Home | History | Annotate | Download | only in Utils
      1 //===-- Local.h - Functions to perform local transformations ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform various local transformations to the
     11 // program.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
     16 #define LLVM_TRANSFORMS_UTILS_LOCAL_H
     17 
     18 #include "llvm/Analysis/AliasAnalysis.h"
     19 #include "llvm/IR/DataLayout.h"
     20 #include "llvm/IR/Dominators.h"
     21 #include "llvm/IR/GetElementPtrTypeIterator.h"
     22 #include "llvm/IR/IRBuilder.h"
     23 #include "llvm/IR/Operator.h"
     24 
     25 namespace llvm {
     26 
     27 class User;
     28 class BasicBlock;
     29 class Function;
     30 class BranchInst;
     31 class Instruction;
     32 class DbgDeclareInst;
     33 class StoreInst;
     34 class LoadInst;
     35 class Value;
     36 class PHINode;
     37 class AllocaInst;
     38 class AssumptionCache;
     39 class ConstantExpr;
     40 class DataLayout;
     41 class TargetLibraryInfo;
     42 class TargetTransformInfo;
     43 class DIBuilder;
     44 class DominatorTree;
     45 
     46 template<typename T> class SmallVectorImpl;
     47 
     48 //===----------------------------------------------------------------------===//
     49 //  Local constant propagation.
     50 //
     51 
     52 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
     53 /// constant value, convert it into an unconditional branch to the constant
     54 /// destination.  This is a nontrivial operation because the successors of this
     55 /// basic block must have their PHI nodes updated.
     56 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
     57 /// conditions and indirectbr addresses this might make dead if
     58 /// DeleteDeadConditions is true.
     59 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
     60                             const TargetLibraryInfo *TLI = nullptr);
     61 
     62 //===----------------------------------------------------------------------===//
     63 //  Local dead code elimination.
     64 //
     65 
     66 /// isInstructionTriviallyDead - Return true if the result produced by the
     67 /// instruction is not used, and the instruction has no side effects.
     68 ///
     69 bool isInstructionTriviallyDead(Instruction *I,
     70                                 const TargetLibraryInfo *TLI = nullptr);
     71 
     72 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
     73 /// trivially dead instruction, delete it.  If that makes any of its operands
     74 /// trivially dead, delete them too, recursively.  Return true if any
     75 /// instructions were deleted.
     76 bool RecursivelyDeleteTriviallyDeadInstructions(Value *V,
     77                                         const TargetLibraryInfo *TLI = nullptr);
     78 
     79 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
     80 /// dead PHI node, due to being a def-use chain of single-use nodes that
     81 /// either forms a cycle or is terminated by a trivially dead instruction,
     82 /// delete it.  If that makes any of its operands trivially dead, delete them
     83 /// too, recursively.  Return true if a change was made.
     84 bool RecursivelyDeleteDeadPHINode(PHINode *PN,
     85                                   const TargetLibraryInfo *TLI = nullptr);
     86 
     87 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
     88 /// simplify any instructions in it and recursively delete dead instructions.
     89 ///
     90 /// This returns true if it changed the code, note that it can delete
     91 /// instructions in other blocks as well in this block.
     92 bool SimplifyInstructionsInBlock(BasicBlock *BB,
     93                                  const TargetLibraryInfo *TLI = nullptr);
     94 
     95 //===----------------------------------------------------------------------===//
     96 //  Control Flow Graph Restructuring.
     97 //
     98 
     99 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
    100 /// method is called when we're about to delete Pred as a predecessor of BB.  If
    101 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
    102 ///
    103 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
    104 /// nodes that collapse into identity values.  For example, if we have:
    105 ///   x = phi(1, 0, 0, 0)
    106 ///   y = and x, z
    107 ///
    108 /// .. and delete the predecessor corresponding to the '1', this will attempt to
    109 /// recursively fold the 'and' to 0.
    110 void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred);
    111 
    112 /// MergeBasicBlockIntoOnlyPred - BB is a block with one predecessor and its
    113 /// predecessor is known to have one successor (BB!).  Eliminate the edge
    114 /// between them, moving the instructions in the predecessor into BB.  This
    115 /// deletes the predecessor block.
    116 ///
    117 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DominatorTree *DT = nullptr);
    118 
    119 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
    120 /// unconditional branch, and contains no instructions other than PHI nodes,
    121 /// potential debug intrinsics and the branch.  If possible, eliminate BB by
    122 /// rewriting all the predecessors to branch to the successor block and return
    123 /// true.  If we can't transform, return false.
    124 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB);
    125 
    126 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
    127 /// nodes in this block. This doesn't try to be clever about PHI nodes
    128 /// which differ only in the order of the incoming values, but instcombine
    129 /// orders them so it usually won't matter.
    130 ///
    131 bool EliminateDuplicatePHINodes(BasicBlock *BB);
    132 
    133 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
    134 /// example, it adjusts branches to branches to eliminate the extra hop, it
    135 /// eliminates unreachable basic blocks, and does other "peephole" optimization
    136 /// of the CFG.  It returns true if a modification was made, possibly deleting
    137 /// the basic block that was pointed to.
    138 ///
    139 bool SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
    140                  unsigned BonusInstThreshold, AssumptionCache *AC = nullptr);
    141 
    142 /// FlatternCFG - This function is used to flatten a CFG.  For
    143 /// example, it uses parallel-and and parallel-or mode to collapse
    144 //  if-conditions and merge if-regions with identical statements.
    145 ///
    146 bool FlattenCFG(BasicBlock *BB, AliasAnalysis *AA = nullptr);
    147 
    148 /// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
    149 /// and if a predecessor branches to us and one of our successors, fold the
    150 /// setcc into the predecessor and use logical operations to pick the right
    151 /// destination.
    152 bool FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold = 1);
    153 
    154 /// DemoteRegToStack - This function takes a virtual register computed by an
    155 /// Instruction and replaces it with a slot in the stack frame, allocated via
    156 /// alloca.  This allows the CFG to be changed around without fear of
    157 /// invalidating the SSA information for the value.  It returns the pointer to
    158 /// the alloca inserted to create a stack slot for X.
    159 ///
    160 AllocaInst *DemoteRegToStack(Instruction &X,
    161                              bool VolatileLoads = false,
    162                              Instruction *AllocaPoint = nullptr);
    163 
    164 /// DemotePHIToStack - This function takes a virtual register computed by a phi
    165 /// node and replaces it with a slot in the stack frame, allocated via alloca.
    166 /// The phi node is deleted and it returns the pointer to the alloca inserted.
    167 AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
    168 
    169 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
    170 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
    171 /// and it is more than the alignment of the ultimate object, see if we can
    172 /// increase the alignment of the ultimate object, making this check succeed.
    173 unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
    174                                     const DataLayout &DL,
    175                                     const Instruction *CxtI = nullptr,
    176                                     AssumptionCache *AC = nullptr,
    177                                     const DominatorTree *DT = nullptr);
    178 
    179 /// getKnownAlignment - Try to infer an alignment for the specified pointer.
    180 static inline unsigned getKnownAlignment(Value *V, const DataLayout &DL,
    181                                          const Instruction *CxtI = nullptr,
    182                                          AssumptionCache *AC = nullptr,
    183                                          const DominatorTree *DT = nullptr) {
    184   return getOrEnforceKnownAlignment(V, 0, DL, CxtI, AC, DT);
    185 }
    186 
    187 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
    188 /// code necessary to compute the offset from the base pointer (without adding
    189 /// in the base pointer).  Return the result as a signed integer of intptr size.
    190 /// When NoAssumptions is true, no assumptions about index computation not
    191 /// overflowing is made.
    192 template <typename IRBuilderTy>
    193 Value *EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &DL, User *GEP,
    194                      bool NoAssumptions = false) {
    195   GEPOperator *GEPOp = cast<GEPOperator>(GEP);
    196   Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
    197   Value *Result = Constant::getNullValue(IntPtrTy);
    198 
    199   // If the GEP is inbounds, we know that none of the addressing operations will
    200   // overflow in an unsigned sense.
    201   bool isInBounds = GEPOp->isInBounds() && !NoAssumptions;
    202 
    203   // Build a mask for high order bits.
    204   unsigned IntPtrWidth = IntPtrTy->getScalarType()->getIntegerBitWidth();
    205   uint64_t PtrSizeMask = ~0ULL >> (64 - IntPtrWidth);
    206 
    207   gep_type_iterator GTI = gep_type_begin(GEP);
    208   for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
    209        ++i, ++GTI) {
    210     Value *Op = *i;
    211     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
    212     if (Constant *OpC = dyn_cast<Constant>(Op)) {
    213       if (OpC->isZeroValue())
    214         continue;
    215 
    216       // Handle a struct index, which adds its field offset to the pointer.
    217       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    218         if (OpC->getType()->isVectorTy())
    219           OpC = OpC->getSplatValue();
    220 
    221         uint64_t OpValue = cast<ConstantInt>(OpC)->getZExtValue();
    222         Size = DL.getStructLayout(STy)->getElementOffset(OpValue);
    223 
    224         if (Size)
    225           Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size),
    226                                       GEP->getName()+".offs");
    227         continue;
    228       }
    229 
    230       Constant *Scale = ConstantInt::get(IntPtrTy, Size);
    231       Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
    232       Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/);
    233       // Emit an add instruction.
    234       Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
    235       continue;
    236     }
    237     // Convert to correct type.
    238     if (Op->getType() != IntPtrTy)
    239       Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
    240     if (Size != 1) {
    241       // We'll let instcombine(mul) convert this to a shl if possible.
    242       Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size),
    243                               GEP->getName()+".idx", isInBounds /*NUW*/);
    244     }
    245 
    246     // Emit an add instruction.
    247     Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
    248   }
    249   return Result;
    250 }
    251 
    252 ///===---------------------------------------------------------------------===//
    253 ///  Dbg Intrinsic utilities
    254 ///
    255 
    256 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
    257 /// that has an associated llvm.dbg.decl intrinsic.
    258 bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
    259                                      StoreInst *SI, DIBuilder &Builder);
    260 
    261 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
    262 /// that has an associated llvm.dbg.decl intrinsic.
    263 bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
    264                                      LoadInst *LI, DIBuilder &Builder);
    265 
    266 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
    267 /// of llvm.dbg.value intrinsics.
    268 bool LowerDbgDeclare(Function &F);
    269 
    270 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic corresponding to
    271 /// an alloca, if any.
    272 DbgDeclareInst *FindAllocaDbgDeclare(Value *V);
    273 
    274 /// \brief Replaces llvm.dbg.declare instruction when the address it describes
    275 /// is replaced with a new value. If Deref is true, an additional DW_OP_deref is
    276 /// prepended to the expression. If Offset is non-zero, a constant displacement
    277 /// is added to the expression (after the optional Deref). Offset can be
    278 /// negative.
    279 bool replaceDbgDeclare(Value *Address, Value *NewAddress,
    280                        Instruction *InsertBefore, DIBuilder &Builder,
    281                        bool Deref, int Offset);
    282 
    283 /// \brief Replaces llvm.dbg.declare instruction when the alloca it describes
    284 /// is replaced with a new value. If Deref is true, an additional DW_OP_deref is
    285 /// prepended to the expression. If Offset is non-zero, a constant displacement
    286 /// is added to the expression (after the optional Deref). Offset can be
    287 /// negative. New llvm.dbg.declare is inserted immediately before AI.
    288 bool replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
    289                                 DIBuilder &Builder, bool Deref, int Offset = 0);
    290 
    291 /// \brief Insert an unreachable instruction before the specified
    292 /// instruction, making it and the rest of the code in the block dead.
    293 void changeToUnreachable(Instruction *I, bool UseLLVMTrap);
    294 
    295 /// Replace 'BB's terminator with one that does not have an unwind successor
    296 /// block.  Rewrites `invoke` to `call`, etc.  Updates any PHIs in unwind
    297 /// successor.
    298 ///
    299 /// \param BB  Block whose terminator will be replaced.  Its terminator must
    300 ///            have an unwind successor.
    301 void removeUnwindEdge(BasicBlock *BB);
    302 
    303 /// \brief Remove all blocks that can not be reached from the function's entry.
    304 ///
    305 /// Returns true if any basic block was removed.
    306 bool removeUnreachableBlocks(Function &F);
    307 
    308 /// \brief Combine the metadata of two instructions so that K can replace J
    309 ///
    310 /// Metadata not listed as known via KnownIDs is removed
    311 void combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs);
    312 
    313 /// \brief Replace each use of 'From' with 'To' if that use is dominated by
    314 /// the given edge.  Returns the number of replacements made.
    315 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
    316                                   const BasicBlockEdge &Edge);
    317 /// \brief Replace each use of 'From' with 'To' if that use is dominated by
    318 /// the given BasicBlock. Returns the number of replacements made.
    319 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
    320                                   const BasicBlock *BB);
    321 
    322 
    323 /// \brief Return true if the CallSite CS calls a gc leaf function.
    324 ///
    325 /// A leaf function is a function that does not safepoint the thread during its
    326 /// execution.  During a call or invoke to such a function, the callers stack
    327 /// does not have to be made parseable.
    328 ///
    329 /// Most passes can and should ignore this information, and it is only used
    330 /// during lowering by the GC infrastructure.
    331 bool callsGCLeafFunction(ImmutableCallSite CS);
    332 
    333 } // End llvm namespace
    334 
    335 #endif
    336