Home | History | Annotate | Download | only in Analysis
      1 //===- ThreadSafetyCommon.cpp -----------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implementation of the interfaces declared in ThreadSafetyCommon.h
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
     15 #include "clang/AST/Attr.h"
     16 #include "clang/AST/DeclCXX.h"
     17 #include "clang/AST/DeclObjC.h"
     18 #include "clang/AST/ExprCXX.h"
     19 #include "clang/AST/StmtCXX.h"
     20 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
     21 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
     22 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
     23 #include "clang/Analysis/AnalysisContext.h"
     24 #include "clang/Analysis/CFG.h"
     25 #include "clang/Basic/OperatorKinds.h"
     26 #include "clang/Basic/SourceLocation.h"
     27 #include "clang/Basic/SourceManager.h"
     28 #include "llvm/ADT/DenseMap.h"
     29 #include "llvm/ADT/SmallVector.h"
     30 #include "llvm/ADT/StringRef.h"
     31 #include <algorithm>
     32 #include <climits>
     33 #include <vector>
     34 
     35 using namespace clang;
     36 using namespace threadSafety;
     37 
     38 // From ThreadSafetyUtil.h
     39 std::string threadSafety::getSourceLiteralString(const clang::Expr *CE) {
     40   switch (CE->getStmtClass()) {
     41     case Stmt::IntegerLiteralClass:
     42       return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
     43     case Stmt::StringLiteralClass: {
     44       std::string ret("\"");
     45       ret += cast<StringLiteral>(CE)->getString();
     46       ret += "\"";
     47       return ret;
     48     }
     49     case Stmt::CharacterLiteralClass:
     50     case Stmt::CXXNullPtrLiteralExprClass:
     51     case Stmt::GNUNullExprClass:
     52     case Stmt::CXXBoolLiteralExprClass:
     53     case Stmt::FloatingLiteralClass:
     54     case Stmt::ImaginaryLiteralClass:
     55     case Stmt::ObjCStringLiteralClass:
     56     default:
     57       return "#lit";
     58   }
     59 }
     60 
     61 // Return true if E is a variable that points to an incomplete Phi node.
     62 static bool isIncompletePhi(const til::SExpr *E) {
     63   if (const auto *Ph = dyn_cast<til::Phi>(E))
     64     return Ph->status() == til::Phi::PH_Incomplete;
     65   return false;
     66 }
     67 
     68 typedef SExprBuilder::CallingContext CallingContext;
     69 
     70 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
     71   auto It = SMap.find(S);
     72   if (It != SMap.end())
     73     return It->second;
     74   return nullptr;
     75 }
     76 
     77 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
     78   Walker.walk(*this);
     79   return Scfg;
     80 }
     81 
     82 static bool isCalleeArrow(const Expr *E) {
     83   const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
     84   return ME ? ME->isArrow() : false;
     85 }
     86 
     87 /// \brief Translate a clang expression in an attribute to a til::SExpr.
     88 /// Constructs the context from D, DeclExp, and SelfDecl.
     89 ///
     90 /// \param AttrExp The expression to translate.
     91 /// \param D       The declaration to which the attribute is attached.
     92 /// \param DeclExp An expression involving the Decl to which the attribute
     93 ///                is attached.  E.g. the call to a function.
     94 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
     95                                                const NamedDecl *D,
     96                                                const Expr *DeclExp,
     97                                                VarDecl *SelfDecl) {
     98   // If we are processing a raw attribute expression, with no substitutions.
     99   if (!DeclExp)
    100     return translateAttrExpr(AttrExp, nullptr);
    101 
    102   CallingContext Ctx(nullptr, D);
    103 
    104   // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
    105   // for formal parameters when we call buildMutexID later.
    106   if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
    107     Ctx.SelfArg   = ME->getBase();
    108     Ctx.SelfArrow = ME->isArrow();
    109   } else if (const CXXMemberCallExpr *CE =
    110              dyn_cast<CXXMemberCallExpr>(DeclExp)) {
    111     Ctx.SelfArg   = CE->getImplicitObjectArgument();
    112     Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
    113     Ctx.NumArgs   = CE->getNumArgs();
    114     Ctx.FunArgs   = CE->getArgs();
    115   } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
    116     Ctx.NumArgs = CE->getNumArgs();
    117     Ctx.FunArgs = CE->getArgs();
    118   } else if (const CXXConstructExpr *CE =
    119              dyn_cast<CXXConstructExpr>(DeclExp)) {
    120     Ctx.SelfArg = nullptr;  // Will be set below
    121     Ctx.NumArgs = CE->getNumArgs();
    122     Ctx.FunArgs = CE->getArgs();
    123   } else if (D && isa<CXXDestructorDecl>(D)) {
    124     // There's no such thing as a "destructor call" in the AST.
    125     Ctx.SelfArg = DeclExp;
    126   }
    127 
    128   // Hack to handle constructors, where self cannot be recovered from
    129   // the expression.
    130   if (SelfDecl && !Ctx.SelfArg) {
    131     DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
    132                         SelfDecl->getLocation());
    133     Ctx.SelfArg = &SelfDRE;
    134 
    135     // If the attribute has no arguments, then assume the argument is "this".
    136     if (!AttrExp)
    137       return translateAttrExpr(Ctx.SelfArg, nullptr);
    138     else  // For most attributes.
    139       return translateAttrExpr(AttrExp, &Ctx);
    140   }
    141 
    142   // If the attribute has no arguments, then assume the argument is "this".
    143   if (!AttrExp)
    144     return translateAttrExpr(Ctx.SelfArg, nullptr);
    145   else  // For most attributes.
    146     return translateAttrExpr(AttrExp, &Ctx);
    147 }
    148 
    149 /// \brief Translate a clang expression in an attribute to a til::SExpr.
    150 // This assumes a CallingContext has already been created.
    151 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
    152                                                CallingContext *Ctx) {
    153   if (!AttrExp)
    154     return CapabilityExpr(nullptr, false);
    155 
    156   if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
    157     if (SLit->getString() == StringRef("*"))
    158       // The "*" expr is a universal lock, which essentially turns off
    159       // checks until it is removed from the lockset.
    160       return CapabilityExpr(new (Arena) til::Wildcard(), false);
    161     else
    162       // Ignore other string literals for now.
    163       return CapabilityExpr(nullptr, false);
    164   }
    165 
    166   bool Neg = false;
    167   if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
    168     if (OE->getOperator() == OO_Exclaim) {
    169       Neg = true;
    170       AttrExp = OE->getArg(0);
    171     }
    172   }
    173   else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
    174     if (UO->getOpcode() == UO_LNot) {
    175       Neg = true;
    176       AttrExp = UO->getSubExpr();
    177     }
    178   }
    179 
    180   til::SExpr *E = translate(AttrExp, Ctx);
    181 
    182   // Trap mutex expressions like nullptr, or 0.
    183   // Any literal value is nonsense.
    184   if (!E || isa<til::Literal>(E))
    185     return CapabilityExpr(nullptr, false);
    186 
    187   // Hack to deal with smart pointers -- strip off top-level pointer casts.
    188   if (auto *CE = dyn_cast_or_null<til::Cast>(E)) {
    189     if (CE->castOpcode() == til::CAST_objToPtr)
    190       return CapabilityExpr(CE->expr(), Neg);
    191   }
    192   return CapabilityExpr(E, Neg);
    193 }
    194 
    195 // Translate a clang statement or expression to a TIL expression.
    196 // Also performs substitution of variables; Ctx provides the context.
    197 // Dispatches on the type of S.
    198 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
    199   if (!S)
    200     return nullptr;
    201 
    202   // Check if S has already been translated and cached.
    203   // This handles the lookup of SSA names for DeclRefExprs here.
    204   if (til::SExpr *E = lookupStmt(S))
    205     return E;
    206 
    207   switch (S->getStmtClass()) {
    208   case Stmt::DeclRefExprClass:
    209     return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
    210   case Stmt::CXXThisExprClass:
    211     return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
    212   case Stmt::MemberExprClass:
    213     return translateMemberExpr(cast<MemberExpr>(S), Ctx);
    214   case Stmt::CallExprClass:
    215     return translateCallExpr(cast<CallExpr>(S), Ctx);
    216   case Stmt::CXXMemberCallExprClass:
    217     return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
    218   case Stmt::CXXOperatorCallExprClass:
    219     return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
    220   case Stmt::UnaryOperatorClass:
    221     return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
    222   case Stmt::BinaryOperatorClass:
    223   case Stmt::CompoundAssignOperatorClass:
    224     return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
    225 
    226   case Stmt::ArraySubscriptExprClass:
    227     return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
    228   case Stmt::ConditionalOperatorClass:
    229     return translateAbstractConditionalOperator(
    230              cast<ConditionalOperator>(S), Ctx);
    231   case Stmt::BinaryConditionalOperatorClass:
    232     return translateAbstractConditionalOperator(
    233              cast<BinaryConditionalOperator>(S), Ctx);
    234 
    235   // We treat these as no-ops
    236   case Stmt::ParenExprClass:
    237     return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
    238   case Stmt::ExprWithCleanupsClass:
    239     return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
    240   case Stmt::CXXBindTemporaryExprClass:
    241     return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
    242 
    243   // Collect all literals
    244   case Stmt::CharacterLiteralClass:
    245   case Stmt::CXXNullPtrLiteralExprClass:
    246   case Stmt::GNUNullExprClass:
    247   case Stmt::CXXBoolLiteralExprClass:
    248   case Stmt::FloatingLiteralClass:
    249   case Stmt::ImaginaryLiteralClass:
    250   case Stmt::IntegerLiteralClass:
    251   case Stmt::StringLiteralClass:
    252   case Stmt::ObjCStringLiteralClass:
    253     return new (Arena) til::Literal(cast<Expr>(S));
    254 
    255   case Stmt::DeclStmtClass:
    256     return translateDeclStmt(cast<DeclStmt>(S), Ctx);
    257   default:
    258     break;
    259   }
    260   if (const CastExpr *CE = dyn_cast<CastExpr>(S))
    261     return translateCastExpr(CE, Ctx);
    262 
    263   return new (Arena) til::Undefined(S);
    264 }
    265 
    266 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
    267                                                CallingContext *Ctx) {
    268   const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
    269 
    270   // Function parameters require substitution and/or renaming.
    271   if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
    272     const FunctionDecl *FD =
    273         cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
    274     unsigned I = PV->getFunctionScopeIndex();
    275 
    276     if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) {
    277       // Substitute call arguments for references to function parameters
    278       assert(I < Ctx->NumArgs);
    279       return translate(Ctx->FunArgs[I], Ctx->Prev);
    280     }
    281     // Map the param back to the param of the original function declaration
    282     // for consistent comparisons.
    283     VD = FD->getParamDecl(I);
    284   }
    285 
    286   // For non-local variables, treat it as a reference to a named object.
    287   return new (Arena) til::LiteralPtr(VD);
    288 }
    289 
    290 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
    291                                                CallingContext *Ctx) {
    292   // Substitute for 'this'
    293   if (Ctx && Ctx->SelfArg)
    294     return translate(Ctx->SelfArg, Ctx->Prev);
    295   assert(SelfVar && "We have no variable for 'this'!");
    296   return SelfVar;
    297 }
    298 
    299 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
    300   if (auto *V = dyn_cast<til::Variable>(E))
    301     return V->clangDecl();
    302   if (auto *Ph = dyn_cast<til::Phi>(E))
    303     return Ph->clangDecl();
    304   if (auto *P = dyn_cast<til::Project>(E))
    305     return P->clangDecl();
    306   if (auto *L = dyn_cast<til::LiteralPtr>(E))
    307     return L->clangDecl();
    308   return nullptr;
    309 }
    310 
    311 static bool hasCppPointerType(const til::SExpr *E) {
    312   auto *VD = getValueDeclFromSExpr(E);
    313   if (VD && VD->getType()->isPointerType())
    314     return true;
    315   if (auto *C = dyn_cast<til::Cast>(E))
    316     return C->castOpcode() == til::CAST_objToPtr;
    317 
    318   return false;
    319 }
    320 
    321 // Grab the very first declaration of virtual method D
    322 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
    323   while (true) {
    324     D = D->getCanonicalDecl();
    325     CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
    326                                    E = D->end_overridden_methods();
    327     if (I == E)
    328       return D;  // Method does not override anything
    329     D = *I;      // FIXME: this does not work with multiple inheritance.
    330   }
    331   return nullptr;
    332 }
    333 
    334 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
    335                                               CallingContext *Ctx) {
    336   til::SExpr *BE = translate(ME->getBase(), Ctx);
    337   til::SExpr *E  = new (Arena) til::SApply(BE);
    338 
    339   const ValueDecl *D =
    340       cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
    341   if (auto *VD = dyn_cast<CXXMethodDecl>(D))
    342     D = getFirstVirtualDecl(VD);
    343 
    344   til::Project *P = new (Arena) til::Project(E, D);
    345   if (hasCppPointerType(BE))
    346     P->setArrow(true);
    347   return P;
    348 }
    349 
    350 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
    351                                             CallingContext *Ctx,
    352                                             const Expr *SelfE) {
    353   if (CapabilityExprMode) {
    354     // Handle LOCK_RETURNED
    355     const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
    356     if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
    357       CallingContext LRCallCtx(Ctx);
    358       LRCallCtx.AttrDecl = CE->getDirectCallee();
    359       LRCallCtx.SelfArg  = SelfE;
    360       LRCallCtx.NumArgs  = CE->getNumArgs();
    361       LRCallCtx.FunArgs  = CE->getArgs();
    362       return const_cast<til::SExpr*>(
    363           translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
    364     }
    365   }
    366 
    367   til::SExpr *E = translate(CE->getCallee(), Ctx);
    368   for (const auto *Arg : CE->arguments()) {
    369     til::SExpr *A = translate(Arg, Ctx);
    370     E = new (Arena) til::Apply(E, A);
    371   }
    372   return new (Arena) til::Call(E, CE);
    373 }
    374 
    375 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
    376     const CXXMemberCallExpr *ME, CallingContext *Ctx) {
    377   if (CapabilityExprMode) {
    378     // Ignore calls to get() on smart pointers.
    379     if (ME->getMethodDecl()->getNameAsString() == "get" &&
    380         ME->getNumArgs() == 0) {
    381       auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
    382       return new (Arena) til::Cast(til::CAST_objToPtr, E);
    383       // return E;
    384     }
    385   }
    386   return translateCallExpr(cast<CallExpr>(ME), Ctx,
    387                            ME->getImplicitObjectArgument());
    388 }
    389 
    390 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
    391     const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
    392   if (CapabilityExprMode) {
    393     // Ignore operator * and operator -> on smart pointers.
    394     OverloadedOperatorKind k = OCE->getOperator();
    395     if (k == OO_Star || k == OO_Arrow) {
    396       auto *E = translate(OCE->getArg(0), Ctx);
    397       return new (Arena) til::Cast(til::CAST_objToPtr, E);
    398       // return E;
    399     }
    400   }
    401   return translateCallExpr(cast<CallExpr>(OCE), Ctx);
    402 }
    403 
    404 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
    405                                                  CallingContext *Ctx) {
    406   switch (UO->getOpcode()) {
    407   case UO_PostInc:
    408   case UO_PostDec:
    409   case UO_PreInc:
    410   case UO_PreDec:
    411     return new (Arena) til::Undefined(UO);
    412 
    413   case UO_AddrOf: {
    414     if (CapabilityExprMode) {
    415       // interpret &Graph::mu_ as an existential.
    416       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
    417         if (DRE->getDecl()->isCXXInstanceMember()) {
    418           // This is a pointer-to-member expression, e.g. &MyClass::mu_.
    419           // We interpret this syntax specially, as a wildcard.
    420           auto *W = new (Arena) til::Wildcard();
    421           return new (Arena) til::Project(W, DRE->getDecl());
    422         }
    423       }
    424     }
    425     // otherwise, & is a no-op
    426     return translate(UO->getSubExpr(), Ctx);
    427   }
    428 
    429   // We treat these as no-ops
    430   case UO_Deref:
    431   case UO_Plus:
    432     return translate(UO->getSubExpr(), Ctx);
    433 
    434   case UO_Minus:
    435     return new (Arena)
    436       til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
    437   case UO_Not:
    438     return new (Arena)
    439       til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
    440   case UO_LNot:
    441     return new (Arena)
    442       til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
    443 
    444   // Currently unsupported
    445   case UO_Real:
    446   case UO_Imag:
    447   case UO_Extension:
    448   case UO_Coawait:
    449     return new (Arena) til::Undefined(UO);
    450   }
    451   return new (Arena) til::Undefined(UO);
    452 }
    453 
    454 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
    455                                          const BinaryOperator *BO,
    456                                          CallingContext *Ctx, bool Reverse) {
    457    til::SExpr *E0 = translate(BO->getLHS(), Ctx);
    458    til::SExpr *E1 = translate(BO->getRHS(), Ctx);
    459    if (Reverse)
    460      return new (Arena) til::BinaryOp(Op, E1, E0);
    461    else
    462      return new (Arena) til::BinaryOp(Op, E0, E1);
    463 }
    464 
    465 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
    466                                              const BinaryOperator *BO,
    467                                              CallingContext *Ctx,
    468                                              bool Assign) {
    469   const Expr *LHS = BO->getLHS();
    470   const Expr *RHS = BO->getRHS();
    471   til::SExpr *E0 = translate(LHS, Ctx);
    472   til::SExpr *E1 = translate(RHS, Ctx);
    473 
    474   const ValueDecl *VD = nullptr;
    475   til::SExpr *CV = nullptr;
    476   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) {
    477     VD = DRE->getDecl();
    478     CV = lookupVarDecl(VD);
    479   }
    480 
    481   if (!Assign) {
    482     til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
    483     E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
    484     E1 = addStatement(E1, nullptr, VD);
    485   }
    486   if (VD && CV)
    487     return updateVarDecl(VD, E1);
    488   return new (Arena) til::Store(E0, E1);
    489 }
    490 
    491 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
    492                                                   CallingContext *Ctx) {
    493   switch (BO->getOpcode()) {
    494   case BO_PtrMemD:
    495   case BO_PtrMemI:
    496     return new (Arena) til::Undefined(BO);
    497 
    498   case BO_Mul:  return translateBinOp(til::BOP_Mul, BO, Ctx);
    499   case BO_Div:  return translateBinOp(til::BOP_Div, BO, Ctx);
    500   case BO_Rem:  return translateBinOp(til::BOP_Rem, BO, Ctx);
    501   case BO_Add:  return translateBinOp(til::BOP_Add, BO, Ctx);
    502   case BO_Sub:  return translateBinOp(til::BOP_Sub, BO, Ctx);
    503   case BO_Shl:  return translateBinOp(til::BOP_Shl, BO, Ctx);
    504   case BO_Shr:  return translateBinOp(til::BOP_Shr, BO, Ctx);
    505   case BO_LT:   return translateBinOp(til::BOP_Lt,  BO, Ctx);
    506   case BO_GT:   return translateBinOp(til::BOP_Lt,  BO, Ctx, true);
    507   case BO_LE:   return translateBinOp(til::BOP_Leq, BO, Ctx);
    508   case BO_GE:   return translateBinOp(til::BOP_Leq, BO, Ctx, true);
    509   case BO_EQ:   return translateBinOp(til::BOP_Eq,  BO, Ctx);
    510   case BO_NE:   return translateBinOp(til::BOP_Neq, BO, Ctx);
    511   case BO_And:  return translateBinOp(til::BOP_BitAnd,   BO, Ctx);
    512   case BO_Xor:  return translateBinOp(til::BOP_BitXor,   BO, Ctx);
    513   case BO_Or:   return translateBinOp(til::BOP_BitOr,    BO, Ctx);
    514   case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
    515   case BO_LOr:  return translateBinOp(til::BOP_LogicOr,  BO, Ctx);
    516 
    517   case BO_Assign:    return translateBinAssign(til::BOP_Eq,  BO, Ctx, true);
    518   case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
    519   case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
    520   case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
    521   case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
    522   case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
    523   case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
    524   case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
    525   case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
    526   case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
    527   case BO_OrAssign:  return translateBinAssign(til::BOP_BitOr,  BO, Ctx);
    528 
    529   case BO_Comma:
    530     // The clang CFG should have already processed both sides.
    531     return translate(BO->getRHS(), Ctx);
    532   }
    533   return new (Arena) til::Undefined(BO);
    534 }
    535 
    536 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
    537                                             CallingContext *Ctx) {
    538   clang::CastKind K = CE->getCastKind();
    539   switch (K) {
    540   case CK_LValueToRValue: {
    541     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
    542       til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
    543       if (E0)
    544         return E0;
    545     }
    546     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
    547     return E0;
    548     // FIXME!! -- get Load working properly
    549     // return new (Arena) til::Load(E0);
    550   }
    551   case CK_NoOp:
    552   case CK_DerivedToBase:
    553   case CK_UncheckedDerivedToBase:
    554   case CK_ArrayToPointerDecay:
    555   case CK_FunctionToPointerDecay: {
    556     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
    557     return E0;
    558   }
    559   default: {
    560     // FIXME: handle different kinds of casts.
    561     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
    562     if (CapabilityExprMode)
    563       return E0;
    564     return new (Arena) til::Cast(til::CAST_none, E0);
    565   }
    566   }
    567 }
    568 
    569 til::SExpr *
    570 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
    571                                           CallingContext *Ctx) {
    572   til::SExpr *E0 = translate(E->getBase(), Ctx);
    573   til::SExpr *E1 = translate(E->getIdx(), Ctx);
    574   return new (Arena) til::ArrayIndex(E0, E1);
    575 }
    576 
    577 til::SExpr *
    578 SExprBuilder::translateAbstractConditionalOperator(
    579     const AbstractConditionalOperator *CO, CallingContext *Ctx) {
    580   auto *C = translate(CO->getCond(), Ctx);
    581   auto *T = translate(CO->getTrueExpr(), Ctx);
    582   auto *E = translate(CO->getFalseExpr(), Ctx);
    583   return new (Arena) til::IfThenElse(C, T, E);
    584 }
    585 
    586 til::SExpr *
    587 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
    588   DeclGroupRef DGrp = S->getDeclGroup();
    589   for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
    590     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
    591       Expr *E = VD->getInit();
    592       til::SExpr* SE = translate(E, Ctx);
    593 
    594       // Add local variables with trivial type to the variable map
    595       QualType T = VD->getType();
    596       if (T.isTrivialType(VD->getASTContext())) {
    597         return addVarDecl(VD, SE);
    598       }
    599       else {
    600         // TODO: add alloca
    601       }
    602     }
    603   }
    604   return nullptr;
    605 }
    606 
    607 // If (E) is non-trivial, then add it to the current basic block, and
    608 // update the statement map so that S refers to E.  Returns a new variable
    609 // that refers to E.
    610 // If E is trivial returns E.
    611 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
    612                                        const ValueDecl *VD) {
    613   if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
    614     return E;
    615   if (VD)
    616     E = new (Arena) til::Variable(E, VD);
    617   CurrentInstructions.push_back(E);
    618   if (S)
    619     insertStmt(S, E);
    620   return E;
    621 }
    622 
    623 // Returns the current value of VD, if known, and nullptr otherwise.
    624 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
    625   auto It = LVarIdxMap.find(VD);
    626   if (It != LVarIdxMap.end()) {
    627     assert(CurrentLVarMap[It->second].first == VD);
    628     return CurrentLVarMap[It->second].second;
    629   }
    630   return nullptr;
    631 }
    632 
    633 // if E is a til::Variable, update its clangDecl.
    634 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
    635   if (!E)
    636     return;
    637   if (til::Variable *V = dyn_cast<til::Variable>(E)) {
    638     if (!V->clangDecl())
    639       V->setClangDecl(VD);
    640   }
    641 }
    642 
    643 // Adds a new variable declaration.
    644 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
    645   maybeUpdateVD(E, VD);
    646   LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
    647   CurrentLVarMap.makeWritable();
    648   CurrentLVarMap.push_back(std::make_pair(VD, E));
    649   return E;
    650 }
    651 
    652 // Updates a current variable declaration.  (E.g. by assignment)
    653 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
    654   maybeUpdateVD(E, VD);
    655   auto It = LVarIdxMap.find(VD);
    656   if (It == LVarIdxMap.end()) {
    657     til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
    658     til::SExpr *St  = new (Arena) til::Store(Ptr, E);
    659     return St;
    660   }
    661   CurrentLVarMap.makeWritable();
    662   CurrentLVarMap.elem(It->second).second = E;
    663   return E;
    664 }
    665 
    666 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
    667 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
    668 // If E == null, this is a backedge and will be set later.
    669 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
    670   unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
    671   assert(ArgIndex > 0 && ArgIndex < NPreds);
    672 
    673   til::SExpr *CurrE = CurrentLVarMap[i].second;
    674   if (CurrE->block() == CurrentBB) {
    675     // We already have a Phi node in the current block,
    676     // so just add the new variable to the Phi node.
    677     til::Phi *Ph = dyn_cast<til::Phi>(CurrE);
    678     assert(Ph && "Expecting Phi node.");
    679     if (E)
    680       Ph->values()[ArgIndex] = E;
    681     return;
    682   }
    683 
    684   // Make a new phi node: phi(..., E)
    685   // All phi args up to the current index are set to the current value.
    686   til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
    687   Ph->values().setValues(NPreds, nullptr);
    688   for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
    689     Ph->values()[PIdx] = CurrE;
    690   if (E)
    691     Ph->values()[ArgIndex] = E;
    692   Ph->setClangDecl(CurrentLVarMap[i].first);
    693   // If E is from a back-edge, or either E or CurrE are incomplete, then
    694   // mark this node as incomplete; we may need to remove it later.
    695   if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) {
    696     Ph->setStatus(til::Phi::PH_Incomplete);
    697   }
    698 
    699   // Add Phi node to current block, and update CurrentLVarMap[i]
    700   CurrentArguments.push_back(Ph);
    701   if (Ph->status() == til::Phi::PH_Incomplete)
    702     IncompleteArgs.push_back(Ph);
    703 
    704   CurrentLVarMap.makeWritable();
    705   CurrentLVarMap.elem(i).second = Ph;
    706 }
    707 
    708 // Merge values from Map into the current variable map.
    709 // This will construct Phi nodes in the current basic block as necessary.
    710 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
    711   assert(CurrentBlockInfo && "Not processing a block!");
    712 
    713   if (!CurrentLVarMap.valid()) {
    714     // Steal Map, using copy-on-write.
    715     CurrentLVarMap = std::move(Map);
    716     return;
    717   }
    718   if (CurrentLVarMap.sameAs(Map))
    719     return;  // Easy merge: maps from different predecessors are unchanged.
    720 
    721   unsigned NPreds = CurrentBB->numPredecessors();
    722   unsigned ESz = CurrentLVarMap.size();
    723   unsigned MSz = Map.size();
    724   unsigned Sz  = std::min(ESz, MSz);
    725 
    726   for (unsigned i=0; i<Sz; ++i) {
    727     if (CurrentLVarMap[i].first != Map[i].first) {
    728       // We've reached the end of variables in common.
    729       CurrentLVarMap.makeWritable();
    730       CurrentLVarMap.downsize(i);
    731       break;
    732     }
    733     if (CurrentLVarMap[i].second != Map[i].second)
    734       makePhiNodeVar(i, NPreds, Map[i].second);
    735   }
    736   if (ESz > MSz) {
    737     CurrentLVarMap.makeWritable();
    738     CurrentLVarMap.downsize(Map.size());
    739   }
    740 }
    741 
    742 // Merge a back edge into the current variable map.
    743 // This will create phi nodes for all variables in the variable map.
    744 void SExprBuilder::mergeEntryMapBackEdge() {
    745   // We don't have definitions for variables on the backedge, because we
    746   // haven't gotten that far in the CFG.  Thus, when encountering a back edge,
    747   // we conservatively create Phi nodes for all variables.  Unnecessary Phi
    748   // nodes will be marked as incomplete, and stripped out at the end.
    749   //
    750   // An Phi node is unnecessary if it only refers to itself and one other
    751   // variable, e.g. x = Phi(y, y, x)  can be reduced to x = y.
    752 
    753   assert(CurrentBlockInfo && "Not processing a block!");
    754 
    755   if (CurrentBlockInfo->HasBackEdges)
    756     return;
    757   CurrentBlockInfo->HasBackEdges = true;
    758 
    759   CurrentLVarMap.makeWritable();
    760   unsigned Sz = CurrentLVarMap.size();
    761   unsigned NPreds = CurrentBB->numPredecessors();
    762 
    763   for (unsigned i=0; i < Sz; ++i) {
    764     makePhiNodeVar(i, NPreds, nullptr);
    765   }
    766 }
    767 
    768 // Update the phi nodes that were initially created for a back edge
    769 // once the variable definitions have been computed.
    770 // I.e., merge the current variable map into the phi nodes for Blk.
    771 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
    772   til::BasicBlock *BB = lookupBlock(Blk);
    773   unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
    774   assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
    775 
    776   for (til::SExpr *PE : BB->arguments()) {
    777     til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE);
    778     assert(Ph && "Expecting Phi Node.");
    779     assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
    780 
    781     til::SExpr *E = lookupVarDecl(Ph->clangDecl());
    782     assert(E && "Couldn't find local variable for Phi node.");
    783     Ph->values()[ArgIndex] = E;
    784   }
    785 }
    786 
    787 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
    788                             const CFGBlock *First) {
    789   // Perform initial setup operations.
    790   unsigned NBlocks = Cfg->getNumBlockIDs();
    791   Scfg = new (Arena) til::SCFG(Arena, NBlocks);
    792 
    793   // allocate all basic blocks immediately, to handle forward references.
    794   BBInfo.resize(NBlocks);
    795   BlockMap.resize(NBlocks, nullptr);
    796   // create map from clang blockID to til::BasicBlocks
    797   for (auto *B : *Cfg) {
    798     auto *BB = new (Arena) til::BasicBlock(Arena);
    799     BB->reserveInstructions(B->size());
    800     BlockMap[B->getBlockID()] = BB;
    801   }
    802 
    803   CurrentBB = lookupBlock(&Cfg->getEntry());
    804   auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
    805                                       : cast<FunctionDecl>(D)->parameters();
    806   for (auto *Pm : Parms) {
    807     QualType T = Pm->getType();
    808     if (!T.isTrivialType(Pm->getASTContext()))
    809       continue;
    810 
    811     // Add parameters to local variable map.
    812     // FIXME: right now we emulate params with loads; that should be fixed.
    813     til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
    814     til::SExpr *Ld = new (Arena) til::Load(Lp);
    815     til::SExpr *V  = addStatement(Ld, nullptr, Pm);
    816     addVarDecl(Pm, V);
    817   }
    818 }
    819 
    820 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
    821   // Intialize TIL basic block and add it to the CFG.
    822   CurrentBB = lookupBlock(B);
    823   CurrentBB->reservePredecessors(B->pred_size());
    824   Scfg->add(CurrentBB);
    825 
    826   CurrentBlockInfo = &BBInfo[B->getBlockID()];
    827 
    828   // CurrentLVarMap is moved to ExitMap on block exit.
    829   // FIXME: the entry block will hold function parameters.
    830   // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
    831 }
    832 
    833 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
    834   // Compute CurrentLVarMap on entry from ExitMaps of predecessors
    835 
    836   CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
    837   BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
    838   assert(PredInfo->UnprocessedSuccessors > 0);
    839 
    840   if (--PredInfo->UnprocessedSuccessors == 0)
    841     mergeEntryMap(std::move(PredInfo->ExitMap));
    842   else
    843     mergeEntryMap(PredInfo->ExitMap.clone());
    844 
    845   ++CurrentBlockInfo->ProcessedPredecessors;
    846 }
    847 
    848 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
    849   mergeEntryMapBackEdge();
    850 }
    851 
    852 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
    853   // The merge*() methods have created arguments.
    854   // Push those arguments onto the basic block.
    855   CurrentBB->arguments().reserve(
    856     static_cast<unsigned>(CurrentArguments.size()), Arena);
    857   for (auto *A : CurrentArguments)
    858     CurrentBB->addArgument(A);
    859 }
    860 
    861 void SExprBuilder::handleStatement(const Stmt *S) {
    862   til::SExpr *E = translate(S, nullptr);
    863   addStatement(E, S);
    864 }
    865 
    866 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
    867                                         const CXXDestructorDecl *DD) {
    868   til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
    869   til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
    870   til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
    871   til::SExpr *E = new (Arena) til::Call(Ap);
    872   addStatement(E, nullptr);
    873 }
    874 
    875 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
    876   CurrentBB->instructions().reserve(
    877     static_cast<unsigned>(CurrentInstructions.size()), Arena);
    878   for (auto *V : CurrentInstructions)
    879     CurrentBB->addInstruction(V);
    880 
    881   // Create an appropriate terminator
    882   unsigned N = B->succ_size();
    883   auto It = B->succ_begin();
    884   if (N == 1) {
    885     til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
    886     // TODO: set index
    887     unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
    888     auto *Tm = new (Arena) til::Goto(BB, Idx);
    889     CurrentBB->setTerminator(Tm);
    890   }
    891   else if (N == 2) {
    892     til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
    893     til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
    894     ++It;
    895     til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
    896     // FIXME: make sure these arent' critical edges.
    897     auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
    898     CurrentBB->setTerminator(Tm);
    899   }
    900 }
    901 
    902 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
    903   ++CurrentBlockInfo->UnprocessedSuccessors;
    904 }
    905 
    906 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
    907   mergePhiNodesBackEdge(Succ);
    908   ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
    909 }
    910 
    911 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
    912   CurrentArguments.clear();
    913   CurrentInstructions.clear();
    914   CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
    915   CurrentBB = nullptr;
    916   CurrentBlockInfo = nullptr;
    917 }
    918 
    919 void SExprBuilder::exitCFG(const CFGBlock *Last) {
    920   for (auto *Ph : IncompleteArgs) {
    921     if (Ph->status() == til::Phi::PH_Incomplete)
    922       simplifyIncompleteArg(Ph);
    923   }
    924 
    925   CurrentArguments.clear();
    926   CurrentInstructions.clear();
    927   IncompleteArgs.clear();
    928 }
    929 
    930 /*
    931 void printSCFG(CFGWalker &Walker) {
    932   llvm::BumpPtrAllocator Bpa;
    933   til::MemRegionRef Arena(&Bpa);
    934   SExprBuilder SxBuilder(Arena);
    935   til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
    936   TILPrinter::print(Scfg, llvm::errs());
    937 }
    938 */
    939