Home | History | Annotate | Download | only in compiler
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "image_writer.h"
     18 
     19 #include <sys/stat.h>
     20 #include <lz4.h>
     21 #include <lz4hc.h>
     22 
     23 #include <memory>
     24 #include <numeric>
     25 #include <unordered_set>
     26 #include <vector>
     27 
     28 #include "art_field-inl.h"
     29 #include "art_method-inl.h"
     30 #include "base/logging.h"
     31 #include "base/unix_file/fd_file.h"
     32 #include "class_linker-inl.h"
     33 #include "compiled_method.h"
     34 #include "dex_file-inl.h"
     35 #include "driver/compiler_driver.h"
     36 #include "elf_file.h"
     37 #include "elf_utils.h"
     38 #include "elf_writer.h"
     39 #include "gc/accounting/card_table-inl.h"
     40 #include "gc/accounting/heap_bitmap.h"
     41 #include "gc/accounting/space_bitmap-inl.h"
     42 #include "gc/heap.h"
     43 #include "gc/space/large_object_space.h"
     44 #include "gc/space/space-inl.h"
     45 #include "globals.h"
     46 #include "image.h"
     47 #include "intern_table.h"
     48 #include "linear_alloc.h"
     49 #include "lock_word.h"
     50 #include "mirror/abstract_method.h"
     51 #include "mirror/array-inl.h"
     52 #include "mirror/class-inl.h"
     53 #include "mirror/class_loader.h"
     54 #include "mirror/dex_cache-inl.h"
     55 #include "mirror/method.h"
     56 #include "mirror/object-inl.h"
     57 #include "mirror/object_array-inl.h"
     58 #include "mirror/string-inl.h"
     59 #include "oat.h"
     60 #include "oat_file.h"
     61 #include "oat_file_manager.h"
     62 #include "runtime.h"
     63 #include "scoped_thread_state_change.h"
     64 #include "handle_scope-inl.h"
     65 #include "utils/dex_cache_arrays_layout-inl.h"
     66 
     67 using ::art::mirror::Class;
     68 using ::art::mirror::DexCache;
     69 using ::art::mirror::Object;
     70 using ::art::mirror::ObjectArray;
     71 using ::art::mirror::String;
     72 
     73 namespace art {
     74 
     75 // Separate objects into multiple bins to optimize dirty memory use.
     76 static constexpr bool kBinObjects = true;
     77 
     78 // Return true if an object is already in an image space.
     79 bool ImageWriter::IsInBootImage(const void* obj) const {
     80   gc::Heap* const heap = Runtime::Current()->GetHeap();
     81   if (!compile_app_image_) {
     82     DCHECK(heap->GetBootImageSpaces().empty());
     83     return false;
     84   }
     85   for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
     86     const uint8_t* image_begin = boot_image_space->Begin();
     87     // Real image end including ArtMethods and ArtField sections.
     88     const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize();
     89     if (image_begin <= obj && obj < image_end) {
     90       return true;
     91     }
     92   }
     93   return false;
     94 }
     95 
     96 bool ImageWriter::IsInBootOatFile(const void* ptr) const {
     97   gc::Heap* const heap = Runtime::Current()->GetHeap();
     98   if (!compile_app_image_) {
     99     DCHECK(heap->GetBootImageSpaces().empty());
    100     return false;
    101   }
    102   for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
    103     const ImageHeader& image_header = boot_image_space->GetImageHeader();
    104     if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) {
    105       return true;
    106     }
    107   }
    108   return false;
    109 }
    110 
    111 static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED)
    112     SHARED_REQUIRES(Locks::mutator_lock_) {
    113   Class* klass = obj->GetClass();
    114   CHECK_NE(PrettyClass(klass), "com.android.dex.Dex");
    115 }
    116 
    117 static void CheckNoDexObjects() {
    118   ScopedObjectAccess soa(Thread::Current());
    119   Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr);
    120 }
    121 
    122 bool ImageWriter::PrepareImageAddressSpace() {
    123   target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet());
    124   gc::Heap* const heap = Runtime::Current()->GetHeap();
    125   {
    126     ScopedObjectAccess soa(Thread::Current());
    127     PruneNonImageClasses();  // Remove junk
    128     if (!compile_app_image_) {
    129       // Avoid for app image since this may increase RAM and image size.
    130       ComputeLazyFieldsForImageClasses();  // Add useful information
    131     }
    132   }
    133   heap->CollectGarbage(false);  // Remove garbage.
    134 
    135   // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped
    136   // dex files.
    137   //
    138   // We may open them in the unstarted-runtime code for class metadata. Their fields should all be
    139   // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually
    140   // true.
    141   if (kIsDebugBuild) {
    142     CheckNoDexObjects();
    143   }
    144 
    145   if (kIsDebugBuild) {
    146     ScopedObjectAccess soa(Thread::Current());
    147     CheckNonImageClassesRemoved();
    148   }
    149 
    150   {
    151     ScopedObjectAccess soa(Thread::Current());
    152     CalculateNewObjectOffsets();
    153   }
    154 
    155   // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
    156   // bin size sums being calculated.
    157   if (!AllocMemory()) {
    158     return false;
    159   }
    160 
    161   return true;
    162 }
    163 
    164 bool ImageWriter::Write(int image_fd,
    165                         const std::vector<const char*>& image_filenames,
    166                         const std::vector<const char*>& oat_filenames) {
    167   // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or
    168   // oat_filenames.
    169   CHECK(!image_filenames.empty());
    170   if (image_fd != kInvalidFd) {
    171     CHECK_EQ(image_filenames.size(), 1u);
    172   }
    173   CHECK(!oat_filenames.empty());
    174   CHECK_EQ(image_filenames.size(), oat_filenames.size());
    175 
    176   {
    177     ScopedObjectAccess soa(Thread::Current());
    178     for (size_t i = 0; i < oat_filenames.size(); ++i) {
    179       CreateHeader(i);
    180       CopyAndFixupNativeData(i);
    181     }
    182   }
    183 
    184   {
    185     // TODO: heap validation can't handle these fix up passes.
    186     ScopedObjectAccess soa(Thread::Current());
    187     Runtime::Current()->GetHeap()->DisableObjectValidation();
    188     CopyAndFixupObjects();
    189   }
    190 
    191   for (size_t i = 0; i < image_filenames.size(); ++i) {
    192     const char* image_filename = image_filenames[i];
    193     ImageInfo& image_info = GetImageInfo(i);
    194     std::unique_ptr<File> image_file;
    195     if (image_fd != kInvalidFd) {
    196       if (strlen(image_filename) == 0u) {
    197         image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
    198         // Empty the file in case it already exists.
    199         if (image_file != nullptr) {
    200           TEMP_FAILURE_RETRY(image_file->SetLength(0));
    201           TEMP_FAILURE_RETRY(image_file->Flush());
    202         }
    203       } else {
    204         LOG(ERROR) << "image fd " << image_fd << " name " << image_filename;
    205       }
    206     } else {
    207       image_file.reset(OS::CreateEmptyFile(image_filename));
    208     }
    209 
    210     if (image_file == nullptr) {
    211       LOG(ERROR) << "Failed to open image file " << image_filename;
    212       return false;
    213     }
    214 
    215     if (!compile_app_image_ && fchmod(image_file->Fd(), 0644) != 0) {
    216       PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
    217       image_file->Erase();
    218       return EXIT_FAILURE;
    219     }
    220 
    221     std::unique_ptr<char[]> compressed_data;
    222     // Image data size excludes the bitmap and the header.
    223     ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
    224     const size_t image_data_size = image_header->GetImageSize() - sizeof(ImageHeader);
    225     char* image_data = reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader);
    226     size_t data_size;
    227     const char* image_data_to_write;
    228     const uint64_t compress_start_time = NanoTime();
    229 
    230     CHECK_EQ(image_header->storage_mode_, image_storage_mode_);
    231     switch (image_storage_mode_) {
    232       case ImageHeader::kStorageModeLZ4HC:  // Fall-through.
    233       case ImageHeader::kStorageModeLZ4: {
    234         const size_t compressed_max_size = LZ4_compressBound(image_data_size);
    235         compressed_data.reset(new char[compressed_max_size]);
    236         data_size = LZ4_compress(
    237             reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
    238             &compressed_data[0],
    239             image_data_size);
    240 
    241         break;
    242       }
    243       /*
    244        * Disabled due to image_test64 flakyness. Both use same decompression. b/27560444
    245       case ImageHeader::kStorageModeLZ4HC: {
    246         // Bound is same as non HC.
    247         const size_t compressed_max_size = LZ4_compressBound(image_data_size);
    248         compressed_data.reset(new char[compressed_max_size]);
    249         data_size = LZ4_compressHC(
    250             reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
    251             &compressed_data[0],
    252             image_data_size);
    253         break;
    254       }
    255       */
    256       case ImageHeader::kStorageModeUncompressed: {
    257         data_size = image_data_size;
    258         image_data_to_write = image_data;
    259         break;
    260       }
    261       default: {
    262         LOG(FATAL) << "Unsupported";
    263         UNREACHABLE();
    264       }
    265     }
    266 
    267     if (compressed_data != nullptr) {
    268       image_data_to_write = &compressed_data[0];
    269       VLOG(compiler) << "Compressed from " << image_data_size << " to " << data_size << " in "
    270                      << PrettyDuration(NanoTime() - compress_start_time);
    271       if (kIsDebugBuild) {
    272         std::unique_ptr<uint8_t[]> temp(new uint8_t[image_data_size]);
    273         const size_t decompressed_size = LZ4_decompress_safe(
    274             reinterpret_cast<char*>(&compressed_data[0]),
    275             reinterpret_cast<char*>(&temp[0]),
    276             data_size,
    277             image_data_size);
    278         CHECK_EQ(decompressed_size, image_data_size);
    279         CHECK_EQ(memcmp(image_data, &temp[0], image_data_size), 0) << image_storage_mode_;
    280       }
    281     }
    282 
    283     // Write out the image + fields + methods.
    284     const bool is_compressed = compressed_data != nullptr;
    285     if (!image_file->PwriteFully(image_data_to_write, data_size, sizeof(ImageHeader))) {
    286       PLOG(ERROR) << "Failed to write image file data " << image_filename;
    287       image_file->Erase();
    288       return false;
    289     }
    290 
    291     // Write out the image bitmap at the page aligned start of the image end, also uncompressed for
    292     // convenience.
    293     const ImageSection& bitmap_section = image_header->GetImageSection(
    294         ImageHeader::kSectionImageBitmap);
    295     // Align up since data size may be unaligned if the image is compressed.
    296     size_t bitmap_position_in_file = RoundUp(sizeof(ImageHeader) + data_size, kPageSize);
    297     if (!is_compressed) {
    298       CHECK_EQ(bitmap_position_in_file, bitmap_section.Offset());
    299     }
    300     if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_bitmap_->Begin()),
    301                                  bitmap_section.Size(),
    302                                  bitmap_position_in_file)) {
    303       PLOG(ERROR) << "Failed to write image file " << image_filename;
    304       image_file->Erase();
    305       return false;
    306     }
    307 
    308     int err = image_file->Flush();
    309     if (err < 0) {
    310       PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
    311       image_file->Erase();
    312       return false;
    313     }
    314 
    315     // Write header last in case the compiler gets killed in the middle of image writing.
    316     // We do not want to have a corrupted image with a valid header.
    317     // The header is uncompressed since it contains whether the image is compressed or not.
    318     image_header->data_size_ = data_size;
    319     if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_->Begin()),
    320                                  sizeof(ImageHeader),
    321                                  0)) {
    322       PLOG(ERROR) << "Failed to write image file header " << image_filename;
    323       image_file->Erase();
    324       return false;
    325     }
    326 
    327     CHECK_EQ(bitmap_position_in_file + bitmap_section.Size(),
    328              static_cast<size_t>(image_file->GetLength()));
    329     if (image_file->FlushCloseOrErase() != 0) {
    330       PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
    331       return false;
    332     }
    333   }
    334   return true;
    335 }
    336 
    337 void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
    338   DCHECK(object != nullptr);
    339   DCHECK_NE(offset, 0U);
    340 
    341   // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
    342   object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
    343   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
    344   DCHECK(IsImageOffsetAssigned(object));
    345 }
    346 
    347 void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
    348   DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
    349   obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
    350   DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
    351 }
    352 
    353 void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
    354   DCHECK(object != nullptr);
    355   DCHECK_NE(image_objects_offset_begin_, 0u);
    356 
    357   size_t oat_index = GetOatIndex(object);
    358   ImageInfo& image_info = GetImageInfo(oat_index);
    359   size_t bin_slot_offset = image_info.bin_slot_offsets_[bin_slot.GetBin()];
    360   size_t new_offset = bin_slot_offset + bin_slot.GetIndex();
    361   DCHECK_ALIGNED(new_offset, kObjectAlignment);
    362 
    363   SetImageOffset(object, new_offset);
    364   DCHECK_LT(new_offset, image_info.image_end_);
    365 }
    366 
    367 bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
    368   // Will also return true if the bin slot was assigned since we are reusing the lock word.
    369   DCHECK(object != nullptr);
    370   return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
    371 }
    372 
    373 size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
    374   DCHECK(object != nullptr);
    375   DCHECK(IsImageOffsetAssigned(object));
    376   LockWord lock_word = object->GetLockWord(false);
    377   size_t offset = lock_word.ForwardingAddress();
    378   size_t oat_index = GetOatIndex(object);
    379   const ImageInfo& image_info = GetImageInfo(oat_index);
    380   DCHECK_LT(offset, image_info.image_end_);
    381   return offset;
    382 }
    383 
    384 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
    385   DCHECK(object != nullptr);
    386   DCHECK(!IsImageOffsetAssigned(object));
    387   DCHECK(!IsImageBinSlotAssigned(object));
    388 
    389   // Before we stomp over the lock word, save the hash code for later.
    390   Monitor::Deflate(Thread::Current(), object);;
    391   LockWord lw(object->GetLockWord(false));
    392   switch (lw.GetState()) {
    393     case LockWord::kFatLocked: {
    394       LOG(FATAL) << "Fat locked object " << object << " found during object copy";
    395       break;
    396     }
    397     case LockWord::kThinLocked: {
    398       LOG(FATAL) << "Thin locked object " << object << " found during object copy";
    399       break;
    400     }
    401     case LockWord::kUnlocked:
    402       // No hash, don't need to save it.
    403       break;
    404     case LockWord::kHashCode:
    405       DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
    406       saved_hashcode_map_.emplace(object, lw.GetHashCode());
    407       break;
    408     default:
    409       LOG(FATAL) << "Unreachable.";
    410       UNREACHABLE();
    411   }
    412   object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
    413   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
    414   DCHECK(IsImageBinSlotAssigned(object));
    415 }
    416 
    417 void ImageWriter::PrepareDexCacheArraySlots() {
    418   // Prepare dex cache array starts based on the ordering specified in the CompilerDriver.
    419   // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
    420   // when AssignImageBinSlot() assigns their indexes out or order.
    421   for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) {
    422     auto it = dex_file_oat_index_map_.find(dex_file);
    423     DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
    424     ImageInfo& image_info = GetImageInfo(it->second);
    425     image_info.dex_cache_array_starts_.Put(dex_file, image_info.bin_slot_sizes_[kBinDexCacheArray]);
    426     DexCacheArraysLayout layout(target_ptr_size_, dex_file);
    427     image_info.bin_slot_sizes_[kBinDexCacheArray] += layout.Size();
    428   }
    429 
    430   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
    431   Thread* const self = Thread::Current();
    432   ReaderMutexLock mu(self, *class_linker->DexLock());
    433   for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
    434     mirror::DexCache* dex_cache =
    435         down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
    436     if (dex_cache == nullptr || IsInBootImage(dex_cache)) {
    437       continue;
    438     }
    439     const DexFile* dex_file = dex_cache->GetDexFile();
    440     CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end())
    441         << "Dex cache should have been pruned " << dex_file->GetLocation()
    442         << "; possibly in class path";
    443     DexCacheArraysLayout layout(target_ptr_size_, dex_file);
    444     DCHECK(layout.Valid());
    445     size_t oat_index = GetOatIndexForDexCache(dex_cache);
    446     ImageInfo& image_info = GetImageInfo(oat_index);
    447     uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file);
    448     DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr);
    449     AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(),
    450                                start + layout.TypesOffset(),
    451                                dex_cache);
    452     DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr);
    453     AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(),
    454                                start + layout.MethodsOffset(),
    455                                dex_cache);
    456     DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr);
    457     AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(),
    458                                start + layout.FieldsOffset(),
    459                                dex_cache);
    460     DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr);
    461     AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), dex_cache);
    462   }
    463 }
    464 
    465 void ImageWriter::AddDexCacheArrayRelocation(void* array, size_t offset, DexCache* dex_cache) {
    466   if (array != nullptr) {
    467     DCHECK(!IsInBootImage(array));
    468     size_t oat_index = GetOatIndexForDexCache(dex_cache);
    469     native_object_relocations_.emplace(array,
    470         NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeDexCacheArray });
    471   }
    472 }
    473 
    474 void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) {
    475   DCHECK(arr != nullptr);
    476   if (kIsDebugBuild) {
    477     for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
    478       ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
    479       if (method != nullptr && !method->IsRuntimeMethod()) {
    480         mirror::Class* klass = method->GetDeclaringClass();
    481         CHECK(klass == nullptr || KeepClass(klass))
    482             << PrettyClass(klass) << " should be a kept class";
    483       }
    484     }
    485   }
    486   // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
    487   // ArtMethods.
    488   pointer_arrays_.emplace(arr, kBinArtMethodClean);
    489 }
    490 
    491 void ImageWriter::AssignImageBinSlot(mirror::Object* object) {
    492   DCHECK(object != nullptr);
    493   size_t object_size = object->SizeOf();
    494 
    495   // The magic happens here. We segregate objects into different bins based
    496   // on how likely they are to get dirty at runtime.
    497   //
    498   // Likely-to-dirty objects get packed together into the same bin so that
    499   // at runtime their page dirtiness ratio (how many dirty objects a page has) is
    500   // maximized.
    501   //
    502   // This means more pages will stay either clean or shared dirty (with zygote) and
    503   // the app will use less of its own (private) memory.
    504   Bin bin = kBinRegular;
    505   size_t current_offset = 0u;
    506 
    507   if (kBinObjects) {
    508     //
    509     // Changing the bin of an object is purely a memory-use tuning.
    510     // It has no change on runtime correctness.
    511     //
    512     // Memory analysis has determined that the following types of objects get dirtied
    513     // the most:
    514     //
    515     // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
    516     //   a fixed layout which helps improve generated code (using PC-relative addressing),
    517     //   so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
    518     //   Since these arrays are huge, most pages do not overlap other objects and it's not
    519     //   really important where they are for the clean/dirty separation. Due to their
    520     //   special PC-relative addressing, we arbitrarily keep them at the end.
    521     // * Class'es which are verified [their clinit runs only at runtime]
    522     //   - classes in general [because their static fields get overwritten]
    523     //   - initialized classes with all-final statics are unlikely to be ever dirty,
    524     //     so bin them separately
    525     // * Art Methods that are:
    526     //   - native [their native entry point is not looked up until runtime]
    527     //   - have declaring classes that aren't initialized
    528     //            [their interpreter/quick entry points are trampolines until the class
    529     //             becomes initialized]
    530     //
    531     // We also assume the following objects get dirtied either never or extremely rarely:
    532     //  * Strings (they are immutable)
    533     //  * Art methods that aren't native and have initialized declared classes
    534     //
    535     // We assume that "regular" bin objects are highly unlikely to become dirtied,
    536     // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
    537     //
    538     if (object->IsClass()) {
    539       bin = kBinClassVerified;
    540       mirror::Class* klass = object->AsClass();
    541 
    542       // Add non-embedded vtable to the pointer array table if there is one.
    543       auto* vtable = klass->GetVTable();
    544       if (vtable != nullptr) {
    545         AddMethodPointerArray(vtable);
    546       }
    547       auto* iftable = klass->GetIfTable();
    548       if (iftable != nullptr) {
    549         for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
    550           if (iftable->GetMethodArrayCount(i) > 0) {
    551             AddMethodPointerArray(iftable->GetMethodArray(i));
    552           }
    553         }
    554       }
    555 
    556       if (klass->GetStatus() == Class::kStatusInitialized) {
    557         bin = kBinClassInitialized;
    558 
    559         // If the class's static fields are all final, put it into a separate bin
    560         // since it's very likely it will stay clean.
    561         uint32_t num_static_fields = klass->NumStaticFields();
    562         if (num_static_fields == 0) {
    563           bin = kBinClassInitializedFinalStatics;
    564         } else {
    565           // Maybe all the statics are final?
    566           bool all_final = true;
    567           for (uint32_t i = 0; i < num_static_fields; ++i) {
    568             ArtField* field = klass->GetStaticField(i);
    569             if (!field->IsFinal()) {
    570               all_final = false;
    571               break;
    572             }
    573           }
    574 
    575           if (all_final) {
    576             bin = kBinClassInitializedFinalStatics;
    577           }
    578         }
    579       }
    580     } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
    581       bin = kBinString;  // Strings are almost always immutable (except for object header).
    582     } else if (object->GetClass<kVerifyNone>() ==
    583         Runtime::Current()->GetClassLinker()->GetClassRoot(ClassLinker::kJavaLangObject)) {
    584       // Instance of java lang object, probably a lock object. This means it will be dirty when we
    585       // synchronize on it.
    586       bin = kBinMiscDirty;
    587     } else if (object->IsDexCache()) {
    588       // Dex file field becomes dirty when the image is loaded.
    589       bin = kBinMiscDirty;
    590     }
    591     // else bin = kBinRegular
    592   }
    593 
    594   size_t oat_index = GetOatIndex(object);
    595   ImageInfo& image_info = GetImageInfo(oat_index);
    596 
    597   size_t offset_delta = RoundUp(object_size, kObjectAlignment);  // 64-bit alignment
    598   current_offset = image_info.bin_slot_sizes_[bin];  // How many bytes the current bin is at (aligned).
    599   // Move the current bin size up to accommodate the object we just assigned a bin slot.
    600   image_info.bin_slot_sizes_[bin] += offset_delta;
    601 
    602   BinSlot new_bin_slot(bin, current_offset);
    603   SetImageBinSlot(object, new_bin_slot);
    604 
    605   ++image_info.bin_slot_count_[bin];
    606 
    607   // Grow the image closer to the end by the object we just assigned.
    608   image_info.image_end_ += offset_delta;
    609 }
    610 
    611 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
    612   if (m->IsNative()) {
    613     return true;
    614   }
    615   mirror::Class* declaring_class = m->GetDeclaringClass();
    616   // Initialized is highly unlikely to dirty since there's no entry points to mutate.
    617   return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized;
    618 }
    619 
    620 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
    621   DCHECK(object != nullptr);
    622 
    623   // We always stash the bin slot into a lockword, in the 'forwarding address' state.
    624   // If it's in some other state, then we haven't yet assigned an image bin slot.
    625   if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
    626     return false;
    627   } else if (kIsDebugBuild) {
    628     LockWord lock_word = object->GetLockWord(false);
    629     size_t offset = lock_word.ForwardingAddress();
    630     BinSlot bin_slot(offset);
    631     size_t oat_index = GetOatIndex(object);
    632     const ImageInfo& image_info = GetImageInfo(oat_index);
    633     DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()])
    634         << "bin slot offset should not exceed the size of that bin";
    635   }
    636   return true;
    637 }
    638 
    639 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
    640   DCHECK(object != nullptr);
    641   DCHECK(IsImageBinSlotAssigned(object));
    642 
    643   LockWord lock_word = object->GetLockWord(false);
    644   size_t offset = lock_word.ForwardingAddress();  // TODO: ForwardingAddress should be uint32_t
    645   DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
    646 
    647   BinSlot bin_slot(static_cast<uint32_t>(offset));
    648   size_t oat_index = GetOatIndex(object);
    649   const ImageInfo& image_info = GetImageInfo(oat_index);
    650   DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]);
    651 
    652   return bin_slot;
    653 }
    654 
    655 bool ImageWriter::AllocMemory() {
    656   for (ImageInfo& image_info : image_infos_) {
    657     ImageSection unused_sections[ImageHeader::kSectionCount];
    658     const size_t length = RoundUp(
    659         image_info.CreateImageSections(unused_sections), kPageSize);
    660 
    661     std::string error_msg;
    662     image_info.image_.reset(MemMap::MapAnonymous("image writer image",
    663                                                  nullptr,
    664                                                  length,
    665                                                  PROT_READ | PROT_WRITE,
    666                                                  false,
    667                                                  false,
    668                                                  &error_msg));
    669     if (UNLIKELY(image_info.image_.get() == nullptr)) {
    670       LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
    671       return false;
    672     }
    673 
    674     // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
    675     CHECK_LE(image_info.image_end_, length);
    676     image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
    677         "image bitmap", image_info.image_->Begin(), RoundUp(image_info.image_end_, kPageSize)));
    678     if (image_info.image_bitmap_.get() == nullptr) {
    679       LOG(ERROR) << "Failed to allocate memory for image bitmap";
    680       return false;
    681     }
    682   }
    683   return true;
    684 }
    685 
    686 class ComputeLazyFieldsForClassesVisitor : public ClassVisitor {
    687  public:
    688   bool operator()(Class* c) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
    689     StackHandleScope<1> hs(Thread::Current());
    690     mirror::Class::ComputeName(hs.NewHandle(c));
    691     return true;
    692   }
    693 };
    694 
    695 void ImageWriter::ComputeLazyFieldsForImageClasses() {
    696   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
    697   ComputeLazyFieldsForClassesVisitor visitor;
    698   class_linker->VisitClassesWithoutClassesLock(&visitor);
    699 }
    700 
    701 static bool IsBootClassLoaderClass(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) {
    702   return klass->GetClassLoader() == nullptr;
    703 }
    704 
    705 bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
    706   return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
    707 }
    708 
    709 bool ImageWriter::PruneAppImageClass(mirror::Class* klass) {
    710   bool early_exit = false;
    711   std::unordered_set<mirror::Class*> visited;
    712   return PruneAppImageClassInternal(klass, &early_exit, &visited);
    713 }
    714 
    715 bool ImageWriter::PruneAppImageClassInternal(
    716     mirror::Class* klass,
    717     bool* early_exit,
    718     std::unordered_set<mirror::Class*>* visited) {
    719   DCHECK(early_exit != nullptr);
    720   DCHECK(visited != nullptr);
    721   DCHECK(compile_app_image_);
    722   if (klass == nullptr || IsInBootImage(klass)) {
    723     return false;
    724   }
    725   auto found = prune_class_memo_.find(klass);
    726   if (found != prune_class_memo_.end()) {
    727     // Already computed, return the found value.
    728     return found->second;
    729   }
    730   // Circular dependencies, return false but do not store the result in the memoization table.
    731   if (visited->find(klass) != visited->end()) {
    732     *early_exit = true;
    733     return false;
    734   }
    735   visited->emplace(klass);
    736   bool result = IsBootClassLoaderClass(klass);
    737   std::string temp;
    738   // Prune if not an image class, this handles any broken sets of image classes such as having a
    739   // class in the set but not it's superclass.
    740   result = result || !compiler_driver_.IsImageClass(klass->GetDescriptor(&temp));
    741   bool my_early_exit = false;  // Only for ourselves, ignore caller.
    742   // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
    743   // app image.
    744   if (klass->GetStatus() == mirror::Class::kStatusError) {
    745     result = true;
    746   } else {
    747     CHECK(klass->GetVerifyError() == nullptr) << PrettyClass(klass);
    748   }
    749   if (!result) {
    750     // Check interfaces since these wont be visited through VisitReferences.)
    751     mirror::IfTable* if_table = klass->GetIfTable();
    752     for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
    753       result = result || PruneAppImageClassInternal(if_table->GetInterface(i),
    754                                                     &my_early_exit,
    755                                                     visited);
    756     }
    757   }
    758   if (klass->IsObjectArrayClass()) {
    759     result = result || PruneAppImageClassInternal(klass->GetComponentType(),
    760                                                   &my_early_exit,
    761                                                   visited);
    762   }
    763   // Check static fields and their classes.
    764   size_t num_static_fields = klass->NumReferenceStaticFields();
    765   if (num_static_fields != 0 && klass->IsResolved()) {
    766     // Presumably GC can happen when we are cross compiling, it should not cause performance
    767     // problems to do pointer size logic.
    768     MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
    769         Runtime::Current()->GetClassLinker()->GetImagePointerSize());
    770     for (size_t i = 0u; i < num_static_fields; ++i) {
    771       mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
    772       if (ref != nullptr) {
    773         if (ref->IsClass()) {
    774           result = result || PruneAppImageClassInternal(ref->AsClass(),
    775                                                         &my_early_exit,
    776                                                         visited);
    777         } else {
    778           result = result || PruneAppImageClassInternal(ref->GetClass(),
    779                                                         &my_early_exit,
    780                                                         visited);
    781         }
    782       }
    783       field_offset = MemberOffset(field_offset.Uint32Value() +
    784                                   sizeof(mirror::HeapReference<mirror::Object>));
    785     }
    786   }
    787   result = result || PruneAppImageClassInternal(klass->GetSuperClass(),
    788                                                 &my_early_exit,
    789                                                 visited);
    790   // Erase the element we stored earlier since we are exiting the function.
    791   auto it = visited->find(klass);
    792   DCHECK(it != visited->end());
    793   visited->erase(it);
    794   // Only store result if it is true or none of the calls early exited due to circular
    795   // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
    796   // a child call and we can remember the result.
    797   if (result == true || !my_early_exit || visited->empty()) {
    798     prune_class_memo_[klass] = result;
    799   }
    800   *early_exit |= my_early_exit;
    801   return result;
    802 }
    803 
    804 bool ImageWriter::KeepClass(Class* klass) {
    805   if (klass == nullptr) {
    806     return false;
    807   }
    808   if (compile_app_image_ && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
    809     // Already in boot image, return true.
    810     return true;
    811   }
    812   std::string temp;
    813   if (!compiler_driver_.IsImageClass(klass->GetDescriptor(&temp))) {
    814     return false;
    815   }
    816   if (compile_app_image_) {
    817     // For app images, we need to prune boot loader classes that are not in the boot image since
    818     // these may have already been loaded when the app image is loaded.
    819     // Keep classes in the boot image space since we don't want to re-resolve these.
    820     return !PruneAppImageClass(klass);
    821   }
    822   return true;
    823 }
    824 
    825 class NonImageClassesVisitor : public ClassVisitor {
    826  public:
    827   explicit NonImageClassesVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
    828 
    829   bool operator()(Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
    830     if (!image_writer_->KeepClass(klass)) {
    831       classes_to_prune_.insert(klass);
    832     }
    833     return true;
    834   }
    835 
    836   std::unordered_set<mirror::Class*> classes_to_prune_;
    837   ImageWriter* const image_writer_;
    838 };
    839 
    840 void ImageWriter::PruneNonImageClasses() {
    841   Runtime* runtime = Runtime::Current();
    842   ClassLinker* class_linker = runtime->GetClassLinker();
    843   Thread* self = Thread::Current();
    844 
    845   // Clear class table strong roots so that dex caches can get pruned. We require pruning the class
    846   // path dex caches.
    847   class_linker->ClearClassTableStrongRoots();
    848 
    849   // Make a list of classes we would like to prune.
    850   NonImageClassesVisitor visitor(this);
    851   class_linker->VisitClasses(&visitor);
    852 
    853   // Remove the undesired classes from the class roots.
    854   VLOG(compiler) << "Pruning " << visitor.classes_to_prune_.size() << " classes";
    855   for (mirror::Class* klass : visitor.classes_to_prune_) {
    856     std::string temp;
    857     const char* name = klass->GetDescriptor(&temp);
    858     VLOG(compiler) << "Pruning class " << name;
    859     if (!compile_app_image_) {
    860       DCHECK(IsBootClassLoaderClass(klass));
    861     }
    862     bool result = class_linker->RemoveClass(name, klass->GetClassLoader());
    863     DCHECK(result);
    864   }
    865 
    866   // Clear references to removed classes from the DexCaches.
    867   ArtMethod* resolution_method = runtime->GetResolutionMethod();
    868 
    869   ScopedAssertNoThreadSuspension sa(self, __FUNCTION__);
    870   ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);  // For ClassInClassTable
    871   ReaderMutexLock mu2(self, *class_linker->DexLock());
    872   for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
    873     if (self->IsJWeakCleared(data.weak_root)) {
    874       continue;
    875     }
    876     mirror::DexCache* dex_cache = self->DecodeJObject(data.weak_root)->AsDexCache();
    877     for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
    878       Class* klass = dex_cache->GetResolvedType(i);
    879       if (klass != nullptr && !KeepClass(klass)) {
    880         dex_cache->SetResolvedType(i, nullptr);
    881       }
    882     }
    883     ArtMethod** resolved_methods = dex_cache->GetResolvedMethods();
    884     for (size_t i = 0, num = dex_cache->NumResolvedMethods(); i != num; ++i) {
    885       ArtMethod* method =
    886           mirror::DexCache::GetElementPtrSize(resolved_methods, i, target_ptr_size_);
    887       DCHECK(method != nullptr) << "Expected resolution method instead of null method";
    888       mirror::Class* declaring_class = method->GetDeclaringClass();
    889       // Copied methods may be held live by a class which was not an image class but have a
    890       // declaring class which is an image class. Set it to the resolution method to be safe and
    891       // prevent dangling pointers.
    892       if (method->IsCopied() || !KeepClass(declaring_class)) {
    893         mirror::DexCache::SetElementPtrSize(resolved_methods,
    894                                             i,
    895                                             resolution_method,
    896                                             target_ptr_size_);
    897       } else {
    898         // Check that the class is still in the classes table.
    899         DCHECK(class_linker->ClassInClassTable(declaring_class)) << "Class "
    900             << PrettyClass(declaring_class) << " not in class linker table";
    901       }
    902     }
    903     ArtField** resolved_fields = dex_cache->GetResolvedFields();
    904     for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) {
    905       ArtField* field = mirror::DexCache::GetElementPtrSize(resolved_fields, i, target_ptr_size_);
    906       if (field != nullptr && !KeepClass(field->GetDeclaringClass())) {
    907         dex_cache->SetResolvedField(i, nullptr, target_ptr_size_);
    908       }
    909     }
    910     // Clean the dex field. It might have been populated during the initialization phase, but
    911     // contains data only valid during a real run.
    912     dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr);
    913   }
    914 
    915   // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
    916   class_linker->DropFindArrayClassCache();
    917 
    918   // Clear to save RAM.
    919   prune_class_memo_.clear();
    920 }
    921 
    922 void ImageWriter::CheckNonImageClassesRemoved() {
    923   if (compiler_driver_.GetImageClasses() != nullptr) {
    924     gc::Heap* heap = Runtime::Current()->GetHeap();
    925     heap->VisitObjects(CheckNonImageClassesRemovedCallback, this);
    926   }
    927 }
    928 
    929 void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) {
    930   ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
    931   if (obj->IsClass() && !image_writer->IsInBootImage(obj)) {
    932     Class* klass = obj->AsClass();
    933     if (!image_writer->KeepClass(klass)) {
    934       image_writer->DumpImageClasses();
    935       std::string temp;
    936       CHECK(image_writer->KeepClass(klass)) << klass->GetDescriptor(&temp)
    937                                             << " " << PrettyDescriptor(klass);
    938     }
    939   }
    940 }
    941 
    942 void ImageWriter::DumpImageClasses() {
    943   auto image_classes = compiler_driver_.GetImageClasses();
    944   CHECK(image_classes != nullptr);
    945   for (const std::string& image_class : *image_classes) {
    946     LOG(INFO) << " " << image_class;
    947   }
    948 }
    949 
    950 mirror::String* ImageWriter::FindInternedString(mirror::String* string) {
    951   Thread* const self = Thread::Current();
    952   for (const ImageInfo& image_info : image_infos_) {
    953     mirror::String* const found = image_info.intern_table_->LookupStrong(self, string);
    954     DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr)
    955         << string->ToModifiedUtf8();
    956     if (found != nullptr) {
    957       return found;
    958     }
    959   }
    960   if (compile_app_image_) {
    961     Runtime* const runtime = Runtime::Current();
    962     mirror::String* found = runtime->GetInternTable()->LookupStrong(self, string);
    963     // If we found it in the runtime intern table it could either be in the boot image or interned
    964     // during app image compilation. If it was in the boot image return that, otherwise return null
    965     // since it belongs to another image space.
    966     if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found)) {
    967       return found;
    968     }
    969     DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr)
    970         << string->ToModifiedUtf8();
    971   }
    972   return nullptr;
    973 }
    974 
    975 void ImageWriter::CalculateObjectBinSlots(Object* obj) {
    976   DCHECK(obj != nullptr);
    977   // if it is a string, we want to intern it if its not interned.
    978   if (obj->GetClass()->IsStringClass()) {
    979     size_t oat_index = GetOatIndex(obj);
    980     ImageInfo& image_info = GetImageInfo(oat_index);
    981 
    982     // we must be an interned string that was forward referenced and already assigned
    983     if (IsImageBinSlotAssigned(obj)) {
    984       DCHECK_EQ(obj, FindInternedString(obj->AsString()));
    985       return;
    986     }
    987     // Need to check if the string is already interned in another image info so that we don't have
    988     // the intern tables of two different images contain the same string.
    989     mirror::String* interned = FindInternedString(obj->AsString());
    990     if (interned == nullptr) {
    991       // Not in another image space, insert to our table.
    992       interned = image_info.intern_table_->InternStrongImageString(obj->AsString());
    993     }
    994     if (obj != interned) {
    995       if (!IsImageBinSlotAssigned(interned)) {
    996         // interned obj is after us, allocate its location early
    997         AssignImageBinSlot(interned);
    998       }
    999       // point those looking for this object to the interned version.
   1000       SetImageBinSlot(obj, GetImageBinSlot(interned));
   1001       return;
   1002     }
   1003     // else (obj == interned), nothing to do but fall through to the normal case
   1004   }
   1005 
   1006   AssignImageBinSlot(obj);
   1007 }
   1008 
   1009 ObjectArray<Object>* ImageWriter::CreateImageRoots(size_t oat_index) const {
   1010   Runtime* runtime = Runtime::Current();
   1011   ClassLinker* class_linker = runtime->GetClassLinker();
   1012   Thread* self = Thread::Current();
   1013   StackHandleScope<3> hs(self);
   1014   Handle<Class> object_array_class(hs.NewHandle(
   1015       class_linker->FindSystemClass(self, "[Ljava/lang/Object;")));
   1016 
   1017   std::unordered_set<const DexFile*> image_dex_files;
   1018   for (auto& pair : dex_file_oat_index_map_) {
   1019     const DexFile* image_dex_file = pair.first;
   1020     size_t image_oat_index = pair.second;
   1021     if (oat_index == image_oat_index) {
   1022       image_dex_files.insert(image_dex_file);
   1023     }
   1024   }
   1025 
   1026   // build an Object[] of all the DexCaches used in the source_space_.
   1027   // Since we can't hold the dex lock when allocating the dex_caches
   1028   // ObjectArray, we lock the dex lock twice, first to get the number
   1029   // of dex caches first and then lock it again to copy the dex
   1030   // caches. We check that the number of dex caches does not change.
   1031   size_t dex_cache_count = 0;
   1032   {
   1033     ReaderMutexLock mu(self, *class_linker->DexLock());
   1034     // Count number of dex caches not in the boot image.
   1035     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
   1036       mirror::DexCache* dex_cache =
   1037           down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
   1038       if (dex_cache == nullptr) {
   1039         continue;
   1040       }
   1041       const DexFile* dex_file = dex_cache->GetDexFile();
   1042       if (!IsInBootImage(dex_cache)) {
   1043         dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
   1044       }
   1045     }
   1046   }
   1047   Handle<ObjectArray<Object>> dex_caches(
   1048       hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), dex_cache_count)));
   1049   CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array.";
   1050   {
   1051     ReaderMutexLock mu(self, *class_linker->DexLock());
   1052     size_t non_image_dex_caches = 0;
   1053     // Re-count number of non image dex caches.
   1054     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
   1055       mirror::DexCache* dex_cache =
   1056           down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
   1057       if (dex_cache == nullptr) {
   1058         continue;
   1059       }
   1060       const DexFile* dex_file = dex_cache->GetDexFile();
   1061       if (!IsInBootImage(dex_cache)) {
   1062         non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
   1063       }
   1064     }
   1065     CHECK_EQ(dex_cache_count, non_image_dex_caches)
   1066         << "The number of non-image dex caches changed.";
   1067     size_t i = 0;
   1068     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
   1069       mirror::DexCache* dex_cache =
   1070           down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
   1071       if (dex_cache == nullptr) {
   1072         continue;
   1073       }
   1074       const DexFile* dex_file = dex_cache->GetDexFile();
   1075       if (!IsInBootImage(dex_cache) && image_dex_files.find(dex_file) != image_dex_files.end()) {
   1076         dex_caches->Set<false>(i, dex_cache);
   1077         ++i;
   1078       }
   1079     }
   1080   }
   1081 
   1082   // build an Object[] of the roots needed to restore the runtime
   1083   auto image_roots(hs.NewHandle(
   1084       ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax)));
   1085   image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
   1086   image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
   1087   for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
   1088     CHECK(image_roots->Get(i) != nullptr);
   1089   }
   1090   return image_roots.Get();
   1091 }
   1092 
   1093 // Walk instance fields of the given Class. Separate function to allow recursion on the super
   1094 // class.
   1095 void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) {
   1096   // Visit fields of parent classes first.
   1097   StackHandleScope<1> hs(Thread::Current());
   1098   Handle<mirror::Class> h_class(hs.NewHandle(klass));
   1099   mirror::Class* super = h_class->GetSuperClass();
   1100   if (super != nullptr) {
   1101     WalkInstanceFields(obj, super);
   1102   }
   1103   //
   1104   size_t num_reference_fields = h_class->NumReferenceInstanceFields();
   1105   MemberOffset field_offset = h_class->GetFirstReferenceInstanceFieldOffset();
   1106   for (size_t i = 0; i < num_reference_fields; ++i) {
   1107     mirror::Object* value = obj->GetFieldObject<mirror::Object>(field_offset);
   1108     if (value != nullptr) {
   1109       WalkFieldsInOrder(value);
   1110     }
   1111     field_offset = MemberOffset(field_offset.Uint32Value() +
   1112                                 sizeof(mirror::HeapReference<mirror::Object>));
   1113   }
   1114 }
   1115 
   1116 // For an unvisited object, visit it then all its children found via fields.
   1117 void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) {
   1118   if (IsInBootImage(obj)) {
   1119     // Object is in the image, don't need to fix it up.
   1120     return;
   1121   }
   1122   // Use our own visitor routine (instead of GC visitor) to get better locality between
   1123   // an object and its fields
   1124   if (!IsImageBinSlotAssigned(obj)) {
   1125     // Walk instance fields of all objects
   1126     StackHandleScope<2> hs(Thread::Current());
   1127     Handle<mirror::Object> h_obj(hs.NewHandle(obj));
   1128     Handle<mirror::Class> klass(hs.NewHandle(obj->GetClass()));
   1129     // visit the object itself.
   1130     CalculateObjectBinSlots(h_obj.Get());
   1131     WalkInstanceFields(h_obj.Get(), klass.Get());
   1132     // Walk static fields of a Class.
   1133     if (h_obj->IsClass()) {
   1134       size_t num_reference_static_fields = klass->NumReferenceStaticFields();
   1135       MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(target_ptr_size_);
   1136       for (size_t i = 0; i < num_reference_static_fields; ++i) {
   1137         mirror::Object* value = h_obj->GetFieldObject<mirror::Object>(field_offset);
   1138         if (value != nullptr) {
   1139           WalkFieldsInOrder(value);
   1140         }
   1141         field_offset = MemberOffset(field_offset.Uint32Value() +
   1142                                     sizeof(mirror::HeapReference<mirror::Object>));
   1143       }
   1144       // Visit and assign offsets for fields and field arrays.
   1145       auto* as_klass = h_obj->AsClass();
   1146       mirror::DexCache* dex_cache = as_klass->GetDexCache();
   1147       DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
   1148       if (compile_app_image_) {
   1149         // Extra sanity, no boot loader classes should be left!
   1150         CHECK(!IsBootClassLoaderClass(as_klass)) << PrettyClass(as_klass);
   1151       }
   1152       LengthPrefixedArray<ArtField>* fields[] = {
   1153           as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(),
   1154       };
   1155       size_t oat_index = GetOatIndexForDexCache(dex_cache);
   1156       ImageInfo& image_info = GetImageInfo(oat_index);
   1157       {
   1158         // Note: This table is only accessed from the image writer, so the lock is technically
   1159         // unnecessary.
   1160         WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
   1161         // Insert in the class table for this iamge.
   1162         image_info.class_table_->Insert(as_klass);
   1163       }
   1164       for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
   1165         // Total array length including header.
   1166         if (cur_fields != nullptr) {
   1167           const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0);
   1168           // Forward the entire array at once.
   1169           auto it = native_object_relocations_.find(cur_fields);
   1170           CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields
   1171                                                   << " already forwarded";
   1172           size_t& offset = image_info.bin_slot_sizes_[kBinArtField];
   1173           DCHECK(!IsInBootImage(cur_fields));
   1174           native_object_relocations_.emplace(
   1175               cur_fields,
   1176               NativeObjectRelocation {
   1177                   oat_index, offset, kNativeObjectRelocationTypeArtFieldArray
   1178               });
   1179           offset += header_size;
   1180           // Forward individual fields so that we can quickly find where they belong.
   1181           for (size_t i = 0, count = cur_fields->size(); i < count; ++i) {
   1182             // Need to forward arrays separate of fields.
   1183             ArtField* field = &cur_fields->At(i);
   1184             auto it2 = native_object_relocations_.find(field);
   1185             CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i
   1186                 << " already assigned " << PrettyField(field) << " static=" << field->IsStatic();
   1187             DCHECK(!IsInBootImage(field));
   1188             native_object_relocations_.emplace(
   1189                 field,
   1190                 NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeArtField });
   1191             offset += sizeof(ArtField);
   1192           }
   1193         }
   1194       }
   1195       // Visit and assign offsets for methods.
   1196       size_t num_methods = as_klass->NumMethods();
   1197       if (num_methods != 0) {
   1198         bool any_dirty = false;
   1199         for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
   1200           if (WillMethodBeDirty(&m)) {
   1201             any_dirty = true;
   1202             break;
   1203           }
   1204         }
   1205         NativeObjectRelocationType type = any_dirty
   1206             ? kNativeObjectRelocationTypeArtMethodDirty
   1207             : kNativeObjectRelocationTypeArtMethodClean;
   1208         Bin bin_type = BinTypeForNativeRelocationType(type);
   1209         // Forward the entire array at once, but header first.
   1210         const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
   1211         const size_t method_size = ArtMethod::Size(target_ptr_size_);
   1212         const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
   1213                                                                                method_size,
   1214                                                                                method_alignment);
   1215         LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr();
   1216         auto it = native_object_relocations_.find(array);
   1217         CHECK(it == native_object_relocations_.end())
   1218             << "Method array " << array << " already forwarded";
   1219         size_t& offset = image_info.bin_slot_sizes_[bin_type];
   1220         DCHECK(!IsInBootImage(array));
   1221         native_object_relocations_.emplace(array,
   1222             NativeObjectRelocation {
   1223                 oat_index,
   1224                 offset,
   1225                 any_dirty ? kNativeObjectRelocationTypeArtMethodArrayDirty
   1226                           : kNativeObjectRelocationTypeArtMethodArrayClean });
   1227         offset += header_size;
   1228         for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
   1229           AssignMethodOffset(&m, type, oat_index);
   1230         }
   1231         (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
   1232       }
   1233       // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
   1234       // live.
   1235       if (as_klass->ShouldHaveImt()) {
   1236         ImTable* imt = as_klass->GetImt(target_ptr_size_);
   1237         for (size_t i = 0; i < ImTable::kSize; ++i) {
   1238           ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
   1239           DCHECK(imt_method != nullptr);
   1240           if (imt_method->IsRuntimeMethod() &&
   1241               !IsInBootImage(imt_method) &&
   1242               !NativeRelocationAssigned(imt_method)) {
   1243             AssignMethodOffset(imt_method, kNativeObjectRelocationTypeRuntimeMethod, oat_index);
   1244           }
   1245         }
   1246       }
   1247 
   1248       if (as_klass->ShouldHaveImt()) {
   1249         ImTable* imt = as_klass->GetImt(target_ptr_size_);
   1250         TryAssignImTableOffset(imt, oat_index);
   1251       }
   1252     } else if (h_obj->IsObjectArray()) {
   1253       // Walk elements of an object array.
   1254       int32_t length = h_obj->AsObjectArray<mirror::Object>()->GetLength();
   1255       for (int32_t i = 0; i < length; i++) {
   1256         mirror::ObjectArray<mirror::Object>* obj_array = h_obj->AsObjectArray<mirror::Object>();
   1257         mirror::Object* value = obj_array->Get(i);
   1258         if (value != nullptr) {
   1259           WalkFieldsInOrder(value);
   1260         }
   1261       }
   1262     } else if (h_obj->IsClassLoader()) {
   1263       // Register the class loader if it has a class table.
   1264       // The fake boot class loader should not get registered and we should end up with only one
   1265       // class loader.
   1266       mirror::ClassLoader* class_loader = h_obj->AsClassLoader();
   1267       if (class_loader->GetClassTable() != nullptr) {
   1268         class_loaders_.insert(class_loader);
   1269       }
   1270     }
   1271   }
   1272 }
   1273 
   1274 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
   1275   return native_object_relocations_.find(ptr) != native_object_relocations_.end();
   1276 }
   1277 
   1278 void ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
   1279   // No offset, or already assigned.
   1280   if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
   1281     return;
   1282   }
   1283   // If the method is a conflict method we also want to assign the conflict table offset.
   1284   ImageInfo& image_info = GetImageInfo(oat_index);
   1285   const size_t size = ImTable::SizeInBytes(target_ptr_size_);
   1286   native_object_relocations_.emplace(
   1287       imt,
   1288       NativeObjectRelocation {
   1289           oat_index,
   1290           image_info.bin_slot_sizes_[kBinImTable],
   1291           kNativeObjectRelocationTypeIMTable});
   1292   image_info.bin_slot_sizes_[kBinImTable] += size;
   1293 }
   1294 
   1295 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
   1296   // No offset, or already assigned.
   1297   if (table == nullptr || NativeRelocationAssigned(table)) {
   1298     return;
   1299   }
   1300   CHECK(!IsInBootImage(table));
   1301   // If the method is a conflict method we also want to assign the conflict table offset.
   1302   ImageInfo& image_info = GetImageInfo(oat_index);
   1303   const size_t size = table->ComputeSize(target_ptr_size_);
   1304   native_object_relocations_.emplace(
   1305       table,
   1306       NativeObjectRelocation {
   1307           oat_index,
   1308           image_info.bin_slot_sizes_[kBinIMTConflictTable],
   1309           kNativeObjectRelocationTypeIMTConflictTable});
   1310   image_info.bin_slot_sizes_[kBinIMTConflictTable] += size;
   1311 }
   1312 
   1313 void ImageWriter::AssignMethodOffset(ArtMethod* method,
   1314                                      NativeObjectRelocationType type,
   1315                                      size_t oat_index) {
   1316   DCHECK(!IsInBootImage(method));
   1317   CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
   1318       << PrettyMethod(method);
   1319   if (method->IsRuntimeMethod()) {
   1320     TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
   1321   }
   1322   ImageInfo& image_info = GetImageInfo(oat_index);
   1323   size_t& offset = image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(type)];
   1324   native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type });
   1325   offset += ArtMethod::Size(target_ptr_size_);
   1326 }
   1327 
   1328 void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) {
   1329   ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
   1330   DCHECK(writer != nullptr);
   1331   writer->WalkFieldsInOrder(obj);
   1332 }
   1333 
   1334 void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) {
   1335   ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
   1336   DCHECK(writer != nullptr);
   1337   if (!writer->IsInBootImage(obj)) {
   1338     writer->UnbinObjectsIntoOffset(obj);
   1339   }
   1340 }
   1341 
   1342 void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
   1343   DCHECK(!IsInBootImage(obj));
   1344   CHECK(obj != nullptr);
   1345 
   1346   // We know the bin slot, and the total bin sizes for all objects by now,
   1347   // so calculate the object's final image offset.
   1348 
   1349   DCHECK(IsImageBinSlotAssigned(obj));
   1350   BinSlot bin_slot = GetImageBinSlot(obj);
   1351   // Change the lockword from a bin slot into an offset
   1352   AssignImageOffset(obj, bin_slot);
   1353 }
   1354 
   1355 void ImageWriter::CalculateNewObjectOffsets() {
   1356   Thread* const self = Thread::Current();
   1357   StackHandleScopeCollection handles(self);
   1358   std::vector<Handle<ObjectArray<Object>>> image_roots;
   1359   for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
   1360     image_roots.push_back(handles.NewHandle(CreateImageRoots(i)));
   1361   }
   1362 
   1363   auto* runtime = Runtime::Current();
   1364   auto* heap = runtime->GetHeap();
   1365 
   1366   // Leave space for the header, but do not write it yet, we need to
   1367   // know where image_roots is going to end up
   1368   image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment);  // 64-bit-alignment
   1369 
   1370   const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
   1371   // Write the image runtime methods.
   1372   image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
   1373   image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
   1374   image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
   1375   image_methods_[ImageHeader::kCalleeSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kSaveAll);
   1376   image_methods_[ImageHeader::kRefsOnlySaveMethod] =
   1377       runtime->GetCalleeSaveMethod(Runtime::kRefsOnly);
   1378   image_methods_[ImageHeader::kRefsAndArgsSaveMethod] =
   1379       runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs);
   1380   // Visit image methods first to have the main runtime methods in the first image.
   1381   for (auto* m : image_methods_) {
   1382     CHECK(m != nullptr);
   1383     CHECK(m->IsRuntimeMethod());
   1384     DCHECK_EQ(compile_app_image_, IsInBootImage(m)) << "Trampolines should be in boot image";
   1385     if (!IsInBootImage(m)) {
   1386       AssignMethodOffset(m, kNativeObjectRelocationTypeRuntimeMethod, GetDefaultOatIndex());
   1387     }
   1388   }
   1389 
   1390   // Clear any pre-existing monitors which may have been in the monitor words, assign bin slots.
   1391   heap->VisitObjects(WalkFieldsCallback, this);
   1392 
   1393   // Calculate size of the dex cache arrays slot and prepare offsets.
   1394   PrepareDexCacheArraySlots();
   1395 
   1396   // Calculate the sizes of the intern tables and class tables.
   1397   for (ImageInfo& image_info : image_infos_) {
   1398     // Calculate how big the intern table will be after being serialized.
   1399     InternTable* const intern_table = image_info.intern_table_.get();
   1400     CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
   1401     image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
   1402     // Calculate the size of the class table.
   1403     ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
   1404     image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr);
   1405   }
   1406 
   1407   // Calculate bin slot offsets.
   1408   for (ImageInfo& image_info : image_infos_) {
   1409     size_t bin_offset = image_objects_offset_begin_;
   1410     for (size_t i = 0; i != kBinSize; ++i) {
   1411       switch (i) {
   1412         case kBinArtMethodClean:
   1413         case kBinArtMethodDirty: {
   1414           bin_offset = RoundUp(bin_offset, method_alignment);
   1415           break;
   1416         }
   1417         case kBinImTable:
   1418         case kBinIMTConflictTable: {
   1419           bin_offset = RoundUp(bin_offset, target_ptr_size_);
   1420           break;
   1421         }
   1422         default: {
   1423           // Normal alignment.
   1424         }
   1425       }
   1426       image_info.bin_slot_offsets_[i] = bin_offset;
   1427       bin_offset += image_info.bin_slot_sizes_[i];
   1428     }
   1429     // NOTE: There may be additional padding between the bin slots and the intern table.
   1430     DCHECK_EQ(image_info.image_end_,
   1431               GetBinSizeSum(image_info, kBinMirrorCount) + image_objects_offset_begin_);
   1432   }
   1433 
   1434   // Calculate image offsets.
   1435   size_t image_offset = 0;
   1436   for (ImageInfo& image_info : image_infos_) {
   1437     image_info.image_begin_ = global_image_begin_ + image_offset;
   1438     image_info.image_offset_ = image_offset;
   1439     ImageSection unused_sections[ImageHeader::kSectionCount];
   1440     image_info.image_size_ = RoundUp(image_info.CreateImageSections(unused_sections), kPageSize);
   1441     // There should be no gaps until the next image.
   1442     image_offset += image_info.image_size_;
   1443   }
   1444 
   1445   // Transform each object's bin slot into an offset which will be used to do the final copy.
   1446   heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this);
   1447 
   1448   // DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_);
   1449 
   1450   size_t i = 0;
   1451   for (ImageInfo& image_info : image_infos_) {
   1452     image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
   1453     i++;
   1454   }
   1455 
   1456   // Update the native relocations by adding their bin sums.
   1457   for (auto& pair : native_object_relocations_) {
   1458     NativeObjectRelocation& relocation = pair.second;
   1459     Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
   1460     ImageInfo& image_info = GetImageInfo(relocation.oat_index);
   1461     relocation.offset += image_info.bin_slot_offsets_[bin_type];
   1462   }
   1463 
   1464   // Note that image_info.image_end_ is left at end of used mirror object section.
   1465 }
   1466 
   1467 size_t ImageWriter::ImageInfo::CreateImageSections(ImageSection* out_sections) const {
   1468   DCHECK(out_sections != nullptr);
   1469 
   1470   // Do not round up any sections here that are represented by the bins since it will break
   1471   // offsets.
   1472 
   1473   // Objects section
   1474   ImageSection* objects_section = &out_sections[ImageHeader::kSectionObjects];
   1475   *objects_section = ImageSection(0u, image_end_);
   1476 
   1477   // Add field section.
   1478   ImageSection* field_section = &out_sections[ImageHeader::kSectionArtFields];
   1479   *field_section = ImageSection(bin_slot_offsets_[kBinArtField], bin_slot_sizes_[kBinArtField]);
   1480   CHECK_EQ(bin_slot_offsets_[kBinArtField], field_section->Offset());
   1481 
   1482   // Add method section.
   1483   ImageSection* methods_section = &out_sections[ImageHeader::kSectionArtMethods];
   1484   *methods_section = ImageSection(
   1485       bin_slot_offsets_[kBinArtMethodClean],
   1486       bin_slot_sizes_[kBinArtMethodClean] + bin_slot_sizes_[kBinArtMethodDirty]);
   1487 
   1488   // IMT section.
   1489   ImageSection* imt_section = &out_sections[ImageHeader::kSectionImTables];
   1490   *imt_section = ImageSection(bin_slot_offsets_[kBinImTable], bin_slot_sizes_[kBinImTable]);
   1491 
   1492   // Conflict tables section.
   1493   ImageSection* imt_conflict_tables_section = &out_sections[ImageHeader::kSectionIMTConflictTables];
   1494   *imt_conflict_tables_section = ImageSection(bin_slot_offsets_[kBinIMTConflictTable],
   1495                                               bin_slot_sizes_[kBinIMTConflictTable]);
   1496 
   1497   // Runtime methods section.
   1498   ImageSection* runtime_methods_section = &out_sections[ImageHeader::kSectionRuntimeMethods];
   1499   *runtime_methods_section = ImageSection(bin_slot_offsets_[kBinRuntimeMethod],
   1500                                           bin_slot_sizes_[kBinRuntimeMethod]);
   1501 
   1502   // Add dex cache arrays section.
   1503   ImageSection* dex_cache_arrays_section = &out_sections[ImageHeader::kSectionDexCacheArrays];
   1504   *dex_cache_arrays_section = ImageSection(bin_slot_offsets_[kBinDexCacheArray],
   1505                                            bin_slot_sizes_[kBinDexCacheArray]);
   1506 
   1507   // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
   1508   size_t cur_pos = RoundUp(dex_cache_arrays_section->End(), sizeof(uint64_t));
   1509   // Calculate the size of the interned strings.
   1510   ImageSection* interned_strings_section = &out_sections[ImageHeader::kSectionInternedStrings];
   1511   *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_);
   1512   cur_pos = interned_strings_section->End();
   1513   // Round up to the alignment the class table expects. See HashSet::WriteToMemory.
   1514   cur_pos = RoundUp(cur_pos, sizeof(uint64_t));
   1515   // Calculate the size of the class table section.
   1516   ImageSection* class_table_section = &out_sections[ImageHeader::kSectionClassTable];
   1517   *class_table_section = ImageSection(cur_pos, class_table_bytes_);
   1518   cur_pos = class_table_section->End();
   1519   // Image end goes right before the start of the image bitmap.
   1520   return cur_pos;
   1521 }
   1522 
   1523 void ImageWriter::CreateHeader(size_t oat_index) {
   1524   ImageInfo& image_info = GetImageInfo(oat_index);
   1525   const uint8_t* oat_file_begin = image_info.oat_file_begin_;
   1526   const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
   1527   const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
   1528 
   1529   // Create the image sections.
   1530   ImageSection sections[ImageHeader::kSectionCount];
   1531   const size_t image_end = image_info.CreateImageSections(sections);
   1532 
   1533   // Finally bitmap section.
   1534   const size_t bitmap_bytes = image_info.image_bitmap_->Size();
   1535   auto* bitmap_section = &sections[ImageHeader::kSectionImageBitmap];
   1536   *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
   1537   if (VLOG_IS_ON(compiler)) {
   1538     LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
   1539     size_t idx = 0;
   1540     for (const ImageSection& section : sections) {
   1541       LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
   1542       ++idx;
   1543     }
   1544     LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
   1545     LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
   1546     LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
   1547               << " Image offset=" << image_info.image_offset_ << std::dec;
   1548     LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
   1549               << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
   1550               << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
   1551               << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
   1552   }
   1553   // Store boot image info for app image so that we can relocate.
   1554   uint32_t boot_image_begin = 0;
   1555   uint32_t boot_image_end = 0;
   1556   uint32_t boot_oat_begin = 0;
   1557   uint32_t boot_oat_end = 0;
   1558   gc::Heap* const heap = Runtime::Current()->GetHeap();
   1559   heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
   1560 
   1561   // Create the header, leave 0 for data size since we will fill this in as we are writing the
   1562   // image.
   1563   new (image_info.image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_info.image_begin_),
   1564                                                image_end,
   1565                                                sections,
   1566                                                image_info.image_roots_address_,
   1567                                                image_info.oat_checksum_,
   1568                                                PointerToLowMemUInt32(oat_file_begin),
   1569                                                PointerToLowMemUInt32(image_info.oat_data_begin_),
   1570                                                PointerToLowMemUInt32(oat_data_end),
   1571                                                PointerToLowMemUInt32(oat_file_end),
   1572                                                boot_image_begin,
   1573                                                boot_image_end - boot_image_begin,
   1574                                                boot_oat_begin,
   1575                                                boot_oat_end - boot_oat_begin,
   1576                                                target_ptr_size_,
   1577                                                compile_pic_,
   1578                                                /*is_pic*/compile_app_image_,
   1579                                                image_storage_mode_,
   1580                                                /*data_size*/0u);
   1581 }
   1582 
   1583 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
   1584   auto it = native_object_relocations_.find(method);
   1585   CHECK(it != native_object_relocations_.end()) << PrettyMethod(method) << " @ " << method;
   1586   size_t oat_index = GetOatIndex(method->GetDexCache());
   1587   ImageInfo& image_info = GetImageInfo(oat_index);
   1588   CHECK_GE(it->second.offset, image_info.image_end_) << "ArtMethods should be after Objects";
   1589   return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + it->second.offset);
   1590 }
   1591 
   1592 class FixupRootVisitor : public RootVisitor {
   1593  public:
   1594   explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
   1595   }
   1596 
   1597   void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
   1598       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
   1599     for (size_t i = 0; i < count; ++i) {
   1600       *roots[i] = image_writer_->GetImageAddress(*roots[i]);
   1601     }
   1602   }
   1603 
   1604   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
   1605                   const RootInfo& info ATTRIBUTE_UNUSED)
   1606       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
   1607     for (size_t i = 0; i < count; ++i) {
   1608       roots[i]->Assign(image_writer_->GetImageAddress(roots[i]->AsMirrorPtr()));
   1609     }
   1610   }
   1611 
   1612  private:
   1613   ImageWriter* const image_writer_;
   1614 };
   1615 
   1616 void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
   1617   for (size_t i = 0; i < ImTable::kSize; ++i) {
   1618     ArtMethod* method = orig->Get(i, target_ptr_size_);
   1619     copy->Set(i, NativeLocationInImage(method), target_ptr_size_);
   1620   }
   1621 }
   1622 
   1623 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
   1624   const size_t count = orig->NumEntries(target_ptr_size_);
   1625   for (size_t i = 0; i < count; ++i) {
   1626     ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
   1627     ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
   1628     copy->SetInterfaceMethod(i, target_ptr_size_, NativeLocationInImage(interface_method));
   1629     copy->SetImplementationMethod(i,
   1630                                   target_ptr_size_,
   1631                                   NativeLocationInImage(implementation_method));
   1632   }
   1633 }
   1634 
   1635 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
   1636   const ImageInfo& image_info = GetImageInfo(oat_index);
   1637   // Copy ArtFields and methods to their locations and update the array for convenience.
   1638   for (auto& pair : native_object_relocations_) {
   1639     NativeObjectRelocation& relocation = pair.second;
   1640     // Only work with fields and methods that are in the current oat file.
   1641     if (relocation.oat_index != oat_index) {
   1642       continue;
   1643     }
   1644     auto* dest = image_info.image_->Begin() + relocation.offset;
   1645     DCHECK_GE(dest, image_info.image_->Begin() + image_info.image_end_);
   1646     DCHECK(!IsInBootImage(pair.first));
   1647     switch (relocation.type) {
   1648       case kNativeObjectRelocationTypeArtField: {
   1649         memcpy(dest, pair.first, sizeof(ArtField));
   1650         reinterpret_cast<ArtField*>(dest)->SetDeclaringClass(
   1651             GetImageAddress(reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass()));
   1652         break;
   1653       }
   1654       case kNativeObjectRelocationTypeRuntimeMethod:
   1655       case kNativeObjectRelocationTypeArtMethodClean:
   1656       case kNativeObjectRelocationTypeArtMethodDirty: {
   1657         CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
   1658                            reinterpret_cast<ArtMethod*>(dest),
   1659                            image_info);
   1660         break;
   1661       }
   1662       // For arrays, copy just the header since the elements will get copied by their corresponding
   1663       // relocations.
   1664       case kNativeObjectRelocationTypeArtFieldArray: {
   1665         memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0));
   1666         break;
   1667       }
   1668       case kNativeObjectRelocationTypeArtMethodArrayClean:
   1669       case kNativeObjectRelocationTypeArtMethodArrayDirty: {
   1670         size_t size = ArtMethod::Size(target_ptr_size_);
   1671         size_t alignment = ArtMethod::Alignment(target_ptr_size_);
   1672         memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
   1673         // Clear padding to avoid non-deterministic data in the image (and placate valgrind).
   1674         reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
   1675         break;
   1676       }
   1677       case kNativeObjectRelocationTypeDexCacheArray:
   1678         // Nothing to copy here, everything is done in FixupDexCache().
   1679         break;
   1680       case kNativeObjectRelocationTypeIMTable: {
   1681         ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
   1682         ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
   1683         CopyAndFixupImTable(orig_imt, dest_imt);
   1684         break;
   1685       }
   1686       case kNativeObjectRelocationTypeIMTConflictTable: {
   1687         auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
   1688         CopyAndFixupImtConflictTable(
   1689             orig_table,
   1690             new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
   1691         break;
   1692       }
   1693     }
   1694   }
   1695   // Fixup the image method roots.
   1696   auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
   1697   for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
   1698     ArtMethod* method = image_methods_[i];
   1699     CHECK(method != nullptr);
   1700     if (!IsInBootImage(method)) {
   1701       method = NativeLocationInImage(method);
   1702     }
   1703     image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), method);
   1704   }
   1705   FixupRootVisitor root_visitor(this);
   1706 
   1707   // Write the intern table into the image.
   1708   if (image_info.intern_table_bytes_ > 0) {
   1709     const ImageSection& intern_table_section = image_header->GetImageSection(
   1710         ImageHeader::kSectionInternedStrings);
   1711     InternTable* const intern_table = image_info.intern_table_.get();
   1712     uint8_t* const intern_table_memory_ptr =
   1713         image_info.image_->Begin() + intern_table_section.Offset();
   1714     const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr);
   1715     CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
   1716     // Fixup the pointers in the newly written intern table to contain image addresses.
   1717     InternTable temp_intern_table;
   1718     // Note that we require that ReadFromMemory does not make an internal copy of the elements so that
   1719     // the VisitRoots() will update the memory directly rather than the copies.
   1720     // This also relies on visit roots not doing any verification which could fail after we update
   1721     // the roots to be the image addresses.
   1722     temp_intern_table.AddTableFromMemory(intern_table_memory_ptr);
   1723     CHECK_EQ(temp_intern_table.Size(), intern_table->Size());
   1724     temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
   1725   }
   1726   // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
   1727   // class loaders. Writing multiple class tables into the image is currently unsupported.
   1728   if (image_info.class_table_bytes_ > 0u) {
   1729     const ImageSection& class_table_section = image_header->GetImageSection(
   1730         ImageHeader::kSectionClassTable);
   1731     uint8_t* const class_table_memory_ptr =
   1732         image_info.image_->Begin() + class_table_section.Offset();
   1733     ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
   1734 
   1735     ClassTable* table = image_info.class_table_.get();
   1736     CHECK(table != nullptr);
   1737     const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr);
   1738     CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
   1739     // Fixup the pointers in the newly written class table to contain image addresses. See
   1740     // above comment for intern tables.
   1741     ClassTable temp_class_table;
   1742     temp_class_table.ReadFromMemory(class_table_memory_ptr);
   1743     CHECK_EQ(temp_class_table.NumZygoteClasses(), table->NumNonZygoteClasses() +
   1744              table->NumZygoteClasses());
   1745     BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(&root_visitor,
   1746                                                                     RootInfo(kRootUnknown));
   1747     temp_class_table.VisitRoots(buffered_visitor);
   1748   }
   1749 }
   1750 
   1751 void ImageWriter::CopyAndFixupObjects() {
   1752   gc::Heap* heap = Runtime::Current()->GetHeap();
   1753   heap->VisitObjects(CopyAndFixupObjectsCallback, this);
   1754   // Fix up the object previously had hash codes.
   1755   for (const auto& hash_pair : saved_hashcode_map_) {
   1756     Object* obj = hash_pair.first;
   1757     DCHECK_EQ(obj->GetLockWord<kVerifyNone>(false).ReadBarrierState(), 0U);
   1758     obj->SetLockWord<kVerifyNone>(LockWord::FromHashCode(hash_pair.second, 0U), false);
   1759   }
   1760   saved_hashcode_map_.clear();
   1761 }
   1762 
   1763 void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) {
   1764   DCHECK(obj != nullptr);
   1765   DCHECK(arg != nullptr);
   1766   reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj);
   1767 }
   1768 
   1769 void ImageWriter::FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr,
   1770                                     mirror::Class* klass, Bin array_type) {
   1771   CHECK(klass->IsArrayClass());
   1772   CHECK(arr->IsIntArray() || arr->IsLongArray()) << PrettyClass(klass) << " " << arr;
   1773   // Fixup int and long pointers for the ArtMethod or ArtField arrays.
   1774   const size_t num_elements = arr->GetLength();
   1775   dst->SetClass(GetImageAddress(arr->GetClass()));
   1776   auto* dest_array = down_cast<mirror::PointerArray*>(dst);
   1777   for (size_t i = 0, count = num_elements; i < count; ++i) {
   1778     void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
   1779     if (elem != nullptr && !IsInBootImage(elem)) {
   1780       auto it = native_object_relocations_.find(elem);
   1781       if (UNLIKELY(it == native_object_relocations_.end())) {
   1782         if (it->second.IsArtMethodRelocation()) {
   1783           auto* method = reinterpret_cast<ArtMethod*>(elem);
   1784           LOG(FATAL) << "No relocation entry for ArtMethod " << PrettyMethod(method) << " @ "
   1785               << method << " idx=" << i << "/" << num_elements << " with declaring class "
   1786               << PrettyClass(method->GetDeclaringClass());
   1787         } else {
   1788           CHECK_EQ(array_type, kBinArtField);
   1789           auto* field = reinterpret_cast<ArtField*>(elem);
   1790           LOG(FATAL) << "No relocation entry for ArtField " << PrettyField(field) << " @ "
   1791               << field << " idx=" << i << "/" << num_elements << " with declaring class "
   1792               << PrettyClass(field->GetDeclaringClass());
   1793         }
   1794         UNREACHABLE();
   1795       } else {
   1796         ImageInfo& image_info = GetImageInfo(it->second.oat_index);
   1797         elem = image_info.image_begin_ + it->second.offset;
   1798       }
   1799     }
   1800     dest_array->SetElementPtrSize<false, true>(i, elem, target_ptr_size_);
   1801   }
   1802 }
   1803 
   1804 void ImageWriter::CopyAndFixupObject(Object* obj) {
   1805   if (IsInBootImage(obj)) {
   1806     return;
   1807   }
   1808   size_t offset = GetImageOffset(obj);
   1809   size_t oat_index = GetOatIndex(obj);
   1810   ImageInfo& image_info = GetImageInfo(oat_index);
   1811   auto* dst = reinterpret_cast<Object*>(image_info.image_->Begin() + offset);
   1812   DCHECK_LT(offset, image_info.image_end_);
   1813   const auto* src = reinterpret_cast<const uint8_t*>(obj);
   1814 
   1815   image_info.image_bitmap_->Set(dst);  // Mark the obj as live.
   1816 
   1817   const size_t n = obj->SizeOf();
   1818   DCHECK_LE(offset + n, image_info.image_->Size());
   1819   memcpy(dst, src, n);
   1820 
   1821   // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
   1822   // word.
   1823   const auto it = saved_hashcode_map_.find(obj);
   1824   dst->SetLockWord(it != saved_hashcode_map_.end() ?
   1825       LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
   1826   FixupObject(obj, dst);
   1827 }
   1828 
   1829 // Rewrite all the references in the copied object to point to their image address equivalent
   1830 class FixupVisitor {
   1831  public:
   1832   FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) {
   1833   }
   1834 
   1835   // Ignore class roots since we don't have a way to map them to the destination. These are handled
   1836   // with other logic.
   1837   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
   1838       const {}
   1839   void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
   1840 
   1841 
   1842   void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
   1843       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1844     Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
   1845     // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
   1846     // image.
   1847     copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
   1848         offset,
   1849         image_writer_->GetImageAddress(ref));
   1850   }
   1851 
   1852   // java.lang.ref.Reference visitor.
   1853   void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
   1854       SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
   1855     copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
   1856         mirror::Reference::ReferentOffset(),
   1857         image_writer_->GetImageAddress(ref->GetReferent()));
   1858   }
   1859 
   1860  protected:
   1861   ImageWriter* const image_writer_;
   1862   mirror::Object* const copy_;
   1863 };
   1864 
   1865 class FixupClassVisitor FINAL : public FixupVisitor {
   1866  public:
   1867   FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) {
   1868   }
   1869 
   1870   void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
   1871       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1872     DCHECK(obj->IsClass());
   1873     FixupVisitor::operator()(obj, offset, /*is_static*/false);
   1874   }
   1875 
   1876   void operator()(mirror::Class* klass ATTRIBUTE_UNUSED,
   1877                   mirror::Reference* ref ATTRIBUTE_UNUSED) const
   1878       SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
   1879     LOG(FATAL) << "Reference not expected here.";
   1880   }
   1881 };
   1882 
   1883 uintptr_t ImageWriter::NativeOffsetInImage(void* obj) {
   1884   DCHECK(obj != nullptr);
   1885   DCHECK(!IsInBootImage(obj));
   1886   auto it = native_object_relocations_.find(obj);
   1887   CHECK(it != native_object_relocations_.end()) << obj << " spaces "
   1888       << Runtime::Current()->GetHeap()->DumpSpaces();
   1889   const NativeObjectRelocation& relocation = it->second;
   1890   return relocation.offset;
   1891 }
   1892 
   1893 template <typename T>
   1894 std::string PrettyPrint(T* ptr) SHARED_REQUIRES(Locks::mutator_lock_) {
   1895   std::ostringstream oss;
   1896   oss << ptr;
   1897   return oss.str();
   1898 }
   1899 
   1900 template <>
   1901 std::string PrettyPrint(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_) {
   1902   return PrettyMethod(method);
   1903 }
   1904 
   1905 template <typename T>
   1906 T* ImageWriter::NativeLocationInImage(T* obj) {
   1907   if (obj == nullptr || IsInBootImage(obj)) {
   1908     return obj;
   1909   } else {
   1910     auto it = native_object_relocations_.find(obj);
   1911     CHECK(it != native_object_relocations_.end()) << obj << " " << PrettyPrint(obj)
   1912         << " spaces " << Runtime::Current()->GetHeap()->DumpSpaces();
   1913     const NativeObjectRelocation& relocation = it->second;
   1914     ImageInfo& image_info = GetImageInfo(relocation.oat_index);
   1915     return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
   1916   }
   1917 }
   1918 
   1919 template <typename T>
   1920 T* ImageWriter::NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) {
   1921   if (obj == nullptr || IsInBootImage(obj)) {
   1922     return obj;
   1923   } else {
   1924     size_t oat_index = GetOatIndexForDexCache(dex_cache);
   1925     ImageInfo& image_info = GetImageInfo(oat_index);
   1926     return reinterpret_cast<T*>(image_info.image_->Begin() + NativeOffsetInImage(obj));
   1927   }
   1928 }
   1929 
   1930 class NativeLocationVisitor {
   1931  public:
   1932   explicit NativeLocationVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
   1933 
   1934   template <typename T>
   1935   T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
   1936     return image_writer_->NativeLocationInImage(ptr);
   1937   }
   1938 
   1939  private:
   1940   ImageWriter* const image_writer_;
   1941 };
   1942 
   1943 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
   1944   orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
   1945   FixupClassVisitor visitor(this, copy);
   1946   static_cast<mirror::Object*>(orig)->VisitReferences(visitor, visitor);
   1947 
   1948   // Remove the clinitThreadId. This is required for image determinism.
   1949   copy->SetClinitThreadId(static_cast<pid_t>(0));
   1950 }
   1951 
   1952 void ImageWriter::FixupObject(Object* orig, Object* copy) {
   1953   DCHECK(orig != nullptr);
   1954   DCHECK(copy != nullptr);
   1955   if (kUseBakerOrBrooksReadBarrier) {
   1956     orig->AssertReadBarrierPointer();
   1957     if (kUseBrooksReadBarrier) {
   1958       // Note the address 'copy' isn't the same as the image address of 'orig'.
   1959       copy->SetReadBarrierPointer(GetImageAddress(orig));
   1960       DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig));
   1961     }
   1962   }
   1963   auto* klass = orig->GetClass();
   1964   if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) {
   1965     // Is this a native pointer array?
   1966     auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
   1967     if (it != pointer_arrays_.end()) {
   1968       // Should only need to fixup every pointer array exactly once.
   1969       FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second);
   1970       pointer_arrays_.erase(it);
   1971       return;
   1972     }
   1973   }
   1974   if (orig->IsClass()) {
   1975     FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy));
   1976   } else {
   1977     if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) {
   1978       // Need to go update the ArtMethod.
   1979       auto* dest = down_cast<mirror::AbstractMethod*>(copy);
   1980       auto* src = down_cast<mirror::AbstractMethod*>(orig);
   1981       ArtMethod* src_method = src->GetArtMethod();
   1982       auto it = native_object_relocations_.find(src_method);
   1983       CHECK(it != native_object_relocations_.end())
   1984           << "Missing relocation for AbstractMethod.artMethod " << PrettyMethod(src_method);
   1985       dest->SetArtMethod(
   1986           reinterpret_cast<ArtMethod*>(global_image_begin_ + it->second.offset));
   1987     } else if (!klass->IsArrayClass()) {
   1988       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1989       if (klass == class_linker->GetClassRoot(ClassLinker::kJavaLangDexCache)) {
   1990         FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy));
   1991       } else if (klass->IsClassLoaderClass()) {
   1992         mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
   1993         // If src is a ClassLoader, set the class table to null so that it gets recreated by the
   1994         // ClassLoader.
   1995         copy_loader->SetClassTable(nullptr);
   1996         // Also set allocator to null to be safe. The allocator is created when we create the class
   1997         // table. We also never expect to unload things in the image since they are held live as
   1998         // roots.
   1999         copy_loader->SetAllocator(nullptr);
   2000       }
   2001     }
   2002     FixupVisitor visitor(this, copy);
   2003     orig->VisitReferences(visitor, visitor);
   2004   }
   2005 }
   2006 
   2007 
   2008 class ImageAddressVisitor {
   2009  public:
   2010   explicit ImageAddressVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
   2011 
   2012   template <typename T>
   2013   T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
   2014     return image_writer_->GetImageAddress(ptr);
   2015   }
   2016 
   2017  private:
   2018   ImageWriter* const image_writer_;
   2019 };
   2020 
   2021 
   2022 void ImageWriter::FixupDexCache(mirror::DexCache* orig_dex_cache,
   2023                                 mirror::DexCache* copy_dex_cache) {
   2024   // Though the DexCache array fields are usually treated as native pointers, we set the full
   2025   // 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is
   2026   // done by casting to the unsigned type uintptr_t before casting to int64_t, i.e.
   2027   //     static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))).
   2028   GcRoot<mirror::String>* orig_strings = orig_dex_cache->GetStrings();
   2029   if (orig_strings != nullptr) {
   2030     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::StringsOffset(),
   2031                                                NativeLocationInImage(orig_strings),
   2032                                                /*pointer size*/8u);
   2033     orig_dex_cache->FixupStrings(NativeCopyLocation(orig_strings, orig_dex_cache),
   2034                                  ImageAddressVisitor(this));
   2035   }
   2036   GcRoot<mirror::Class>* orig_types = orig_dex_cache->GetResolvedTypes();
   2037   if (orig_types != nullptr) {
   2038     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedTypesOffset(),
   2039                                                NativeLocationInImage(orig_types),
   2040                                                /*pointer size*/8u);
   2041     orig_dex_cache->FixupResolvedTypes(NativeCopyLocation(orig_types, orig_dex_cache),
   2042                                        ImageAddressVisitor(this));
   2043   }
   2044   ArtMethod** orig_methods = orig_dex_cache->GetResolvedMethods();
   2045   if (orig_methods != nullptr) {
   2046     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodsOffset(),
   2047                                                NativeLocationInImage(orig_methods),
   2048                                                /*pointer size*/8u);
   2049     ArtMethod** copy_methods = NativeCopyLocation(orig_methods, orig_dex_cache);
   2050     for (size_t i = 0, num = orig_dex_cache->NumResolvedMethods(); i != num; ++i) {
   2051       ArtMethod* orig = mirror::DexCache::GetElementPtrSize(orig_methods, i, target_ptr_size_);
   2052       // NativeLocationInImage also handles runtime methods since these have relocation info.
   2053       ArtMethod* copy = NativeLocationInImage(orig);
   2054       mirror::DexCache::SetElementPtrSize(copy_methods, i, copy, target_ptr_size_);
   2055     }
   2056   }
   2057   ArtField** orig_fields = orig_dex_cache->GetResolvedFields();
   2058   if (orig_fields != nullptr) {
   2059     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedFieldsOffset(),
   2060                                                NativeLocationInImage(orig_fields),
   2061                                                /*pointer size*/8u);
   2062     ArtField** copy_fields = NativeCopyLocation(orig_fields, orig_dex_cache);
   2063     for (size_t i = 0, num = orig_dex_cache->NumResolvedFields(); i != num; ++i) {
   2064       ArtField* orig = mirror::DexCache::GetElementPtrSize(orig_fields, i, target_ptr_size_);
   2065       ArtField* copy = NativeLocationInImage(orig);
   2066       mirror::DexCache::SetElementPtrSize(copy_fields, i, copy, target_ptr_size_);
   2067     }
   2068   }
   2069 
   2070   // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving
   2071   // compiler pointers in here will make the output non-deterministic.
   2072   copy_dex_cache->SetDexFile(nullptr);
   2073 }
   2074 
   2075 const uint8_t* ImageWriter::GetOatAddress(OatAddress type) const {
   2076   DCHECK_LT(type, kOatAddressCount);
   2077   // If we are compiling an app image, we need to use the stubs of the boot image.
   2078   if (compile_app_image_) {
   2079     // Use the current image pointers.
   2080     const std::vector<gc::space::ImageSpace*>& image_spaces =
   2081         Runtime::Current()->GetHeap()->GetBootImageSpaces();
   2082     DCHECK(!image_spaces.empty());
   2083     const OatFile* oat_file = image_spaces[0]->GetOatFile();
   2084     CHECK(oat_file != nullptr);
   2085     const OatHeader& header = oat_file->GetOatHeader();
   2086     switch (type) {
   2087       // TODO: We could maybe clean this up if we stored them in an array in the oat header.
   2088       case kOatAddressQuickGenericJNITrampoline:
   2089         return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
   2090       case kOatAddressInterpreterToInterpreterBridge:
   2091         return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge());
   2092       case kOatAddressInterpreterToCompiledCodeBridge:
   2093         return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge());
   2094       case kOatAddressJNIDlsymLookup:
   2095         return static_cast<const uint8_t*>(header.GetJniDlsymLookup());
   2096       case kOatAddressQuickIMTConflictTrampoline:
   2097         return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
   2098       case kOatAddressQuickResolutionTrampoline:
   2099         return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
   2100       case kOatAddressQuickToInterpreterBridge:
   2101         return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
   2102       default:
   2103         UNREACHABLE();
   2104     }
   2105   }
   2106   const ImageInfo& primary_image_info = GetImageInfo(0);
   2107   return GetOatAddressForOffset(primary_image_info.oat_address_offsets_[type], primary_image_info);
   2108 }
   2109 
   2110 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method,
   2111                                          const ImageInfo& image_info,
   2112                                          bool* quick_is_interpreted) {
   2113   DCHECK(!method->IsResolutionMethod()) << PrettyMethod(method);
   2114   DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << PrettyMethod(method);
   2115   DCHECK(!method->IsImtUnimplementedMethod()) << PrettyMethod(method);
   2116   DCHECK(method->IsInvokable()) << PrettyMethod(method);
   2117   DCHECK(!IsInBootImage(method)) << PrettyMethod(method);
   2118 
   2119   // Use original code if it exists. Otherwise, set the code pointer to the resolution
   2120   // trampoline.
   2121 
   2122   // Quick entrypoint:
   2123   const void* quick_oat_entry_point =
   2124       method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
   2125   const uint8_t* quick_code;
   2126 
   2127   if (UNLIKELY(IsInBootImage(method->GetDeclaringClass()))) {
   2128     DCHECK(method->IsCopied());
   2129     // If the code is not in the oat file corresponding to this image (e.g. default methods)
   2130     quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
   2131   } else {
   2132     uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
   2133     quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
   2134   }
   2135 
   2136   *quick_is_interpreted = false;
   2137   if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
   2138       method->GetDeclaringClass()->IsInitialized())) {
   2139     // We have code for a non-static or initialized method, just use the code.
   2140   } else if (quick_code == nullptr && method->IsNative() &&
   2141       (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
   2142     // Non-static or initialized native method missing compiled code, use generic JNI version.
   2143     quick_code = GetOatAddress(kOatAddressQuickGenericJNITrampoline);
   2144   } else if (quick_code == nullptr && !method->IsNative()) {
   2145     // We don't have code at all for a non-native method, use the interpreter.
   2146     quick_code = GetOatAddress(kOatAddressQuickToInterpreterBridge);
   2147     *quick_is_interpreted = true;
   2148   } else {
   2149     CHECK(!method->GetDeclaringClass()->IsInitialized());
   2150     // We have code for a static method, but need to go through the resolution stub for class
   2151     // initialization.
   2152     quick_code = GetOatAddress(kOatAddressQuickResolutionTrampoline);
   2153   }
   2154   if (!IsInBootOatFile(quick_code)) {
   2155     // DCHECK_GE(quick_code, oat_data_begin_);
   2156   }
   2157   return quick_code;
   2158 }
   2159 
   2160 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
   2161                                      ArtMethod* copy,
   2162                                      const ImageInfo& image_info) {
   2163   memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
   2164 
   2165   copy->SetDeclaringClass(GetImageAddress(orig->GetDeclaringClassUnchecked()));
   2166   ArtMethod** orig_resolved_methods = orig->GetDexCacheResolvedMethods(target_ptr_size_);
   2167   copy->SetDexCacheResolvedMethods(NativeLocationInImage(orig_resolved_methods), target_ptr_size_);
   2168   GcRoot<mirror::Class>* orig_resolved_types = orig->GetDexCacheResolvedTypes(target_ptr_size_);
   2169   copy->SetDexCacheResolvedTypes(NativeLocationInImage(orig_resolved_types), target_ptr_size_);
   2170 
   2171   // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
   2172   // oat_begin_
   2173 
   2174   // The resolution method has a special trampoline to call.
   2175   Runtime* runtime = Runtime::Current();
   2176   if (orig->IsRuntimeMethod()) {
   2177     ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
   2178     if (orig_table != nullptr) {
   2179       // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
   2180       copy->SetEntryPointFromQuickCompiledCodePtrSize(
   2181           GetOatAddress(kOatAddressQuickIMTConflictTrampoline), target_ptr_size_);
   2182       copy->SetImtConflictTable(NativeLocationInImage(orig_table), target_ptr_size_);
   2183     } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
   2184       copy->SetEntryPointFromQuickCompiledCodePtrSize(
   2185           GetOatAddress(kOatAddressQuickResolutionTrampoline), target_ptr_size_);
   2186     } else {
   2187       bool found_one = false;
   2188       for (size_t i = 0; i < static_cast<size_t>(Runtime::kLastCalleeSaveType); ++i) {
   2189         auto idx = static_cast<Runtime::CalleeSaveType>(i);
   2190         if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
   2191           found_one = true;
   2192           break;
   2193         }
   2194       }
   2195       CHECK(found_one) << "Expected to find callee save method but got " << PrettyMethod(orig);
   2196       CHECK(copy->IsRuntimeMethod());
   2197     }
   2198   } else {
   2199     // We assume all methods have code. If they don't currently then we set them to the use the
   2200     // resolution trampoline. Abstract methods never have code and so we need to make sure their
   2201     // use results in an AbstractMethodError. We use the interpreter to achieve this.
   2202     if (UNLIKELY(!orig->IsInvokable())) {
   2203       copy->SetEntryPointFromQuickCompiledCodePtrSize(
   2204           GetOatAddress(kOatAddressQuickToInterpreterBridge), target_ptr_size_);
   2205     } else {
   2206       bool quick_is_interpreted;
   2207       const uint8_t* quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted);
   2208       copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
   2209 
   2210       // JNI entrypoint:
   2211       if (orig->IsNative()) {
   2212         // The native method's pointer is set to a stub to lookup via dlsym.
   2213         // Note this is not the code_ pointer, that is handled above.
   2214         copy->SetEntryPointFromJniPtrSize(
   2215             GetOatAddress(kOatAddressJNIDlsymLookup), target_ptr_size_);
   2216       }
   2217     }
   2218   }
   2219 }
   2220 
   2221 size_t ImageWriter::GetBinSizeSum(ImageWriter::ImageInfo& image_info, ImageWriter::Bin up_to) const {
   2222   DCHECK_LE(up_to, kBinSize);
   2223   return std::accumulate(&image_info.bin_slot_sizes_[0],
   2224                          &image_info.bin_slot_sizes_[up_to],
   2225                          /*init*/0);
   2226 }
   2227 
   2228 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
   2229   // These values may need to get updated if more bins are added to the enum Bin
   2230   static_assert(kBinBits == 3, "wrong number of bin bits");
   2231   static_assert(kBinShift == 27, "wrong number of shift");
   2232   static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
   2233 
   2234   DCHECK_LT(GetBin(), kBinSize);
   2235   DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
   2236 }
   2237 
   2238 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
   2239     : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
   2240   DCHECK_EQ(index, GetIndex());
   2241 }
   2242 
   2243 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
   2244   return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
   2245 }
   2246 
   2247 uint32_t ImageWriter::BinSlot::GetIndex() const {
   2248   return lockword_ & ~kBinMask;
   2249 }
   2250 
   2251 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
   2252   switch (type) {
   2253     case kNativeObjectRelocationTypeArtField:
   2254     case kNativeObjectRelocationTypeArtFieldArray:
   2255       return kBinArtField;
   2256     case kNativeObjectRelocationTypeArtMethodClean:
   2257     case kNativeObjectRelocationTypeArtMethodArrayClean:
   2258       return kBinArtMethodClean;
   2259     case kNativeObjectRelocationTypeArtMethodDirty:
   2260     case kNativeObjectRelocationTypeArtMethodArrayDirty:
   2261       return kBinArtMethodDirty;
   2262     case kNativeObjectRelocationTypeDexCacheArray:
   2263       return kBinDexCacheArray;
   2264     case kNativeObjectRelocationTypeRuntimeMethod:
   2265       return kBinRuntimeMethod;
   2266     case kNativeObjectRelocationTypeIMTable:
   2267       return kBinImTable;
   2268     case kNativeObjectRelocationTypeIMTConflictTable:
   2269       return kBinIMTConflictTable;
   2270   }
   2271   UNREACHABLE();
   2272 }
   2273 
   2274 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
   2275   if (compile_app_image_) {
   2276     return GetDefaultOatIndex();
   2277   } else {
   2278     mirror::DexCache* dex_cache =
   2279         obj->IsDexCache() ? obj->AsDexCache()
   2280                           : obj->IsClass() ? obj->AsClass()->GetDexCache()
   2281                                            : obj->GetClass()->GetDexCache();
   2282     return GetOatIndexForDexCache(dex_cache);
   2283   }
   2284 }
   2285 
   2286 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
   2287   if (compile_app_image_) {
   2288     return GetDefaultOatIndex();
   2289   } else {
   2290     auto it = dex_file_oat_index_map_.find(dex_file);
   2291     DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
   2292     return it->second;
   2293   }
   2294 }
   2295 
   2296 size_t ImageWriter::GetOatIndexForDexCache(mirror::DexCache* dex_cache) const {
   2297   if (dex_cache == nullptr) {
   2298     return GetDefaultOatIndex();
   2299   } else {
   2300     return GetOatIndexForDexFile(dex_cache->GetDexFile());
   2301   }
   2302 }
   2303 
   2304 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
   2305                                       size_t oat_loaded_size,
   2306                                       size_t oat_data_offset,
   2307                                       size_t oat_data_size) {
   2308   const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
   2309   for (const ImageInfo& info : image_infos_) {
   2310     DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
   2311   }
   2312   DCHECK(images_end != nullptr);  // Image space must be ready.
   2313 
   2314   ImageInfo& cur_image_info = GetImageInfo(oat_index);
   2315   cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
   2316   cur_image_info.oat_loaded_size_ = oat_loaded_size;
   2317   cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
   2318   cur_image_info.oat_size_ = oat_data_size;
   2319 
   2320   if (compile_app_image_) {
   2321     CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
   2322     return;
   2323   }
   2324 
   2325   // Update the oat_offset of the next image info.
   2326   if (oat_index + 1u != oat_filenames_.size()) {
   2327     // There is a following one.
   2328     ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
   2329     next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
   2330   }
   2331 }
   2332 
   2333 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
   2334   ImageInfo& cur_image_info = GetImageInfo(oat_index);
   2335   cur_image_info.oat_checksum_ = oat_header.GetChecksum();
   2336 
   2337   if (oat_index == GetDefaultOatIndex()) {
   2338     // Primary oat file, read the trampolines.
   2339     cur_image_info.oat_address_offsets_[kOatAddressInterpreterToInterpreterBridge] =
   2340         oat_header.GetInterpreterToInterpreterBridgeOffset();
   2341     cur_image_info.oat_address_offsets_[kOatAddressInterpreterToCompiledCodeBridge] =
   2342         oat_header.GetInterpreterToCompiledCodeBridgeOffset();
   2343     cur_image_info.oat_address_offsets_[kOatAddressJNIDlsymLookup] =
   2344         oat_header.GetJniDlsymLookupOffset();
   2345     cur_image_info.oat_address_offsets_[kOatAddressQuickGenericJNITrampoline] =
   2346         oat_header.GetQuickGenericJniTrampolineOffset();
   2347     cur_image_info.oat_address_offsets_[kOatAddressQuickIMTConflictTrampoline] =
   2348         oat_header.GetQuickImtConflictTrampolineOffset();
   2349     cur_image_info.oat_address_offsets_[kOatAddressQuickResolutionTrampoline] =
   2350         oat_header.GetQuickResolutionTrampolineOffset();
   2351     cur_image_info.oat_address_offsets_[kOatAddressQuickToInterpreterBridge] =
   2352         oat_header.GetQuickToInterpreterBridgeOffset();
   2353   }
   2354 }
   2355 
   2356 ImageWriter::ImageWriter(
   2357     const CompilerDriver& compiler_driver,
   2358     uintptr_t image_begin,
   2359     bool compile_pic,
   2360     bool compile_app_image,
   2361     ImageHeader::StorageMode image_storage_mode,
   2362     const std::vector<const char*>& oat_filenames,
   2363     const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map)
   2364     : compiler_driver_(compiler_driver),
   2365       global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
   2366       image_objects_offset_begin_(0),
   2367       compile_pic_(compile_pic),
   2368       compile_app_image_(compile_app_image),
   2369       target_ptr_size_(InstructionSetPointerSize(compiler_driver_.GetInstructionSet())),
   2370       image_infos_(oat_filenames.size()),
   2371       dirty_methods_(0u),
   2372       clean_methods_(0u),
   2373       image_storage_mode_(image_storage_mode),
   2374       oat_filenames_(oat_filenames),
   2375       dex_file_oat_index_map_(dex_file_oat_index_map) {
   2376   CHECK_NE(image_begin, 0U);
   2377   std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
   2378   CHECK_EQ(compile_app_image, !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
   2379       << "Compiling a boot image should occur iff there are no boot image spaces loaded";
   2380 }
   2381 
   2382 ImageWriter::ImageInfo::ImageInfo()
   2383     : intern_table_(new InternTable),
   2384       class_table_(new ClassTable) {}
   2385 
   2386 }  // namespace art
   2387