Home | History | Annotate | Download | only in neteq
      1 /*
      2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "webrtc/modules/audio_coding/neteq/delay_manager.h"
     12 
     13 #include <assert.h>
     14 #include <math.h>
     15 
     16 #include <algorithm>  // max, min
     17 
     18 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
     19 #include "webrtc/modules/audio_coding/neteq/delay_peak_detector.h"
     20 #include "webrtc/modules/include/module_common_types.h"
     21 #include "webrtc/system_wrappers/include/logging.h"
     22 
     23 namespace webrtc {
     24 
     25 DelayManager::DelayManager(size_t max_packets_in_buffer,
     26                            DelayPeakDetector* peak_detector)
     27     : first_packet_received_(false),
     28       max_packets_in_buffer_(max_packets_in_buffer),
     29       iat_vector_(kMaxIat + 1, 0),
     30       iat_factor_(0),
     31       packet_iat_count_ms_(0),
     32       base_target_level_(4),  // In Q0 domain.
     33       target_level_(base_target_level_ << 8),  // In Q8 domain.
     34       packet_len_ms_(0),
     35       streaming_mode_(false),
     36       last_seq_no_(0),
     37       last_timestamp_(0),
     38       minimum_delay_ms_(0),
     39       least_required_delay_ms_(target_level_),
     40       maximum_delay_ms_(target_level_),
     41       iat_cumulative_sum_(0),
     42       max_iat_cumulative_sum_(0),
     43       max_timer_ms_(0),
     44       peak_detector_(*peak_detector),
     45       last_pack_cng_or_dtmf_(1) {
     46   assert(peak_detector);  // Should never be NULL.
     47   Reset();
     48 }
     49 
     50 DelayManager::~DelayManager() {}
     51 
     52 const DelayManager::IATVector& DelayManager::iat_vector() const {
     53   return iat_vector_;
     54 }
     55 
     56 // Set the histogram vector to an exponentially decaying distribution
     57 // iat_vector_[i] = 0.5^(i+1), i = 0, 1, 2, ...
     58 // iat_vector_ is in Q30.
     59 void DelayManager::ResetHistogram() {
     60   // Set temp_prob to (slightly more than) 1 in Q14. This ensures that the sum
     61   // of iat_vector_ is 1.
     62   uint16_t temp_prob = 0x4002;  // 16384 + 2 = 100000000000010 binary.
     63   IATVector::iterator it = iat_vector_.begin();
     64   for (; it < iat_vector_.end(); it++) {
     65     temp_prob >>= 1;
     66     (*it) = temp_prob << 16;
     67   }
     68   base_target_level_ = 4;
     69   target_level_ = base_target_level_ << 8;
     70 }
     71 
     72 int DelayManager::Update(uint16_t sequence_number,
     73                          uint32_t timestamp,
     74                          int sample_rate_hz) {
     75   if (sample_rate_hz <= 0) {
     76     return -1;
     77   }
     78 
     79   if (!first_packet_received_) {
     80     // Prepare for next packet arrival.
     81     packet_iat_count_ms_ = 0;
     82     last_seq_no_ = sequence_number;
     83     last_timestamp_ = timestamp;
     84     first_packet_received_ = true;
     85     return 0;
     86   }
     87 
     88   // Try calculating packet length from current and previous timestamps.
     89   int packet_len_ms;
     90   if (!IsNewerTimestamp(timestamp, last_timestamp_) ||
     91       !IsNewerSequenceNumber(sequence_number, last_seq_no_)) {
     92     // Wrong timestamp or sequence order; use stored value.
     93     packet_len_ms = packet_len_ms_;
     94   } else {
     95     // Calculate timestamps per packet and derive packet length in ms.
     96     int packet_len_samp =
     97         static_cast<uint32_t>(timestamp - last_timestamp_) /
     98         static_cast<uint16_t>(sequence_number - last_seq_no_);
     99     packet_len_ms = (1000 * packet_len_samp) / sample_rate_hz;
    100   }
    101 
    102   if (packet_len_ms > 0) {
    103     // Cannot update statistics unless |packet_len_ms| is valid.
    104     // Calculate inter-arrival time (IAT) in integer "packet times"
    105     // (rounding down). This is the value used as index to the histogram
    106     // vector |iat_vector_|.
    107     int iat_packets = packet_iat_count_ms_ / packet_len_ms;
    108 
    109     if (streaming_mode_) {
    110       UpdateCumulativeSums(packet_len_ms, sequence_number);
    111     }
    112 
    113     // Check for discontinuous packet sequence and re-ordering.
    114     if (IsNewerSequenceNumber(sequence_number, last_seq_no_ + 1)) {
    115       // Compensate for gap in the sequence numbers. Reduce IAT with the
    116       // expected extra time due to lost packets, but ensure that the IAT is
    117       // not negative.
    118       iat_packets -= static_cast<uint16_t>(sequence_number - last_seq_no_ - 1);
    119       iat_packets = std::max(iat_packets, 0);
    120     } else if (!IsNewerSequenceNumber(sequence_number, last_seq_no_)) {
    121       iat_packets += static_cast<uint16_t>(last_seq_no_ + 1 - sequence_number);
    122     }
    123 
    124     // Saturate IAT at maximum value.
    125     const int max_iat = kMaxIat;
    126     iat_packets = std::min(iat_packets, max_iat);
    127     UpdateHistogram(iat_packets);
    128     // Calculate new |target_level_| based on updated statistics.
    129     target_level_ = CalculateTargetLevel(iat_packets);
    130     if (streaming_mode_) {
    131       target_level_ = std::max(target_level_, max_iat_cumulative_sum_);
    132     }
    133 
    134     LimitTargetLevel();
    135   }  // End if (packet_len_ms > 0).
    136 
    137   // Prepare for next packet arrival.
    138   packet_iat_count_ms_ = 0;
    139   last_seq_no_ = sequence_number;
    140   last_timestamp_ = timestamp;
    141   return 0;
    142 }
    143 
    144 void DelayManager::UpdateCumulativeSums(int packet_len_ms,
    145                                         uint16_t sequence_number) {
    146   // Calculate IAT in Q8, including fractions of a packet (i.e., more
    147   // accurate than |iat_packets|.
    148   int iat_packets_q8 = (packet_iat_count_ms_ << 8) / packet_len_ms;
    149   // Calculate cumulative sum IAT with sequence number compensation. The sum
    150   // is zero if there is no clock-drift.
    151   iat_cumulative_sum_ += (iat_packets_q8 -
    152       (static_cast<int>(sequence_number - last_seq_no_) << 8));
    153   // Subtract drift term.
    154   iat_cumulative_sum_ -= kCumulativeSumDrift;
    155   // Ensure not negative.
    156   iat_cumulative_sum_ = std::max(iat_cumulative_sum_, 0);
    157   if (iat_cumulative_sum_ > max_iat_cumulative_sum_) {
    158     // Found a new maximum.
    159     max_iat_cumulative_sum_ = iat_cumulative_sum_;
    160     max_timer_ms_ = 0;
    161   }
    162   if (max_timer_ms_ > kMaxStreamingPeakPeriodMs) {
    163     // Too long since the last maximum was observed; decrease max value.
    164     max_iat_cumulative_sum_ -= kCumulativeSumDrift;
    165   }
    166 }
    167 
    168 // Each element in the vector is first multiplied by the forgetting factor
    169 // |iat_factor_|. Then the vector element indicated by |iat_packets| is then
    170 // increased (additive) by 1 - |iat_factor_|. This way, the probability of
    171 // |iat_packets| is slightly increased, while the sum of the histogram remains
    172 // constant (=1).
    173 // Due to inaccuracies in the fixed-point arithmetic, the histogram may no
    174 // longer sum up to 1 (in Q30) after the update. To correct this, a correction
    175 // term is added or subtracted from the first element (or elements) of the
    176 // vector.
    177 // The forgetting factor |iat_factor_| is also updated. When the DelayManager
    178 // is reset, the factor is set to 0 to facilitate rapid convergence in the
    179 // beginning. With each update of the histogram, the factor is increased towards
    180 // the steady-state value |kIatFactor_|.
    181 void DelayManager::UpdateHistogram(size_t iat_packets) {
    182   assert(iat_packets < iat_vector_.size());
    183   int vector_sum = 0;  // Sum up the vector elements as they are processed.
    184   // Multiply each element in |iat_vector_| with |iat_factor_|.
    185   for (IATVector::iterator it = iat_vector_.begin();
    186       it != iat_vector_.end(); ++it) {
    187     *it = (static_cast<int64_t>(*it) * iat_factor_) >> 15;
    188     vector_sum += *it;
    189   }
    190 
    191   // Increase the probability for the currently observed inter-arrival time
    192   // by 1 - |iat_factor_|. The factor is in Q15, |iat_vector_| in Q30.
    193   // Thus, left-shift 15 steps to obtain result in Q30.
    194   iat_vector_[iat_packets] += (32768 - iat_factor_) << 15;
    195   vector_sum += (32768 - iat_factor_) << 15;  // Add to vector sum.
    196 
    197   // |iat_vector_| should sum up to 1 (in Q30), but it may not due to
    198   // fixed-point rounding errors.
    199   vector_sum -= 1 << 30;  // Should be zero. Compensate if not.
    200   if (vector_sum != 0) {
    201     // Modify a few values early in |iat_vector_|.
    202     int flip_sign = vector_sum > 0 ? -1 : 1;
    203     IATVector::iterator it = iat_vector_.begin();
    204     while (it != iat_vector_.end() && abs(vector_sum) > 0) {
    205       // Add/subtract 1/16 of the element, but not more than |vector_sum|.
    206       int correction = flip_sign * std::min(abs(vector_sum), (*it) >> 4);
    207       *it += correction;
    208       vector_sum += correction;
    209       ++it;
    210     }
    211   }
    212   assert(vector_sum == 0);  // Verify that the above is correct.
    213 
    214   // Update |iat_factor_| (changes only during the first seconds after a reset).
    215   // The factor converges to |kIatFactor_|.
    216   iat_factor_ += (kIatFactor_ - iat_factor_ + 3) >> 2;
    217 }
    218 
    219 // Enforces upper and lower limits for |target_level_|. The upper limit is
    220 // chosen to be minimum of i) 75% of |max_packets_in_buffer_|, to leave some
    221 // headroom for natural fluctuations around the target, and ii) equivalent of
    222 // |maximum_delay_ms_| in packets. Note that in practice, if no
    223 // |maximum_delay_ms_| is specified, this does not have any impact, since the
    224 // target level is far below the buffer capacity in all reasonable cases.
    225 // The lower limit is equivalent of |minimum_delay_ms_| in packets. We update
    226 // |least_required_level_| while the above limits are applied.
    227 // TODO(hlundin): Move this check to the buffer logistics class.
    228 void DelayManager::LimitTargetLevel() {
    229   least_required_delay_ms_ = (target_level_ * packet_len_ms_) >> 8;
    230 
    231   if (packet_len_ms_ > 0 && minimum_delay_ms_ > 0) {
    232     int minimum_delay_packet_q8 =  (minimum_delay_ms_ << 8) / packet_len_ms_;
    233     target_level_ = std::max(target_level_, minimum_delay_packet_q8);
    234   }
    235 
    236   if (maximum_delay_ms_ > 0 && packet_len_ms_ > 0) {
    237     int maximum_delay_packet_q8 = (maximum_delay_ms_ << 8) / packet_len_ms_;
    238     target_level_ = std::min(target_level_, maximum_delay_packet_q8);
    239   }
    240 
    241   // Shift to Q8, then 75%.;
    242   int max_buffer_packets_q8 =
    243       static_cast<int>((3 * (max_packets_in_buffer_ << 8)) / 4);
    244   target_level_ = std::min(target_level_, max_buffer_packets_q8);
    245 
    246   // Sanity check, at least 1 packet (in Q8).
    247   target_level_ = std::max(target_level_, 1 << 8);
    248 }
    249 
    250 int DelayManager::CalculateTargetLevel(int iat_packets) {
    251   int limit_probability = kLimitProbability;
    252   if (streaming_mode_) {
    253     limit_probability = kLimitProbabilityStreaming;
    254   }
    255 
    256   // Calculate target buffer level from inter-arrival time histogram.
    257   // Find the |iat_index| for which the probability of observing an
    258   // inter-arrival time larger than or equal to |iat_index| is less than or
    259   // equal to |limit_probability|. The sought probability is estimated using
    260   // the histogram as the reverse cumulant PDF, i.e., the sum of elements from
    261   // the end up until |iat_index|. Now, since the sum of all elements is 1
    262   // (in Q30) by definition, and since the solution is often a low value for
    263   // |iat_index|, it is more efficient to start with |sum| = 1 and subtract
    264   // elements from the start of the histogram.
    265   size_t index = 0;  // Start from the beginning of |iat_vector_|.
    266   int sum = 1 << 30;  // Assign to 1 in Q30.
    267   sum -= iat_vector_[index];  // Ensure that target level is >= 1.
    268 
    269   do {
    270     // Subtract the probabilities one by one until the sum is no longer greater
    271     // than limit_probability.
    272     ++index;
    273     sum -= iat_vector_[index];
    274   } while ((sum > limit_probability) && (index < iat_vector_.size() - 1));
    275 
    276   // This is the base value for the target buffer level.
    277   int target_level = static_cast<int>(index);
    278   base_target_level_ = static_cast<int>(index);
    279 
    280   // Update detector for delay peaks.
    281   bool delay_peak_found = peak_detector_.Update(iat_packets, target_level);
    282   if (delay_peak_found) {
    283     target_level = std::max(target_level, peak_detector_.MaxPeakHeight());
    284   }
    285 
    286   // Sanity check. |target_level| must be strictly positive.
    287   target_level = std::max(target_level, 1);
    288   // Scale to Q8 and assign to member variable.
    289   target_level_ = target_level << 8;
    290   return target_level_;
    291 }
    292 
    293 int DelayManager::SetPacketAudioLength(int length_ms) {
    294   if (length_ms <= 0) {
    295     LOG_F(LS_ERROR) << "length_ms = " << length_ms;
    296     return -1;
    297   }
    298   packet_len_ms_ = length_ms;
    299   peak_detector_.SetPacketAudioLength(packet_len_ms_);
    300   packet_iat_count_ms_ = 0;
    301   last_pack_cng_or_dtmf_ = 1;  // TODO(hlundin): Legacy. Remove?
    302   return 0;
    303 }
    304 
    305 
    306 void DelayManager::Reset() {
    307   packet_len_ms_ = 0;  // Packet size unknown.
    308   streaming_mode_ = false;
    309   peak_detector_.Reset();
    310   ResetHistogram();  // Resets target levels too.
    311   iat_factor_ = 0;  // Adapt the histogram faster for the first few packets.
    312   packet_iat_count_ms_ = 0;
    313   max_timer_ms_ = 0;
    314   iat_cumulative_sum_ = 0;
    315   max_iat_cumulative_sum_ = 0;
    316   last_pack_cng_or_dtmf_ = 1;
    317 }
    318 
    319 int DelayManager::AverageIAT() const {
    320   int32_t sum_q24 = 0;
    321   // Using an int for the upper limit of the following for-loop so the
    322   // loop-counter can be int. Otherwise we need a cast where |sum_q24| is
    323   // updated.
    324   const int iat_vec_size = static_cast<int>(iat_vector_.size());
    325   assert(iat_vector_.size() == 65);  // Algorithm is hard-coded for this size.
    326   for (int i = 0; i < iat_vec_size; ++i) {
    327     // Shift 6 to fit worst case: 2^30 * 64.
    328     sum_q24 += (iat_vector_[i] >> 6) * i;
    329   }
    330   // Subtract the nominal inter-arrival time 1 = 2^24 in Q24.
    331   sum_q24 -= (1 << 24);
    332   // Multiply with 1000000 / 2^24 = 15625 / 2^18 to get in parts-per-million.
    333   // Shift 7 to Q17 first, then multiply with 15625 and shift another 11.
    334   return ((sum_q24 >> 7) * 15625) >> 11;
    335 }
    336 
    337 bool DelayManager::PeakFound() const {
    338   return peak_detector_.peak_found();
    339 }
    340 
    341 void DelayManager::UpdateCounters(int elapsed_time_ms) {
    342   packet_iat_count_ms_ += elapsed_time_ms;
    343   peak_detector_.IncrementCounter(elapsed_time_ms);
    344   max_timer_ms_ += elapsed_time_ms;
    345 }
    346 
    347 void DelayManager::ResetPacketIatCount() { packet_iat_count_ms_ = 0; }
    348 
    349 // Note that |low_limit| and |higher_limit| are not assigned to
    350 // |minimum_delay_ms_| and |maximum_delay_ms_| defined by the client of this
    351 // class. They are computed from |target_level_| and used for decision making.
    352 void DelayManager::BufferLimits(int* lower_limit, int* higher_limit) const {
    353   if (!lower_limit || !higher_limit) {
    354     LOG_F(LS_ERROR) << "NULL pointers supplied as input";
    355     assert(false);
    356     return;
    357   }
    358 
    359   int window_20ms = 0x7FFF;  // Default large value for legacy bit-exactness.
    360   if (packet_len_ms_ > 0) {
    361     window_20ms = (20 << 8) / packet_len_ms_;
    362   }
    363 
    364   // |target_level_| is in Q8 already.
    365   *lower_limit = (target_level_ * 3) / 4;
    366   // |higher_limit| is equal to |target_level_|, but should at
    367   // least be 20 ms higher than |lower_limit_|.
    368   *higher_limit = std::max(target_level_, *lower_limit + window_20ms);
    369 }
    370 
    371 int DelayManager::TargetLevel() const {
    372   return target_level_;
    373 }
    374 
    375 void DelayManager::LastDecoderType(NetEqDecoder decoder_type) {
    376   if (decoder_type == NetEqDecoder::kDecoderAVT ||
    377       decoder_type == NetEqDecoder::kDecoderCNGnb ||
    378       decoder_type == NetEqDecoder::kDecoderCNGwb ||
    379       decoder_type == NetEqDecoder::kDecoderCNGswb32kHz ||
    380       decoder_type == NetEqDecoder::kDecoderCNGswb48kHz) {
    381     last_pack_cng_or_dtmf_ = 1;
    382   } else if (last_pack_cng_or_dtmf_ != 0) {
    383     last_pack_cng_or_dtmf_ = -1;
    384   }
    385 }
    386 
    387 bool DelayManager::SetMinimumDelay(int delay_ms) {
    388   // Minimum delay shouldn't be more than maximum delay, if any maximum is set.
    389   // Also, if possible check |delay| to less than 75% of
    390   // |max_packets_in_buffer_|.
    391   if ((maximum_delay_ms_ > 0 && delay_ms > maximum_delay_ms_) ||
    392       (packet_len_ms_ > 0 &&
    393        delay_ms >
    394            static_cast<int>(3 * max_packets_in_buffer_ * packet_len_ms_ / 4))) {
    395     return false;
    396   }
    397   minimum_delay_ms_ = delay_ms;
    398   return true;
    399 }
    400 
    401 bool DelayManager::SetMaximumDelay(int delay_ms) {
    402   if (delay_ms == 0) {
    403     // Zero input unsets the maximum delay.
    404     maximum_delay_ms_ = 0;
    405     return true;
    406   } else if (delay_ms < minimum_delay_ms_ || delay_ms < packet_len_ms_) {
    407     // Maximum delay shouldn't be less than minimum delay or less than a packet.
    408     return false;
    409   }
    410   maximum_delay_ms_ = delay_ms;
    411   return true;
    412 }
    413 
    414 int DelayManager::least_required_delay_ms() const {
    415   return least_required_delay_ms_;
    416 }
    417 
    418 int DelayManager::base_target_level() const { return base_target_level_; }
    419 void DelayManager::set_streaming_mode(bool value) { streaming_mode_ = value; }
    420 int DelayManager::last_pack_cng_or_dtmf() const {
    421   return last_pack_cng_or_dtmf_;
    422 }
    423 
    424 void DelayManager::set_last_pack_cng_or_dtmf(int value) {
    425   last_pack_cng_or_dtmf_ = value;
    426 }
    427 }  // namespace webrtc
    428