Home | History | Annotate | Download | only in LinearMath
      1 #include "btPolarDecomposition.h"
      2 #include "btMinMax.h"
      3 
      4 namespace
      5 {
      6   btScalar abs_column_sum(const btMatrix3x3& a, int i)
      7   {
      8     return btFabs(a[0][i]) + btFabs(a[1][i]) + btFabs(a[2][i]);
      9   }
     10 
     11   btScalar abs_row_sum(const btMatrix3x3& a, int i)
     12   {
     13     return btFabs(a[i][0]) + btFabs(a[i][1]) + btFabs(a[i][2]);
     14   }
     15 
     16   btScalar p1_norm(const btMatrix3x3& a)
     17   {
     18     const btScalar sum0 = abs_column_sum(a,0);
     19     const btScalar sum1 = abs_column_sum(a,1);
     20     const btScalar sum2 = abs_column_sum(a,2);
     21     return btMax(btMax(sum0, sum1), sum2);
     22   }
     23 
     24   btScalar pinf_norm(const btMatrix3x3& a)
     25   {
     26     const btScalar sum0 = abs_row_sum(a,0);
     27     const btScalar sum1 = abs_row_sum(a,1);
     28     const btScalar sum2 = abs_row_sum(a,2);
     29     return btMax(btMax(sum0, sum1), sum2);
     30   }
     31 }
     32 
     33 const btScalar btPolarDecomposition::DEFAULT_TOLERANCE = btScalar(0.0001);
     34 const unsigned int btPolarDecomposition::DEFAULT_MAX_ITERATIONS = 16;
     35 
     36 btPolarDecomposition::btPolarDecomposition(btScalar tolerance, unsigned int maxIterations)
     37 : m_tolerance(tolerance)
     38 , m_maxIterations(maxIterations)
     39 {
     40 }
     41 
     42 unsigned int btPolarDecomposition::decompose(const btMatrix3x3& a, btMatrix3x3& u, btMatrix3x3& h) const
     43 {
     44   // Use the 'u' and 'h' matrices for intermediate calculations
     45   u = a;
     46   h = a.inverse();
     47 
     48   for (unsigned int i = 0; i < m_maxIterations; ++i)
     49   {
     50     const btScalar h_1 = p1_norm(h);
     51     const btScalar h_inf = pinf_norm(h);
     52     const btScalar u_1 = p1_norm(u);
     53     const btScalar u_inf = pinf_norm(u);
     54 
     55     const btScalar h_norm = h_1 * h_inf;
     56     const btScalar u_norm = u_1 * u_inf;
     57 
     58     // The matrix is effectively singular so we cannot invert it
     59     if (btFuzzyZero(h_norm) || btFuzzyZero(u_norm))
     60       break;
     61 
     62     const btScalar gamma = btPow(h_norm / u_norm, 0.25f);
     63     const btScalar inv_gamma = btScalar(1.0) / gamma;
     64 
     65     // Determine the delta to 'u'
     66     const btMatrix3x3 delta = (u * (gamma - btScalar(2.0)) + h.transpose() * inv_gamma) * btScalar(0.5);
     67 
     68     // Update the matrices
     69     u += delta;
     70     h = u.inverse();
     71 
     72     // Check for convergence
     73     if (p1_norm(delta) <= m_tolerance * u_1)
     74     {
     75       h = u.transpose() * a;
     76       h = (h + h.transpose()) * 0.5;
     77       return i;
     78     }
     79   }
     80 
     81   // The algorithm has failed to converge to the specified tolerance, but we
     82   // want to make sure that the matrices returned are in the right form.
     83   h = u.transpose() * a;
     84   h = (h + h.transpose()) * 0.5;
     85 
     86   return m_maxIterations;
     87 }
     88 
     89 unsigned int btPolarDecomposition::maxIterations() const
     90 {
     91   return m_maxIterations;
     92 }
     93 
     94 unsigned int polarDecompose(const btMatrix3x3& a, btMatrix3x3& u, btMatrix3x3& h)
     95 {
     96   static btPolarDecomposition polar;
     97   return polar.decompose(a, u, h);
     98 }
     99 
    100