1 /* An expandable hash tables datatype. 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010 3 Free Software Foundation, Inc. 4 Contributed by Vladimir Makarov (vmakarov (at) cygnus.com). 5 6 This file is part of the libiberty library. 7 Libiberty is free software; you can redistribute it and/or 8 modify it under the terms of the GNU Library General Public 9 License as published by the Free Software Foundation; either 10 version 2 of the License, or (at your option) any later version. 11 12 Libiberty is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 Library General Public License for more details. 16 17 You should have received a copy of the GNU Library General Public 18 License along with libiberty; see the file COPYING.LIB. If 19 not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, 20 Boston, MA 02110-1301, USA. */ 21 22 /* This package implements basic hash table functionality. It is possible 23 to search for an entry, create an entry and destroy an entry. 24 25 Elements in the table are generic pointers. 26 27 The size of the table is not fixed; if the occupancy of the table 28 grows too high the hash table will be expanded. 29 30 The abstract data implementation is based on generalized Algorithm D 31 from Knuth's book "The art of computer programming". Hash table is 32 expanded by creation of new hash table and transferring elements from 33 the old table to the new table. */ 34 35 #ifdef HAVE_CONFIG_H 36 #include "config.h" 37 #endif 38 39 #include <sys/types.h> 40 41 #ifdef HAVE_STDLIB_H 42 #include <stdlib.h> 43 #endif 44 #ifdef HAVE_STRING_H 45 #include <string.h> 46 #endif 47 #ifdef HAVE_MALLOC_H 48 #include <malloc.h> 49 #endif 50 #ifdef HAVE_LIMITS_H 51 #include <limits.h> 52 #endif 53 #ifdef HAVE_INTTYPES_H 54 #include <inttypes.h> 55 #endif 56 #ifdef HAVE_STDINT_H 57 #include <stdint.h> 58 #endif 59 60 #include <stdio.h> 61 62 #include "libiberty.h" 63 #include "ansidecl.h" 64 #include "hashtab.h" 65 66 #ifndef CHAR_BIT 67 #define CHAR_BIT 8 68 #endif 69 70 static unsigned int higher_prime_index (unsigned long); 71 static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int); 72 static hashval_t htab_mod (hashval_t, htab_t); 73 static hashval_t htab_mod_m2 (hashval_t, htab_t); 74 static hashval_t hash_pointer (const void *); 75 static int eq_pointer (const void *, const void *); 76 static int htab_expand (htab_t); 77 static PTR *find_empty_slot_for_expand (htab_t, hashval_t); 78 79 /* At some point, we could make these be NULL, and modify the 80 hash-table routines to handle NULL specially; that would avoid 81 function-call overhead for the common case of hashing pointers. */ 82 htab_hash htab_hash_pointer = hash_pointer; 83 htab_eq htab_eq_pointer = eq_pointer; 84 85 /* Table of primes and multiplicative inverses. 86 87 Note that these are not minimally reduced inverses. Unlike when generating 88 code to divide by a constant, we want to be able to use the same algorithm 89 all the time. All of these inverses (are implied to) have bit 32 set. 90 91 For the record, here's the function that computed the table; it's a 92 vastly simplified version of the function of the same name from gcc. */ 93 94 #if 0 95 unsigned int 96 ceil_log2 (unsigned int x) 97 { 98 int i; 99 for (i = 31; i >= 0 ; --i) 100 if (x > (1u << i)) 101 return i+1; 102 abort (); 103 } 104 105 unsigned int 106 choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp) 107 { 108 unsigned long long mhigh; 109 double nx; 110 int lgup, post_shift; 111 int pow, pow2; 112 int n = 32, precision = 32; 113 114 lgup = ceil_log2 (d); 115 pow = n + lgup; 116 pow2 = n + lgup - precision; 117 118 nx = ldexp (1.0, pow) + ldexp (1.0, pow2); 119 mhigh = nx / d; 120 121 *shiftp = lgup - 1; 122 *mlp = mhigh; 123 return mhigh >> 32; 124 } 125 #endif 126 127 struct prime_ent 128 { 129 hashval_t prime; 130 hashval_t inv; 131 hashval_t inv_m2; /* inverse of prime-2 */ 132 hashval_t shift; 133 }; 134 135 static struct prime_ent const prime_tab[] = { 136 { 7, 0x24924925, 0x9999999b, 2 }, 137 { 13, 0x3b13b13c, 0x745d1747, 3 }, 138 { 31, 0x08421085, 0x1a7b9612, 4 }, 139 { 61, 0x0c9714fc, 0x15b1e5f8, 5 }, 140 { 127, 0x02040811, 0x0624dd30, 6 }, 141 { 251, 0x05197f7e, 0x073260a5, 7 }, 142 { 509, 0x01824366, 0x02864fc8, 8 }, 143 { 1021, 0x00c0906d, 0x014191f7, 9 }, 144 { 2039, 0x0121456f, 0x0161e69e, 10 }, 145 { 4093, 0x00300902, 0x00501908, 11 }, 146 { 8191, 0x00080041, 0x00180241, 12 }, 147 { 16381, 0x000c0091, 0x00140191, 13 }, 148 { 32749, 0x002605a5, 0x002a06e6, 14 }, 149 { 65521, 0x000f00e2, 0x00110122, 15 }, 150 { 131071, 0x00008001, 0x00018003, 16 }, 151 { 262139, 0x00014002, 0x0001c004, 17 }, 152 { 524287, 0x00002001, 0x00006001, 18 }, 153 { 1048573, 0x00003001, 0x00005001, 19 }, 154 { 2097143, 0x00004801, 0x00005801, 20 }, 155 { 4194301, 0x00000c01, 0x00001401, 21 }, 156 { 8388593, 0x00001e01, 0x00002201, 22 }, 157 { 16777213, 0x00000301, 0x00000501, 23 }, 158 { 33554393, 0x00001381, 0x00001481, 24 }, 159 { 67108859, 0x00000141, 0x000001c1, 25 }, 160 { 134217689, 0x000004e1, 0x00000521, 26 }, 161 { 268435399, 0x00000391, 0x000003b1, 27 }, 162 { 536870909, 0x00000019, 0x00000029, 28 }, 163 { 1073741789, 0x0000008d, 0x00000095, 29 }, 164 { 2147483647, 0x00000003, 0x00000007, 30 }, 165 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */ 166 { 0xfffffffb, 0x00000006, 0x00000008, 31 } 167 }; 168 169 /* The following function returns an index into the above table of the 170 nearest prime number which is greater than N, and near a power of two. */ 171 172 static unsigned int 173 higher_prime_index (unsigned long n) 174 { 175 unsigned int low = 0; 176 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]); 177 178 while (low != high) 179 { 180 unsigned int mid = low + (high - low) / 2; 181 if (n > prime_tab[mid].prime) 182 low = mid + 1; 183 else 184 high = mid; 185 } 186 187 /* If we've run out of primes, abort. */ 188 if (n > prime_tab[low].prime) 189 { 190 fprintf (stderr, "Cannot find prime bigger than %lu\n", n); 191 abort (); 192 } 193 194 return low; 195 } 196 197 /* Returns non-zero if P1 and P2 are equal. */ 198 199 static int 200 eq_pointer (const PTR p1, const PTR p2) 201 { 202 return p1 == p2; 203 } 204 205 206 /* The parens around the function names in the next two definitions 207 are essential in order to prevent macro expansions of the name. 208 The bodies, however, are expanded as expected, so they are not 209 recursive definitions. */ 210 211 /* Return the current size of given hash table. */ 212 213 #define htab_size(htab) ((htab)->size) 214 215 size_t 216 (htab_size) (htab_t htab) 217 { 218 return htab_size (htab); 219 } 220 221 /* Return the current number of elements in given hash table. */ 222 223 #define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted) 224 225 size_t 226 (htab_elements) (htab_t htab) 227 { 228 return htab_elements (htab); 229 } 230 231 /* Return X % Y. */ 232 233 static inline hashval_t 234 htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift) 235 { 236 /* The multiplicative inverses computed above are for 32-bit types, and 237 requires that we be able to compute a highpart multiply. */ 238 #ifdef UNSIGNED_64BIT_TYPE 239 __extension__ typedef UNSIGNED_64BIT_TYPE ull; 240 if (sizeof (hashval_t) * CHAR_BIT <= 32) 241 { 242 hashval_t t1, t2, t3, t4, q, r; 243 244 t1 = ((ull)x * inv) >> 32; 245 t2 = x - t1; 246 t3 = t2 >> 1; 247 t4 = t1 + t3; 248 q = t4 >> shift; 249 r = x - (q * y); 250 251 return r; 252 } 253 #endif 254 255 /* Otherwise just use the native division routines. */ 256 return x % y; 257 } 258 259 /* Compute the primary hash for HASH given HTAB's current size. */ 260 261 static inline hashval_t 262 htab_mod (hashval_t hash, htab_t htab) 263 { 264 const struct prime_ent *p = &prime_tab[htab->size_prime_index]; 265 return htab_mod_1 (hash, p->prime, p->inv, p->shift); 266 } 267 268 /* Compute the secondary hash for HASH given HTAB's current size. */ 269 270 static inline hashval_t 271 htab_mod_m2 (hashval_t hash, htab_t htab) 272 { 273 const struct prime_ent *p = &prime_tab[htab->size_prime_index]; 274 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift); 275 } 276 277 /* This function creates table with length slightly longer than given 278 source length. Created hash table is initiated as empty (all the 279 hash table entries are HTAB_EMPTY_ENTRY). The function returns the 280 created hash table, or NULL if memory allocation fails. */ 281 282 htab_t 283 htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f, 284 htab_del del_f, htab_alloc alloc_f, htab_free free_f) 285 { 286 return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f, 287 free_f); 288 } 289 290 /* As above, but uses the variants of ALLOC_F and FREE_F which accept 291 an extra argument. */ 292 293 htab_t 294 htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f, 295 htab_del del_f, void *alloc_arg, 296 htab_alloc_with_arg alloc_f, 297 htab_free_with_arg free_f) 298 { 299 htab_t result; 300 unsigned int size_prime_index; 301 302 size_prime_index = higher_prime_index (size); 303 size = prime_tab[size_prime_index].prime; 304 305 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab)); 306 if (result == NULL) 307 return NULL; 308 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR)); 309 if (result->entries == NULL) 310 { 311 if (free_f != NULL) 312 (*free_f) (alloc_arg, result); 313 return NULL; 314 } 315 result->size = size; 316 result->size_prime_index = size_prime_index; 317 result->hash_f = hash_f; 318 result->eq_f = eq_f; 319 result->del_f = del_f; 320 result->alloc_arg = alloc_arg; 321 result->alloc_with_arg_f = alloc_f; 322 result->free_with_arg_f = free_f; 323 return result; 324 } 325 326 /* 327 328 @deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @ 329 htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @ 330 htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @ 331 htab_free @var{free_f}) 332 333 This function creates a hash table that uses two different allocators 334 @var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself 335 and its entries respectively. This is useful when variables of different 336 types need to be allocated with different allocators. 337 338 The created hash table is slightly larger than @var{size} and it is 339 initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}). 340 The function returns the created hash table, or @code{NULL} if memory 341 allocation fails. 342 343 @end deftypefn 344 345 */ 346 347 htab_t 348 htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f, 349 htab_del del_f, htab_alloc alloc_tab_f, 350 htab_alloc alloc_f, htab_free free_f) 351 { 352 htab_t result; 353 unsigned int size_prime_index; 354 355 size_prime_index = higher_prime_index (size); 356 size = prime_tab[size_prime_index].prime; 357 358 result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab)); 359 if (result == NULL) 360 return NULL; 361 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR)); 362 if (result->entries == NULL) 363 { 364 if (free_f != NULL) 365 (*free_f) (result); 366 return NULL; 367 } 368 result->size = size; 369 result->size_prime_index = size_prime_index; 370 result->hash_f = hash_f; 371 result->eq_f = eq_f; 372 result->del_f = del_f; 373 result->alloc_f = alloc_f; 374 result->free_f = free_f; 375 return result; 376 } 377 378 379 /* Update the function pointers and allocation parameter in the htab_t. */ 380 381 void 382 htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f, 383 htab_del del_f, PTR alloc_arg, 384 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f) 385 { 386 htab->hash_f = hash_f; 387 htab->eq_f = eq_f; 388 htab->del_f = del_f; 389 htab->alloc_arg = alloc_arg; 390 htab->alloc_with_arg_f = alloc_f; 391 htab->free_with_arg_f = free_f; 392 } 393 394 /* These functions exist solely for backward compatibility. */ 395 396 #undef htab_create 397 htab_t 398 htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f) 399 { 400 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free); 401 } 402 403 htab_t 404 htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f) 405 { 406 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free); 407 } 408 409 /* This function frees all memory allocated for given hash table. 410 Naturally the hash table must already exist. */ 411 412 void 413 htab_delete (htab_t htab) 414 { 415 size_t size = htab_size (htab); 416 PTR *entries = htab->entries; 417 int i; 418 419 if (htab->del_f) 420 for (i = size - 1; i >= 0; i--) 421 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY) 422 (*htab->del_f) (entries[i]); 423 424 if (htab->free_f != NULL) 425 { 426 (*htab->free_f) (entries); 427 (*htab->free_f) (htab); 428 } 429 else if (htab->free_with_arg_f != NULL) 430 { 431 (*htab->free_with_arg_f) (htab->alloc_arg, entries); 432 (*htab->free_with_arg_f) (htab->alloc_arg, htab); 433 } 434 } 435 436 /* This function clears all entries in the given hash table. */ 437 438 void 439 htab_empty (htab_t htab) 440 { 441 size_t size = htab_size (htab); 442 PTR *entries = htab->entries; 443 int i; 444 445 if (htab->del_f) 446 for (i = size - 1; i >= 0; i--) 447 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY) 448 (*htab->del_f) (entries[i]); 449 450 /* Instead of clearing megabyte, downsize the table. */ 451 if (size > 1024*1024 / sizeof (PTR)) 452 { 453 int nindex = higher_prime_index (1024 / sizeof (PTR)); 454 int nsize = prime_tab[nindex].prime; 455 456 if (htab->free_f != NULL) 457 (*htab->free_f) (htab->entries); 458 else if (htab->free_with_arg_f != NULL) 459 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries); 460 if (htab->alloc_with_arg_f != NULL) 461 htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize, 462 sizeof (PTR *)); 463 else 464 htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *)); 465 htab->size = nsize; 466 htab->size_prime_index = nindex; 467 } 468 else 469 memset (entries, 0, size * sizeof (PTR)); 470 htab->n_deleted = 0; 471 htab->n_elements = 0; 472 } 473 474 /* Similar to htab_find_slot, but without several unwanted side effects: 475 - Does not call htab->eq_f when it finds an existing entry. 476 - Does not change the count of elements/searches/collisions in the 477 hash table. 478 This function also assumes there are no deleted entries in the table. 479 HASH is the hash value for the element to be inserted. */ 480 481 static PTR * 482 find_empty_slot_for_expand (htab_t htab, hashval_t hash) 483 { 484 hashval_t index = htab_mod (hash, htab); 485 size_t size = htab_size (htab); 486 PTR *slot = htab->entries + index; 487 hashval_t hash2; 488 489 if (*slot == HTAB_EMPTY_ENTRY) 490 return slot; 491 else if (*slot == HTAB_DELETED_ENTRY) 492 abort (); 493 494 hash2 = htab_mod_m2 (hash, htab); 495 for (;;) 496 { 497 index += hash2; 498 if (index >= size) 499 index -= size; 500 501 slot = htab->entries + index; 502 if (*slot == HTAB_EMPTY_ENTRY) 503 return slot; 504 else if (*slot == HTAB_DELETED_ENTRY) 505 abort (); 506 } 507 } 508 509 /* The following function changes size of memory allocated for the 510 entries and repeatedly inserts the table elements. The occupancy 511 of the table after the call will be about 50%. Naturally the hash 512 table must already exist. Remember also that the place of the 513 table entries is changed. If memory allocation failures are allowed, 514 this function will return zero, indicating that the table could not be 515 expanded. If all goes well, it will return a non-zero value. */ 516 517 static int 518 htab_expand (htab_t htab) 519 { 520 PTR *oentries; 521 PTR *olimit; 522 PTR *p; 523 PTR *nentries; 524 size_t nsize, osize, elts; 525 unsigned int oindex, nindex; 526 527 oentries = htab->entries; 528 oindex = htab->size_prime_index; 529 osize = htab->size; 530 olimit = oentries + osize; 531 elts = htab_elements (htab); 532 533 /* Resize only when table after removal of unused elements is either 534 too full or too empty. */ 535 if (elts * 2 > osize || (elts * 8 < osize && osize > 32)) 536 { 537 nindex = higher_prime_index (elts * 2); 538 nsize = prime_tab[nindex].prime; 539 } 540 else 541 { 542 nindex = oindex; 543 nsize = osize; 544 } 545 546 if (htab->alloc_with_arg_f != NULL) 547 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize, 548 sizeof (PTR *)); 549 else 550 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *)); 551 if (nentries == NULL) 552 return 0; 553 htab->entries = nentries; 554 htab->size = nsize; 555 htab->size_prime_index = nindex; 556 htab->n_elements -= htab->n_deleted; 557 htab->n_deleted = 0; 558 559 p = oentries; 560 do 561 { 562 PTR x = *p; 563 564 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) 565 { 566 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x)); 567 568 *q = x; 569 } 570 571 p++; 572 } 573 while (p < olimit); 574 575 if (htab->free_f != NULL) 576 (*htab->free_f) (oentries); 577 else if (htab->free_with_arg_f != NULL) 578 (*htab->free_with_arg_f) (htab->alloc_arg, oentries); 579 return 1; 580 } 581 582 /* This function searches for a hash table entry equal to the given 583 element. It cannot be used to insert or delete an element. */ 584 585 PTR 586 htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash) 587 { 588 hashval_t index, hash2; 589 size_t size; 590 PTR entry; 591 592 htab->searches++; 593 size = htab_size (htab); 594 index = htab_mod (hash, htab); 595 596 entry = htab->entries[index]; 597 if (entry == HTAB_EMPTY_ENTRY 598 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element))) 599 return entry; 600 601 hash2 = htab_mod_m2 (hash, htab); 602 for (;;) 603 { 604 htab->collisions++; 605 index += hash2; 606 if (index >= size) 607 index -= size; 608 609 entry = htab->entries[index]; 610 if (entry == HTAB_EMPTY_ENTRY 611 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element))) 612 return entry; 613 } 614 } 615 616 /* Like htab_find_slot_with_hash, but compute the hash value from the 617 element. */ 618 619 PTR 620 htab_find (htab_t htab, const PTR element) 621 { 622 return htab_find_with_hash (htab, element, (*htab->hash_f) (element)); 623 } 624 625 /* This function searches for a hash table slot containing an entry 626 equal to the given element. To delete an entry, call this with 627 insert=NO_INSERT, then call htab_clear_slot on the slot returned 628 (possibly after doing some checks). To insert an entry, call this 629 with insert=INSERT, then write the value you want into the returned 630 slot. When inserting an entry, NULL may be returned if memory 631 allocation fails. */ 632 633 PTR * 634 htab_find_slot_with_hash (htab_t htab, const PTR element, 635 hashval_t hash, enum insert_option insert) 636 { 637 PTR *first_deleted_slot; 638 hashval_t index, hash2; 639 size_t size; 640 PTR entry; 641 642 size = htab_size (htab); 643 if (insert == INSERT && size * 3 <= htab->n_elements * 4) 644 { 645 if (htab_expand (htab) == 0) 646 return NULL; 647 size = htab_size (htab); 648 } 649 650 index = htab_mod (hash, htab); 651 652 htab->searches++; 653 first_deleted_slot = NULL; 654 655 entry = htab->entries[index]; 656 if (entry == HTAB_EMPTY_ENTRY) 657 goto empty_entry; 658 else if (entry == HTAB_DELETED_ENTRY) 659 first_deleted_slot = &htab->entries[index]; 660 else if ((*htab->eq_f) (entry, element)) 661 return &htab->entries[index]; 662 663 hash2 = htab_mod_m2 (hash, htab); 664 for (;;) 665 { 666 htab->collisions++; 667 index += hash2; 668 if (index >= size) 669 index -= size; 670 671 entry = htab->entries[index]; 672 if (entry == HTAB_EMPTY_ENTRY) 673 goto empty_entry; 674 else if (entry == HTAB_DELETED_ENTRY) 675 { 676 if (!first_deleted_slot) 677 first_deleted_slot = &htab->entries[index]; 678 } 679 else if ((*htab->eq_f) (entry, element)) 680 return &htab->entries[index]; 681 } 682 683 empty_entry: 684 if (insert == NO_INSERT) 685 return NULL; 686 687 if (first_deleted_slot) 688 { 689 htab->n_deleted--; 690 *first_deleted_slot = HTAB_EMPTY_ENTRY; 691 return first_deleted_slot; 692 } 693 694 htab->n_elements++; 695 return &htab->entries[index]; 696 } 697 698 /* Like htab_find_slot_with_hash, but compute the hash value from the 699 element. */ 700 701 PTR * 702 htab_find_slot (htab_t htab, const PTR element, enum insert_option insert) 703 { 704 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element), 705 insert); 706 } 707 708 /* This function deletes an element with the given value from hash 709 table (the hash is computed from the element). If there is no matching 710 element in the hash table, this function does nothing. */ 711 712 void 713 htab_remove_elt (htab_t htab, PTR element) 714 { 715 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element)); 716 } 717 718 719 /* This function deletes an element with the given value from hash 720 table. If there is no matching element in the hash table, this 721 function does nothing. */ 722 723 void 724 htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash) 725 { 726 PTR *slot; 727 728 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT); 729 if (*slot == HTAB_EMPTY_ENTRY) 730 return; 731 732 if (htab->del_f) 733 (*htab->del_f) (*slot); 734 735 *slot = HTAB_DELETED_ENTRY; 736 htab->n_deleted++; 737 } 738 739 /* This function clears a specified slot in a hash table. It is 740 useful when you've already done the lookup and don't want to do it 741 again. */ 742 743 void 744 htab_clear_slot (htab_t htab, PTR *slot) 745 { 746 if (slot < htab->entries || slot >= htab->entries + htab_size (htab) 747 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY) 748 abort (); 749 750 if (htab->del_f) 751 (*htab->del_f) (*slot); 752 753 *slot = HTAB_DELETED_ENTRY; 754 htab->n_deleted++; 755 } 756 757 /* This function scans over the entire hash table calling 758 CALLBACK for each live entry. If CALLBACK returns false, 759 the iteration stops. INFO is passed as CALLBACK's second 760 argument. */ 761 762 void 763 htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info) 764 { 765 PTR *slot; 766 PTR *limit; 767 768 slot = htab->entries; 769 limit = slot + htab_size (htab); 770 771 do 772 { 773 PTR x = *slot; 774 775 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) 776 if (!(*callback) (slot, info)) 777 break; 778 } 779 while (++slot < limit); 780 } 781 782 /* Like htab_traverse_noresize, but does resize the table when it is 783 too empty to improve effectivity of subsequent calls. */ 784 785 void 786 htab_traverse (htab_t htab, htab_trav callback, PTR info) 787 { 788 size_t size = htab_size (htab); 789 if (htab_elements (htab) * 8 < size && size > 32) 790 htab_expand (htab); 791 792 htab_traverse_noresize (htab, callback, info); 793 } 794 795 /* Return the fraction of fixed collisions during all work with given 796 hash table. */ 797 798 double 799 htab_collisions (htab_t htab) 800 { 801 if (htab->searches == 0) 802 return 0.0; 803 804 return (double) htab->collisions / (double) htab->searches; 805 } 806 807 /* Hash P as a null-terminated string. 808 809 Copied from gcc/hashtable.c. Zack had the following to say with respect 810 to applicability, though note that unlike hashtable.c, this hash table 811 implementation re-hashes rather than chain buckets. 812 813 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html 814 From: Zack Weinberg <zackw (at) panix.com> 815 Date: Fri, 17 Aug 2001 02:15:56 -0400 816 817 I got it by extracting all the identifiers from all the source code 818 I had lying around in mid-1999, and testing many recurrences of 819 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either 820 prime numbers or the appropriate identity. This was the best one. 821 I don't remember exactly what constituted "best", except I was 822 looking at bucket-length distributions mostly. 823 824 So it should be very good at hashing identifiers, but might not be 825 as good at arbitrary strings. 826 827 I'll add that it thoroughly trounces the hash functions recommended 828 for this use at http://burtleburtle.net/bob/hash/index.html, both 829 on speed and bucket distribution. I haven't tried it against the 830 function they just started using for Perl's hashes. */ 831 832 hashval_t 833 htab_hash_string (const PTR p) 834 { 835 const unsigned char *str = (const unsigned char *) p; 836 hashval_t r = 0; 837 unsigned char c; 838 839 while ((c = *str++) != 0) 840 r = r * 67 + c - 113; 841 842 return r; 843 } 844 845 /* DERIVED FROM: 846 -------------------------------------------------------------------- 847 lookup2.c, by Bob Jenkins, December 1996, Public Domain. 848 hash(), hash2(), hash3, and mix() are externally useful functions. 849 Routines to test the hash are included if SELF_TEST is defined. 850 You can use this free for any purpose. It has no warranty. 851 -------------------------------------------------------------------- 852 */ 853 854 /* 855 -------------------------------------------------------------------- 856 mix -- mix 3 32-bit values reversibly. 857 For every delta with one or two bit set, and the deltas of all three 858 high bits or all three low bits, whether the original value of a,b,c 859 is almost all zero or is uniformly distributed, 860 * If mix() is run forward or backward, at least 32 bits in a,b,c 861 have at least 1/4 probability of changing. 862 * If mix() is run forward, every bit of c will change between 1/3 and 863 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.) 864 mix() was built out of 36 single-cycle latency instructions in a 865 structure that could supported 2x parallelism, like so: 866 a -= b; 867 a -= c; x = (c>>13); 868 b -= c; a ^= x; 869 b -= a; x = (a<<8); 870 c -= a; b ^= x; 871 c -= b; x = (b>>13); 872 ... 873 Unfortunately, superscalar Pentiums and Sparcs can't take advantage 874 of that parallelism. They've also turned some of those single-cycle 875 latency instructions into multi-cycle latency instructions. Still, 876 this is the fastest good hash I could find. There were about 2^^68 877 to choose from. I only looked at a billion or so. 878 -------------------------------------------------------------------- 879 */ 880 /* same, but slower, works on systems that might have 8 byte hashval_t's */ 881 #define mix(a,b,c) \ 882 { \ 883 a -= b; a -= c; a ^= (c>>13); \ 884 b -= c; b -= a; b ^= (a<< 8); \ 885 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \ 886 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \ 887 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \ 888 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \ 889 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \ 890 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \ 891 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \ 892 } 893 894 /* 895 -------------------------------------------------------------------- 896 hash() -- hash a variable-length key into a 32-bit value 897 k : the key (the unaligned variable-length array of bytes) 898 len : the length of the key, counting by bytes 899 level : can be any 4-byte value 900 Returns a 32-bit value. Every bit of the key affects every bit of 901 the return value. Every 1-bit and 2-bit delta achieves avalanche. 902 About 36+6len instructions. 903 904 The best hash table sizes are powers of 2. There is no need to do 905 mod a prime (mod is sooo slow!). If you need less than 32 bits, 906 use a bitmask. For example, if you need only 10 bits, do 907 h = (h & hashmask(10)); 908 In which case, the hash table should have hashsize(10) elements. 909 910 If you are hashing n strings (ub1 **)k, do it like this: 911 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h); 912 913 By Bob Jenkins, 1996. bob_jenkins (at) burtleburtle.net. You may use this 914 code any way you wish, private, educational, or commercial. It's free. 915 916 See http://burtleburtle.net/bob/hash/evahash.html 917 Use for hash table lookup, or anything where one collision in 2^32 is 918 acceptable. Do NOT use for cryptographic purposes. 919 -------------------------------------------------------------------- 920 */ 921 922 hashval_t 923 iterative_hash (const PTR k_in /* the key */, 924 register size_t length /* the length of the key */, 925 register hashval_t initval /* the previous hash, or 926 an arbitrary value */) 927 { 928 register const unsigned char *k = (const unsigned char *)k_in; 929 register hashval_t a,b,c,len; 930 931 /* Set up the internal state */ 932 len = length; 933 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */ 934 c = initval; /* the previous hash value */ 935 936 /*---------------------------------------- handle most of the key */ 937 #ifndef WORDS_BIGENDIAN 938 /* On a little-endian machine, if the data is 4-byte aligned we can hash 939 by word for better speed. This gives nondeterministic results on 940 big-endian machines. */ 941 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0) 942 while (len >= 12) /* aligned */ 943 { 944 a += *(hashval_t *)(k+0); 945 b += *(hashval_t *)(k+4); 946 c += *(hashval_t *)(k+8); 947 mix(a,b,c); 948 k += 12; len -= 12; 949 } 950 else /* unaligned */ 951 #endif 952 while (len >= 12) 953 { 954 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24)); 955 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24)); 956 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24)); 957 mix(a,b,c); 958 k += 12; len -= 12; 959 } 960 961 /*------------------------------------- handle the last 11 bytes */ 962 c += length; 963 switch(len) /* all the case statements fall through */ 964 { 965 case 11: c+=((hashval_t)k[10]<<24); 966 case 10: c+=((hashval_t)k[9]<<16); 967 case 9 : c+=((hashval_t)k[8]<<8); 968 /* the first byte of c is reserved for the length */ 969 case 8 : b+=((hashval_t)k[7]<<24); 970 case 7 : b+=((hashval_t)k[6]<<16); 971 case 6 : b+=((hashval_t)k[5]<<8); 972 case 5 : b+=k[4]; 973 case 4 : a+=((hashval_t)k[3]<<24); 974 case 3 : a+=((hashval_t)k[2]<<16); 975 case 2 : a+=((hashval_t)k[1]<<8); 976 case 1 : a+=k[0]; 977 /* case 0: nothing left to add */ 978 } 979 mix(a,b,c); 980 /*-------------------------------------------- report the result */ 981 return c; 982 } 983 984 /* Returns a hash code for pointer P. Simplified version of evahash */ 985 986 static hashval_t 987 hash_pointer (const PTR p) 988 { 989 intptr_t v = (intptr_t) p; 990 unsigned a, b, c; 991 992 a = b = 0x9e3779b9; 993 a += v >> (sizeof (intptr_t) * CHAR_BIT / 2); 994 b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1); 995 c = 0x42135234; 996 mix (a, b, c); 997 return c; 998 } 999