Home | History | Annotate | Download | only in Analysis
      1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the LoopInfo class that is used to identify natural loops
     11 // and determine the loop depth of various nodes of the CFG.  Note that the
     12 // loops identified may actually be several natural loops that share the same
     13 // header node... not just a single natural loop.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Analysis/LoopInfo.h"
     18 #include "llvm/ADT/DepthFirstIterator.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/Analysis/LoopInfoImpl.h"
     21 #include "llvm/Analysis/LoopIterator.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/IR/CFG.h"
     24 #include "llvm/IR/Constants.h"
     25 #include "llvm/IR/Dominators.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/LLVMContext.h"
     28 #include "llvm/IR/Metadata.h"
     29 #include "llvm/IR/PassManager.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include <algorithm>
     34 using namespace llvm;
     35 
     36 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
     37 template class llvm::LoopBase<BasicBlock, Loop>;
     38 template class llvm::LoopInfoBase<BasicBlock, Loop>;
     39 
     40 // Always verify loopinfo if expensive checking is enabled.
     41 #ifdef XDEBUG
     42 static bool VerifyLoopInfo = true;
     43 #else
     44 static bool VerifyLoopInfo = false;
     45 #endif
     46 static cl::opt<bool,true>
     47 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
     48                 cl::desc("Verify loop info (time consuming)"));
     49 
     50 // Loop identifier metadata name.
     51 static const char *const LoopMDName = "llvm.loop";
     52 
     53 //===----------------------------------------------------------------------===//
     54 // Loop implementation
     55 //
     56 
     57 /// isLoopInvariant - Return true if the specified value is loop invariant
     58 ///
     59 bool Loop::isLoopInvariant(const Value *V) const {
     60   if (const Instruction *I = dyn_cast<Instruction>(V))
     61     return !contains(I);
     62   return true;  // All non-instructions are loop invariant
     63 }
     64 
     65 /// hasLoopInvariantOperands - Return true if all the operands of the
     66 /// specified instruction are loop invariant.
     67 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
     68   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
     69 }
     70 
     71 /// makeLoopInvariant - If the given value is an instruciton inside of the
     72 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
     73 /// Return true if the value after any hoisting is loop invariant. This
     74 /// function can be used as a slightly more aggressive replacement for
     75 /// isLoopInvariant.
     76 ///
     77 /// If InsertPt is specified, it is the point to hoist instructions to.
     78 /// If null, the terminator of the loop preheader is used.
     79 ///
     80 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
     81                              Instruction *InsertPt) const {
     82   if (Instruction *I = dyn_cast<Instruction>(V))
     83     return makeLoopInvariant(I, Changed, InsertPt);
     84   return true;  // All non-instructions are loop-invariant.
     85 }
     86 
     87 /// makeLoopInvariant - If the given instruction is inside of the
     88 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
     89 /// Return true if the instruction after any hoisting is loop invariant. This
     90 /// function can be used as a slightly more aggressive replacement for
     91 /// isLoopInvariant.
     92 ///
     93 /// If InsertPt is specified, it is the point to hoist instructions to.
     94 /// If null, the terminator of the loop preheader is used.
     95 ///
     96 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
     97                              Instruction *InsertPt) const {
     98   // Test if the value is already loop-invariant.
     99   if (isLoopInvariant(I))
    100     return true;
    101   if (!isSafeToSpeculativelyExecute(I))
    102     return false;
    103   if (I->mayReadFromMemory())
    104     return false;
    105   // EH block instructions are immobile.
    106   if (I->isEHPad())
    107     return false;
    108   // Determine the insertion point, unless one was given.
    109   if (!InsertPt) {
    110     BasicBlock *Preheader = getLoopPreheader();
    111     // Without a preheader, hoisting is not feasible.
    112     if (!Preheader)
    113       return false;
    114     InsertPt = Preheader->getTerminator();
    115   }
    116   // Don't hoist instructions with loop-variant operands.
    117   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    118     if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
    119       return false;
    120 
    121   // Hoist.
    122   I->moveBefore(InsertPt);
    123 
    124   // There is possibility of hoisting this instruction above some arbitrary
    125   // condition. Any metadata defined on it can be control dependent on this
    126   // condition. Conservatively strip it here so that we don't give any wrong
    127   // information to the optimizer.
    128   I->dropUnknownNonDebugMetadata();
    129 
    130   Changed = true;
    131   return true;
    132 }
    133 
    134 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
    135 /// induction variable: an integer recurrence that starts at 0 and increments
    136 /// by one each time through the loop.  If so, return the phi node that
    137 /// corresponds to it.
    138 ///
    139 /// The IndVarSimplify pass transforms loops to have a canonical induction
    140 /// variable.
    141 ///
    142 PHINode *Loop::getCanonicalInductionVariable() const {
    143   BasicBlock *H = getHeader();
    144 
    145   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
    146   pred_iterator PI = pred_begin(H);
    147   assert(PI != pred_end(H) &&
    148          "Loop must have at least one backedge!");
    149   Backedge = *PI++;
    150   if (PI == pred_end(H)) return nullptr;  // dead loop
    151   Incoming = *PI++;
    152   if (PI != pred_end(H)) return nullptr;  // multiple backedges?
    153 
    154   if (contains(Incoming)) {
    155     if (contains(Backedge))
    156       return nullptr;
    157     std::swap(Incoming, Backedge);
    158   } else if (!contains(Backedge))
    159     return nullptr;
    160 
    161   // Loop over all of the PHI nodes, looking for a canonical indvar.
    162   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
    163     PHINode *PN = cast<PHINode>(I);
    164     if (ConstantInt *CI =
    165         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
    166       if (CI->isNullValue())
    167         if (Instruction *Inc =
    168             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
    169           if (Inc->getOpcode() == Instruction::Add &&
    170                 Inc->getOperand(0) == PN)
    171             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
    172               if (CI->equalsInt(1))
    173                 return PN;
    174   }
    175   return nullptr;
    176 }
    177 
    178 /// isLCSSAForm - Return true if the Loop is in LCSSA form
    179 bool Loop::isLCSSAForm(DominatorTree &DT) const {
    180   for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
    181     BasicBlock *BB = *BI;
    182     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) {
    183       // Tokens can't be used in PHI nodes and live-out tokens prevent loop
    184       // optimizations, so for the purposes of considered LCSSA form, we
    185       // can ignore them.
    186       if (I->getType()->isTokenTy())
    187         continue;
    188 
    189       for (Use &U : I->uses()) {
    190         Instruction *UI = cast<Instruction>(U.getUser());
    191         BasicBlock *UserBB = UI->getParent();
    192         if (PHINode *P = dyn_cast<PHINode>(UI))
    193           UserBB = P->getIncomingBlock(U);
    194 
    195         // Check the current block, as a fast-path, before checking whether
    196         // the use is anywhere in the loop.  Most values are used in the same
    197         // block they are defined in.  Also, blocks not reachable from the
    198         // entry are special; uses in them don't need to go through PHIs.
    199         if (UserBB != BB &&
    200             !contains(UserBB) &&
    201             DT.isReachableFromEntry(UserBB))
    202           return false;
    203       }
    204     }
    205   }
    206 
    207   return true;
    208 }
    209 
    210 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT) const {
    211   if (!isLCSSAForm(DT))
    212     return false;
    213 
    214   return std::all_of(begin(), end(), [&](const Loop *L) {
    215     return L->isRecursivelyLCSSAForm(DT);
    216   });
    217 }
    218 
    219 /// isLoopSimplifyForm - Return true if the Loop is in the form that
    220 /// the LoopSimplify form transforms loops to, which is sometimes called
    221 /// normal form.
    222 bool Loop::isLoopSimplifyForm() const {
    223   // Normal-form loops have a preheader, a single backedge, and all of their
    224   // exits have all their predecessors inside the loop.
    225   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
    226 }
    227 
    228 /// isSafeToClone - Return true if the loop body is safe to clone in practice.
    229 /// Routines that reform the loop CFG and split edges often fail on indirectbr.
    230 bool Loop::isSafeToClone() const {
    231   // Return false if any loop blocks contain indirectbrs, or there are any calls
    232   // to noduplicate functions.
    233   for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
    234     if (isa<IndirectBrInst>((*I)->getTerminator()))
    235       return false;
    236 
    237     if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) {
    238       if (II->cannotDuplicate())
    239         return false;
    240       // Return false if any loop blocks contain invokes to EH-pads other than
    241       // landingpads;  we don't know how to split those edges yet.
    242       auto *FirstNonPHI = II->getUnwindDest()->getFirstNonPHI();
    243       if (FirstNonPHI->isEHPad() && !isa<LandingPadInst>(FirstNonPHI))
    244         return false;
    245     }
    246 
    247     for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
    248       if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
    249         if (CI->cannotDuplicate())
    250           return false;
    251       }
    252       if (BI->getType()->isTokenTy() && BI->isUsedOutsideOfBlock(*I))
    253         return false;
    254     }
    255   }
    256   return true;
    257 }
    258 
    259 MDNode *Loop::getLoopID() const {
    260   MDNode *LoopID = nullptr;
    261   if (isLoopSimplifyForm()) {
    262     LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName);
    263   } else {
    264     // Go through each predecessor of the loop header and check the
    265     // terminator for the metadata.
    266     BasicBlock *H = getHeader();
    267     for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
    268       TerminatorInst *TI = (*I)->getTerminator();
    269       MDNode *MD = nullptr;
    270 
    271       // Check if this terminator branches to the loop header.
    272       for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
    273         if (TI->getSuccessor(i) == H) {
    274           MD = TI->getMetadata(LoopMDName);
    275           break;
    276         }
    277       }
    278       if (!MD)
    279         return nullptr;
    280 
    281       if (!LoopID)
    282         LoopID = MD;
    283       else if (MD != LoopID)
    284         return nullptr;
    285     }
    286   }
    287   if (!LoopID || LoopID->getNumOperands() == 0 ||
    288       LoopID->getOperand(0) != LoopID)
    289     return nullptr;
    290   return LoopID;
    291 }
    292 
    293 void Loop::setLoopID(MDNode *LoopID) const {
    294   assert(LoopID && "Loop ID should not be null");
    295   assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
    296   assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
    297 
    298   if (isLoopSimplifyForm()) {
    299     getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID);
    300     return;
    301   }
    302 
    303   BasicBlock *H = getHeader();
    304   for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
    305     TerminatorInst *TI = (*I)->getTerminator();
    306     for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
    307       if (TI->getSuccessor(i) == H)
    308         TI->setMetadata(LoopMDName, LoopID);
    309     }
    310   }
    311 }
    312 
    313 bool Loop::isAnnotatedParallel() const {
    314   MDNode *desiredLoopIdMetadata = getLoopID();
    315 
    316   if (!desiredLoopIdMetadata)
    317       return false;
    318 
    319   // The loop branch contains the parallel loop metadata. In order to ensure
    320   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
    321   // dependencies (thus converted the loop back to a sequential loop), check
    322   // that all the memory instructions in the loop contain parallelism metadata
    323   // that point to the same unique "loop id metadata" the loop branch does.
    324   for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
    325     for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
    326          II != EE; II++) {
    327 
    328       if (!II->mayReadOrWriteMemory())
    329         continue;
    330 
    331       // The memory instruction can refer to the loop identifier metadata
    332       // directly or indirectly through another list metadata (in case of
    333       // nested parallel loops). The loop identifier metadata refers to
    334       // itself so we can check both cases with the same routine.
    335       MDNode *loopIdMD =
    336           II->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
    337 
    338       if (!loopIdMD)
    339         return false;
    340 
    341       bool loopIdMDFound = false;
    342       for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
    343         if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
    344           loopIdMDFound = true;
    345           break;
    346         }
    347       }
    348 
    349       if (!loopIdMDFound)
    350         return false;
    351     }
    352   }
    353   return true;
    354 }
    355 
    356 
    357 /// hasDedicatedExits - Return true if no exit block for the loop
    358 /// has a predecessor that is outside the loop.
    359 bool Loop::hasDedicatedExits() const {
    360   // Each predecessor of each exit block of a normal loop is contained
    361   // within the loop.
    362   SmallVector<BasicBlock *, 4> ExitBlocks;
    363   getExitBlocks(ExitBlocks);
    364   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    365     for (pred_iterator PI = pred_begin(ExitBlocks[i]),
    366          PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
    367       if (!contains(*PI))
    368         return false;
    369   // All the requirements are met.
    370   return true;
    371 }
    372 
    373 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
    374 /// These are the blocks _outside of the current loop_ which are branched to.
    375 /// This assumes that loop exits are in canonical form.
    376 ///
    377 void
    378 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
    379   assert(hasDedicatedExits() &&
    380          "getUniqueExitBlocks assumes the loop has canonical form exits!");
    381 
    382   SmallVector<BasicBlock *, 32> switchExitBlocks;
    383 
    384   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
    385 
    386     BasicBlock *current = *BI;
    387     switchExitBlocks.clear();
    388 
    389     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
    390       // If block is inside the loop then it is not a exit block.
    391       if (contains(*I))
    392         continue;
    393 
    394       pred_iterator PI = pred_begin(*I);
    395       BasicBlock *firstPred = *PI;
    396 
    397       // If current basic block is this exit block's first predecessor
    398       // then only insert exit block in to the output ExitBlocks vector.
    399       // This ensures that same exit block is not inserted twice into
    400       // ExitBlocks vector.
    401       if (current != firstPred)
    402         continue;
    403 
    404       // If a terminator has more then two successors, for example SwitchInst,
    405       // then it is possible that there are multiple edges from current block
    406       // to one exit block.
    407       if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
    408         ExitBlocks.push_back(*I);
    409         continue;
    410       }
    411 
    412       // In case of multiple edges from current block to exit block, collect
    413       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
    414       // duplicate edges.
    415       if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
    416           == switchExitBlocks.end()) {
    417         switchExitBlocks.push_back(*I);
    418         ExitBlocks.push_back(*I);
    419       }
    420     }
    421   }
    422 }
    423 
    424 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
    425 /// block, return that block. Otherwise return null.
    426 BasicBlock *Loop::getUniqueExitBlock() const {
    427   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
    428   getUniqueExitBlocks(UniqueExitBlocks);
    429   if (UniqueExitBlocks.size() == 1)
    430     return UniqueExitBlocks[0];
    431   return nullptr;
    432 }
    433 
    434 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    435 void Loop::dump() const {
    436   print(dbgs());
    437 }
    438 #endif
    439 
    440 //===----------------------------------------------------------------------===//
    441 // UnloopUpdater implementation
    442 //
    443 
    444 namespace {
    445 /// Find the new parent loop for all blocks within the "unloop" whose last
    446 /// backedges has just been removed.
    447 class UnloopUpdater {
    448   Loop *Unloop;
    449   LoopInfo *LI;
    450 
    451   LoopBlocksDFS DFS;
    452 
    453   // Map unloop's immediate subloops to their nearest reachable parents. Nested
    454   // loops within these subloops will not change parents. However, an immediate
    455   // subloop's new parent will be the nearest loop reachable from either its own
    456   // exits *or* any of its nested loop's exits.
    457   DenseMap<Loop*, Loop*> SubloopParents;
    458 
    459   // Flag the presence of an irreducible backedge whose destination is a block
    460   // directly contained by the original unloop.
    461   bool FoundIB;
    462 
    463 public:
    464   UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
    465     Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
    466 
    467   void updateBlockParents();
    468 
    469   void removeBlocksFromAncestors();
    470 
    471   void updateSubloopParents();
    472 
    473 protected:
    474   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
    475 };
    476 } // end anonymous namespace
    477 
    478 /// updateBlockParents - Update the parent loop for all blocks that are directly
    479 /// contained within the original "unloop".
    480 void UnloopUpdater::updateBlockParents() {
    481   if (Unloop->getNumBlocks()) {
    482     // Perform a post order CFG traversal of all blocks within this loop,
    483     // propagating the nearest loop from sucessors to predecessors.
    484     LoopBlocksTraversal Traversal(DFS, LI);
    485     for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
    486            POE = Traversal.end(); POI != POE; ++POI) {
    487 
    488       Loop *L = LI->getLoopFor(*POI);
    489       Loop *NL = getNearestLoop(*POI, L);
    490 
    491       if (NL != L) {
    492         // For reducible loops, NL is now an ancestor of Unloop.
    493         assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
    494                "uninitialized successor");
    495         LI->changeLoopFor(*POI, NL);
    496       }
    497       else {
    498         // Or the current block is part of a subloop, in which case its parent
    499         // is unchanged.
    500         assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
    501       }
    502     }
    503   }
    504   // Each irreducible loop within the unloop induces a round of iteration using
    505   // the DFS result cached by Traversal.
    506   bool Changed = FoundIB;
    507   for (unsigned NIters = 0; Changed; ++NIters) {
    508     assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
    509 
    510     // Iterate over the postorder list of blocks, propagating the nearest loop
    511     // from successors to predecessors as before.
    512     Changed = false;
    513     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
    514            POE = DFS.endPostorder(); POI != POE; ++POI) {
    515 
    516       Loop *L = LI->getLoopFor(*POI);
    517       Loop *NL = getNearestLoop(*POI, L);
    518       if (NL != L) {
    519         assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
    520                "uninitialized successor");
    521         LI->changeLoopFor(*POI, NL);
    522         Changed = true;
    523       }
    524     }
    525   }
    526 }
    527 
    528 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
    529 /// their new parents.
    530 void UnloopUpdater::removeBlocksFromAncestors() {
    531   // Remove all unloop's blocks (including those in nested subloops) from
    532   // ancestors below the new parent loop.
    533   for (Loop::block_iterator BI = Unloop->block_begin(),
    534          BE = Unloop->block_end(); BI != BE; ++BI) {
    535     Loop *OuterParent = LI->getLoopFor(*BI);
    536     if (Unloop->contains(OuterParent)) {
    537       while (OuterParent->getParentLoop() != Unloop)
    538         OuterParent = OuterParent->getParentLoop();
    539       OuterParent = SubloopParents[OuterParent];
    540     }
    541     // Remove blocks from former Ancestors except Unloop itself which will be
    542     // deleted.
    543     for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
    544          OldParent = OldParent->getParentLoop()) {
    545       assert(OldParent && "new loop is not an ancestor of the original");
    546       OldParent->removeBlockFromLoop(*BI);
    547     }
    548   }
    549 }
    550 
    551 /// updateSubloopParents - Update the parent loop for all subloops directly
    552 /// nested within unloop.
    553 void UnloopUpdater::updateSubloopParents() {
    554   while (!Unloop->empty()) {
    555     Loop *Subloop = *std::prev(Unloop->end());
    556     Unloop->removeChildLoop(std::prev(Unloop->end()));
    557 
    558     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
    559     if (Loop *Parent = SubloopParents[Subloop])
    560       Parent->addChildLoop(Subloop);
    561     else
    562       LI->addTopLevelLoop(Subloop);
    563   }
    564 }
    565 
    566 /// getNearestLoop - Return the nearest parent loop among this block's
    567 /// successors. If a successor is a subloop header, consider its parent to be
    568 /// the nearest parent of the subloop's exits.
    569 ///
    570 /// For subloop blocks, simply update SubloopParents and return NULL.
    571 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
    572 
    573   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
    574   // is considered uninitialized.
    575   Loop *NearLoop = BBLoop;
    576 
    577   Loop *Subloop = nullptr;
    578   if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
    579     Subloop = NearLoop;
    580     // Find the subloop ancestor that is directly contained within Unloop.
    581     while (Subloop->getParentLoop() != Unloop) {
    582       Subloop = Subloop->getParentLoop();
    583       assert(Subloop && "subloop is not an ancestor of the original loop");
    584     }
    585     // Get the current nearest parent of the Subloop exits, initially Unloop.
    586     NearLoop =
    587       SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
    588   }
    589 
    590   succ_iterator I = succ_begin(BB), E = succ_end(BB);
    591   if (I == E) {
    592     assert(!Subloop && "subloop blocks must have a successor");
    593     NearLoop = nullptr; // unloop blocks may now exit the function.
    594   }
    595   for (; I != E; ++I) {
    596     if (*I == BB)
    597       continue; // self loops are uninteresting
    598 
    599     Loop *L = LI->getLoopFor(*I);
    600     if (L == Unloop) {
    601       // This successor has not been processed. This path must lead to an
    602       // irreducible backedge.
    603       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
    604       FoundIB = true;
    605     }
    606     if (L != Unloop && Unloop->contains(L)) {
    607       // Successor is in a subloop.
    608       if (Subloop)
    609         continue; // Branching within subloops. Ignore it.
    610 
    611       // BB branches from the original into a subloop header.
    612       assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
    613 
    614       // Get the current nearest parent of the Subloop's exits.
    615       L = SubloopParents[L];
    616       // L could be Unloop if the only exit was an irreducible backedge.
    617     }
    618     if (L == Unloop) {
    619       continue;
    620     }
    621     // Handle critical edges from Unloop into a sibling loop.
    622     if (L && !L->contains(Unloop)) {
    623       L = L->getParentLoop();
    624     }
    625     // Remember the nearest parent loop among successors or subloop exits.
    626     if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
    627       NearLoop = L;
    628   }
    629   if (Subloop) {
    630     SubloopParents[Subloop] = NearLoop;
    631     return BBLoop;
    632   }
    633   return NearLoop;
    634 }
    635 
    636 LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) {
    637   analyze(DomTree);
    638 }
    639 
    640 void LoopInfo::updateUnloop(Loop *Unloop) {
    641   Unloop->markUnlooped();
    642 
    643   // First handle the special case of no parent loop to simplify the algorithm.
    644   if (!Unloop->getParentLoop()) {
    645     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
    646     for (Loop::block_iterator I = Unloop->block_begin(),
    647                               E = Unloop->block_end();
    648          I != E; ++I) {
    649 
    650       // Don't reparent blocks in subloops.
    651       if (getLoopFor(*I) != Unloop)
    652         continue;
    653 
    654       // Blocks no longer have a parent but are still referenced by Unloop until
    655       // the Unloop object is deleted.
    656       changeLoopFor(*I, nullptr);
    657     }
    658 
    659     // Remove the loop from the top-level LoopInfo object.
    660     for (iterator I = begin();; ++I) {
    661       assert(I != end() && "Couldn't find loop");
    662       if (*I == Unloop) {
    663         removeLoop(I);
    664         break;
    665       }
    666     }
    667 
    668     // Move all of the subloops to the top-level.
    669     while (!Unloop->empty())
    670       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
    671 
    672     return;
    673   }
    674 
    675   // Update the parent loop for all blocks within the loop. Blocks within
    676   // subloops will not change parents.
    677   UnloopUpdater Updater(Unloop, this);
    678   Updater.updateBlockParents();
    679 
    680   // Remove blocks from former ancestor loops.
    681   Updater.removeBlocksFromAncestors();
    682 
    683   // Add direct subloops as children in their new parent loop.
    684   Updater.updateSubloopParents();
    685 
    686   // Remove unloop from its parent loop.
    687   Loop *ParentLoop = Unloop->getParentLoop();
    688   for (Loop::iterator I = ParentLoop->begin();; ++I) {
    689     assert(I != ParentLoop->end() && "Couldn't find loop");
    690     if (*I == Unloop) {
    691       ParentLoop->removeChildLoop(I);
    692       break;
    693     }
    694   }
    695 }
    696 
    697 char LoopAnalysis::PassID;
    698 
    699 LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> *AM) {
    700   // FIXME: Currently we create a LoopInfo from scratch for every function.
    701   // This may prove to be too wasteful due to deallocating and re-allocating
    702   // memory each time for the underlying map and vector datastructures. At some
    703   // point it may prove worthwhile to use a freelist and recycle LoopInfo
    704   // objects. I don't want to add that kind of complexity until the scope of
    705   // the problem is better understood.
    706   LoopInfo LI;
    707   LI.analyze(AM->getResult<DominatorTreeAnalysis>(F));
    708   return LI;
    709 }
    710 
    711 PreservedAnalyses LoopPrinterPass::run(Function &F,
    712                                        AnalysisManager<Function> *AM) {
    713   AM->getResult<LoopAnalysis>(F).print(OS);
    714   return PreservedAnalyses::all();
    715 }
    716 
    717 PrintLoopPass::PrintLoopPass() : OS(dbgs()) {}
    718 PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner)
    719     : OS(OS), Banner(Banner) {}
    720 
    721 PreservedAnalyses PrintLoopPass::run(Loop &L) {
    722   OS << Banner;
    723   for (auto *Block : L.blocks())
    724     if (Block)
    725       Block->print(OS);
    726     else
    727       OS << "Printing <null> block";
    728   return PreservedAnalyses::all();
    729 }
    730 
    731 //===----------------------------------------------------------------------===//
    732 // LoopInfo implementation
    733 //
    734 
    735 char LoopInfoWrapperPass::ID = 0;
    736 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
    737                       true, true)
    738 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    739 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
    740                     true, true)
    741 
    742 bool LoopInfoWrapperPass::runOnFunction(Function &) {
    743   releaseMemory();
    744   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
    745   return false;
    746 }
    747 
    748 void LoopInfoWrapperPass::verifyAnalysis() const {
    749   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
    750   // function each time verifyAnalysis is called is very expensive. The
    751   // -verify-loop-info option can enable this. In order to perform some
    752   // checking by default, LoopPass has been taught to call verifyLoop manually
    753   // during loop pass sequences.
    754   if (VerifyLoopInfo)
    755     LI.verify();
    756 }
    757 
    758 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
    759   AU.setPreservesAll();
    760   AU.addRequired<DominatorTreeWrapperPass>();
    761 }
    762 
    763 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
    764   LI.print(OS);
    765 }
    766 
    767 //===----------------------------------------------------------------------===//
    768 // LoopBlocksDFS implementation
    769 //
    770 
    771 /// Traverse the loop blocks and store the DFS result.
    772 /// Useful for clients that just want the final DFS result and don't need to
    773 /// visit blocks during the initial traversal.
    774 void LoopBlocksDFS::perform(LoopInfo *LI) {
    775   LoopBlocksTraversal Traversal(*this, LI);
    776   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
    777          POE = Traversal.end(); POI != POE; ++POI) ;
    778 }
    779