanelMode) count += Pack1 * offset;
   1142 
   1143     if(StorageOrder==ColMajor)
   1144     {
   1145       for(Index k=0; k<depth; k++)
   1146       {
   1147         Packet A, B, C, D;
   1148         if(Pack1>=1*PacketSize) A = ploadu<Packet>(&lhs(i+0*PacketSize, k));
   1149         if(Pack1>=2*PacketSize) B = ploadu<Packet>(&lhs(i+1*PacketSize, k));
   1150         if(Pack1>=3*PacketSize) C = ploadu<Packet>(&lhs(i+2*PacketSize, k));
   1151         if(Pack1>=4*PacketSize) D = ploadu<Packet>(&lhs(i+3*PacketSize, k));
   1152         if(Pack1>=1*PacketSize) { pstore(blockA+count, cj.pconj(A)); count+=PacketSize; }
   1153         if(Pack1>=2*PacketSize) { pstore(blockA+count, cj.pconj(B)); count+=PacketSize; }
   1154         if(Pack1>=3*PacketSize) { pstore(blockA+count, cj.pconj(C)); count+=PacketSize; }
   1155         if(Pack1>=4*PacketSize) { pstore(blockA+count, cj.pconj(D)); count+=PacketSize; }
   1156       }
   1157     }
   1158     else
   1159     {
   1160       for(Index k=0; k<depth; k++)
   1161       {
   1162         // TODO add a vectorized transpose here
   1163         Index w=0;
   1164         for(; w<Pack1-3; w+=4)
   1165         {
   1166           Scalar a(cj(lhs(i+w+0, k))),
   1167                   b(cj(lhs(i+w+1, k))),
   1168                   c(cj(lhs(i+w+2, k))),
   1169                   d(cj(lhs(i+w+3, k)));
   1170           blockA[count++] = a;
   1171           blockA[count++] = b;
   1172           blockA[count++] = c;
   1173           blockA[count++] = d;
   1174         }
   1175         if(Pack1%4)
   1176           for(;w<Pack1;++w)
   1177             blockA[count++] = cj(lhs(i+w, k));
   1178       }
   1179     }
   1180     if(PanelMode) count += Pack1 * (stride-offset-depth);
   1181   }
   1182   if(rows-peeled_mc>=Pack2)
   1183   {
   1184     if(PanelMode) count += Pack2*offset;
   1185     for(Index k=0; k<depth; k++)
   1186       for(Index w=0; w<Pack2; w++)
   1187         blockA[count++] = cj(lhs(peeled_mc+w, k));
   1188     if(PanelMode) count += Pack2 * (stride-offset-depth);
   1189     peeled_mc += Pack2;
   1190   }
   1191   for(Index i=peeled_mc; i<rows; i++)
   1192   {
   1193     if(PanelMode) count += offset;
   1194     for(Index k=0; k<depth; k++)
   1195       blockA[count++] = cj(lhs(i, k));
   1196     if(PanelMode) count += (stride-offset-depth);
   1197   }
   1198 }
   1199 
   1200 // copy a complete panel of the rhs
   1201 // this version is optimized for column major matrices
   1202 // The traversal order is as follow: (nr==4):
   1203 //  0  1  2  3   12 13 14 15   24 27
   1204 //  4  5  6  7   16 17 18 19   25 28
   1205 //  8  9 10 11   20 21 22 23   26 29
   1206 //  .  .  .  .    .  .  .  .    .  .
   1207 template<typename Scalar, typename Index, int nr, bool Conjugate, bool PanelMode>
   1208 struct gemm_pack_rhs<Scalar, Index, nr, ColMajor, Conjugate, PanelMode>
   1209 {
   1210   typedef typename packet_traits<Scalar>::type Packet;
   1211   enum { PacketSize = packet_traits<Scalar>::size };
   1212   EIGEN_DONT_INLINE void operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols, Index stride=0, Index offset=0);
   1213 };
   1214 
   1215 template<typename Scalar, typename Index, int nr, bool Conjugate, bool PanelMode>
   1216 EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, nr, ColMajor, Conjugate, PanelMode>
   1217   ::operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols, Index stride, Index offset)
   1218 {
   1219   EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR");
   1220   EIGEN_UNUSED_VARIABLE(stride)
   1221   EIGEN_UNUSED_VARIABLE(offset)
   1222   eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
   1223   conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
   1224   Index packet_cols = (cols/nr) * nr;
   1225   Index count = 0;
   1226   for(Index j2=0; j2<packet_cols; j2+=nr)
   1227   {
   1228     // skip what we have before
   1229     if(PanelMode) count += nr * offset;
   1230     const Scalar* b0 = &rhs[(j2+0)*rhsStride];
   1231     const Scalar* b1 = &rhs[(j2+1)*rhsStride];
   1232     const Scalar* b2 = &rhs[(j2+2)*rhsStride];
   1233     const Scalar* b3 = &rhs[(j2+3)*rhsStride];
   1234     for(Index k=0; k<depth; k++)
   1235     {
   1236                 blockB[count+0] = cj(b0[k]);
   1237                 blockB[count+1] = cj(b1[k]);
   1238       if(nr==4) blockB[count+2] = cj(b2[k]);
   1239       if(nr==4) blockB[count+3] = cj(b3[k]);
   1240       count += nr;
   1241     }
   1242     // skip what we have after
   1243     if(PanelMode) count += nr * (stride-offset-depth);
   1244   }
   1245 
   1246   // copy the remaining columns one at a time (nr==1)
   1247   for(Index j2=packet_cols; j2<cols; ++j2)
   1248   {
   1249     if(PanelMode) count += offset;
   1250     const Scalar* b0 = &rhs[(j2+0)*rhsStride];
   1251     for(Index k=0; k<depth; k++)
   1252     {
   1253       blockB[count] = cj(b0[k]);
   1254       count += 1;
   1255     }
   1256     if(PanelMode) count += (stride-offset-depth);
   1257   }
   1258 }
   1259 
   1260 // this version is optimized for row major matrices
   1261 template<typename Scalar, typename Index, int nr, bool Conjugate, bool PanelMode>
   1262 struct gemm_pack_rhs<Scalar, Index, nr, RowMajor, Conjugate, PanelMode>
   1263 {
   1264   enum { PacketSize = packet_traits<Scalar>::size };
   1265   EIGEN_DONT_INLINE void operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols, Index stride=0, Index offset=0);
   1266 };
   1267 
   1268 template<typename Scalar, typename Index, int nr, bool Conjugate, bool PanelMode>
   1269 EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, nr, RowMajor, Conjugate, PanelMode>
   1270   ::operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols, Index stride, Index offset)
   1271 {
   1272   EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR");
   1273   EIGEN_UNUSED_VARIABLE(stride)
   1274   EIGEN_UNUSED_VARIABLE(offset)
   1275   eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
   1276   conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
   1277   Index packet_cols = (cols/nr) * nr;
   1278   Index count = 0;
   1279   for(Index j2=0; j2<packet_cols; j2+=nr)
   1280   {
   1281     // skip what we have before
   1282     if(PanelMode) count += nr * offset;
   1283     for(Index k=0; k<depth; k++)
   1284     {
   1285       const Scalar* b0 = &rhs[k*rhsStride + j2];
   1286                 blockB[count+0] = cj(b0[0]);
   1287                 blockB[count+1] = cj(b0[1]);
   1288       if(nr==4) blockB[count+2] = cj(b0[2]);
   1289       if(nr==4) blockB[count+3] = cj(b0[3]);
   1290       count += nr;
   1291     }
   1292     // skip what we have after
   1293     if(PanelMode) count += nr * (stride-offset-depth);
   1294   }
   1295   // copy the remaining columns one at a time (nr==1)
   1296   for(Index j2=packet_cols; j2<cols; ++j2)
   1297   {
   1298     if(PanelMode) count += offset;
   1299     const Scalar* b0 = &rhs[j2];
   1300     for(Index k=0; k<depth; k++)
   1301     {
   1302       blockB[count] = cj(b0[k*rhsStride]);
   1303       count += 1;
   1304     }
   1305     if(PanelMode) count += stride-offset-depth;
   1306   }
   1307 }
   1308 
   1309 } // end namespace internal
   1310 
   1311 /** \returns the currently set level 1 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
   1312   * \sa setCpuCacheSize */
   1313 inline std::ptrdiff_t l1CacheSize()
   1314 {
   1315   std::ptrdiff_t l1, l2;
   1316   internal::manage_caching_sizes(GetAction, &l1, &l2);
   1317   return l1;
   1318 }
   1319 
   1320 /** \returns the currently set level 2 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
   1321   * \sa setCpuCacheSize */
   1322 inline std::ptrdiff_t l2CacheSize()
   1323 {
   1324   std::ptrdiff_t l1, l2;
   1325   internal::manage_caching_sizes(GetAction, &l1, &l2);
   1326   return l2;
   1327 }
   1328 
   1329 /** Set the cpu L1 and L2 cache sizes (in bytes).
   1330   * These values are use to adjust the size of the blocks
   1331   * for the algorithms working per blocks.
   1332   *
   1333   * \sa computeProductBlockingSizes */
   1334 inline void setCpuCacheSizes(std::ptrdiff_t l1, std::ptrdiff_t l2)
   1335 {
   1336   internal::manage_caching_sizes(SetAction, &l1, &l2);
   1337 }
   1338 
   1339 } // end namespace Eigen
   1340 
   1341 #endif // EIGEN_GENERAL_BLOCK_PANEL_H
   1342