1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "image_writer.h" 18 19 #include <sys/stat.h> 20 #include <lz4.h> 21 #include <lz4hc.h> 22 23 #include <memory> 24 #include <numeric> 25 #include <unordered_set> 26 #include <vector> 27 28 #include "art_field-inl.h" 29 #include "art_method-inl.h" 30 #include "base/logging.h" 31 #include "base/unix_file/fd_file.h" 32 #include "class_linker-inl.h" 33 #include "compiled_method.h" 34 #include "dex_file-inl.h" 35 #include "driver/compiler_driver.h" 36 #include "elf_file.h" 37 #include "elf_utils.h" 38 #include "elf_writer.h" 39 #include "gc/accounting/card_table-inl.h" 40 #include "gc/accounting/heap_bitmap.h" 41 #include "gc/accounting/space_bitmap-inl.h" 42 #include "gc/heap.h" 43 #include "gc/space/large_object_space.h" 44 #include "gc/space/space-inl.h" 45 #include "globals.h" 46 #include "image.h" 47 #include "intern_table.h" 48 #include "linear_alloc.h" 49 #include "lock_word.h" 50 #include "mirror/abstract_method.h" 51 #include "mirror/array-inl.h" 52 #include "mirror/class-inl.h" 53 #include "mirror/class_loader.h" 54 #include "mirror/dex_cache-inl.h" 55 #include "mirror/method.h" 56 #include "mirror/object-inl.h" 57 #include "mirror/object_array-inl.h" 58 #include "mirror/string-inl.h" 59 #include "oat.h" 60 #include "oat_file.h" 61 #include "oat_file_manager.h" 62 #include "runtime.h" 63 #include "scoped_thread_state_change.h" 64 #include "handle_scope-inl.h" 65 #include "utils/dex_cache_arrays_layout-inl.h" 66 67 using ::art::mirror::Class; 68 using ::art::mirror::DexCache; 69 using ::art::mirror::Object; 70 using ::art::mirror::ObjectArray; 71 using ::art::mirror::String; 72 73 namespace art { 74 75 // Separate objects into multiple bins to optimize dirty memory use. 76 static constexpr bool kBinObjects = true; 77 78 // Return true if an object is already in an image space. 79 bool ImageWriter::IsInBootImage(const void* obj) const { 80 gc::Heap* const heap = Runtime::Current()->GetHeap(); 81 if (!compile_app_image_) { 82 DCHECK(heap->GetBootImageSpaces().empty()); 83 return false; 84 } 85 for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) { 86 const uint8_t* image_begin = boot_image_space->Begin(); 87 // Real image end including ArtMethods and ArtField sections. 88 const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize(); 89 if (image_begin <= obj && obj < image_end) { 90 return true; 91 } 92 } 93 return false; 94 } 95 96 bool ImageWriter::IsInBootOatFile(const void* ptr) const { 97 gc::Heap* const heap = Runtime::Current()->GetHeap(); 98 if (!compile_app_image_) { 99 DCHECK(heap->GetBootImageSpaces().empty()); 100 return false; 101 } 102 for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) { 103 const ImageHeader& image_header = boot_image_space->GetImageHeader(); 104 if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) { 105 return true; 106 } 107 } 108 return false; 109 } 110 111 static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED) 112 SHARED_REQUIRES(Locks::mutator_lock_) { 113 Class* klass = obj->GetClass(); 114 CHECK_NE(PrettyClass(klass), "com.android.dex.Dex"); 115 } 116 117 static void CheckNoDexObjects() { 118 ScopedObjectAccess soa(Thread::Current()); 119 Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr); 120 } 121 122 bool ImageWriter::PrepareImageAddressSpace() { 123 target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet()); 124 gc::Heap* const heap = Runtime::Current()->GetHeap(); 125 { 126 ScopedObjectAccess soa(Thread::Current()); 127 PruneNonImageClasses(); // Remove junk 128 if (!compile_app_image_) { 129 // Avoid for app image since this may increase RAM and image size. 130 ComputeLazyFieldsForImageClasses(); // Add useful information 131 } 132 } 133 heap->CollectGarbage(false); // Remove garbage. 134 135 // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped 136 // dex files. 137 // 138 // We may open them in the unstarted-runtime code for class metadata. Their fields should all be 139 // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually 140 // true. 141 if (kIsDebugBuild) { 142 CheckNoDexObjects(); 143 } 144 145 if (kIsDebugBuild) { 146 ScopedObjectAccess soa(Thread::Current()); 147 CheckNonImageClassesRemoved(); 148 } 149 150 { 151 ScopedObjectAccess soa(Thread::Current()); 152 CalculateNewObjectOffsets(); 153 } 154 155 // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and 156 // bin size sums being calculated. 157 if (!AllocMemory()) { 158 return false; 159 } 160 161 return true; 162 } 163 164 bool ImageWriter::Write(int image_fd, 165 const std::vector<const char*>& image_filenames, 166 const std::vector<const char*>& oat_filenames) { 167 // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or 168 // oat_filenames. 169 CHECK(!image_filenames.empty()); 170 if (image_fd != kInvalidFd) { 171 CHECK_EQ(image_filenames.size(), 1u); 172 } 173 CHECK(!oat_filenames.empty()); 174 CHECK_EQ(image_filenames.size(), oat_filenames.size()); 175 176 { 177 ScopedObjectAccess soa(Thread::Current()); 178 for (size_t i = 0; i < oat_filenames.size(); ++i) { 179 CreateHeader(i); 180 CopyAndFixupNativeData(i); 181 } 182 } 183 184 { 185 // TODO: heap validation can't handle these fix up passes. 186 ScopedObjectAccess soa(Thread::Current()); 187 Runtime::Current()->GetHeap()->DisableObjectValidation(); 188 CopyAndFixupObjects(); 189 } 190 191 for (size_t i = 0; i < image_filenames.size(); ++i) { 192 const char* image_filename = image_filenames[i]; 193 ImageInfo& image_info = GetImageInfo(i); 194 std::unique_ptr<File> image_file; 195 if (image_fd != kInvalidFd) { 196 if (strlen(image_filename) == 0u) { 197 image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage)); 198 // Empty the file in case it already exists. 199 if (image_file != nullptr) { 200 TEMP_FAILURE_RETRY(image_file->SetLength(0)); 201 TEMP_FAILURE_RETRY(image_file->Flush()); 202 } 203 } else { 204 LOG(ERROR) << "image fd " << image_fd << " name " << image_filename; 205 } 206 } else { 207 image_file.reset(OS::CreateEmptyFile(image_filename)); 208 } 209 210 if (image_file == nullptr) { 211 LOG(ERROR) << "Failed to open image file " << image_filename; 212 return false; 213 } 214 215 if (!compile_app_image_ && fchmod(image_file->Fd(), 0644) != 0) { 216 PLOG(ERROR) << "Failed to make image file world readable: " << image_filename; 217 image_file->Erase(); 218 return EXIT_FAILURE; 219 } 220 221 std::unique_ptr<char[]> compressed_data; 222 // Image data size excludes the bitmap and the header. 223 ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin()); 224 const size_t image_data_size = image_header->GetImageSize() - sizeof(ImageHeader); 225 char* image_data = reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader); 226 size_t data_size; 227 const char* image_data_to_write; 228 const uint64_t compress_start_time = NanoTime(); 229 230 CHECK_EQ(image_header->storage_mode_, image_storage_mode_); 231 switch (image_storage_mode_) { 232 case ImageHeader::kStorageModeLZ4HC: // Fall-through. 233 case ImageHeader::kStorageModeLZ4: { 234 const size_t compressed_max_size = LZ4_compressBound(image_data_size); 235 compressed_data.reset(new char[compressed_max_size]); 236 data_size = LZ4_compress( 237 reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader), 238 &compressed_data[0], 239 image_data_size); 240 241 break; 242 } 243 /* 244 * Disabled due to image_test64 flakyness. Both use same decompression. b/27560444 245 case ImageHeader::kStorageModeLZ4HC: { 246 // Bound is same as non HC. 247 const size_t compressed_max_size = LZ4_compressBound(image_data_size); 248 compressed_data.reset(new char[compressed_max_size]); 249 data_size = LZ4_compressHC( 250 reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader), 251 &compressed_data[0], 252 image_data_size); 253 break; 254 } 255 */ 256 case ImageHeader::kStorageModeUncompressed: { 257 data_size = image_data_size; 258 image_data_to_write = image_data; 259 break; 260 } 261 default: { 262 LOG(FATAL) << "Unsupported"; 263 UNREACHABLE(); 264 } 265 } 266 267 if (compressed_data != nullptr) { 268 image_data_to_write = &compressed_data[0]; 269 VLOG(compiler) << "Compressed from " << image_data_size << " to " << data_size << " in " 270 << PrettyDuration(NanoTime() - compress_start_time); 271 if (kIsDebugBuild) { 272 std::unique_ptr<uint8_t[]> temp(new uint8_t[image_data_size]); 273 const size_t decompressed_size = LZ4_decompress_safe( 274 reinterpret_cast<char*>(&compressed_data[0]), 275 reinterpret_cast<char*>(&temp[0]), 276 data_size, 277 image_data_size); 278 CHECK_EQ(decompressed_size, image_data_size); 279 CHECK_EQ(memcmp(image_data, &temp[0], image_data_size), 0) << image_storage_mode_; 280 } 281 } 282 283 // Write out the image + fields + methods. 284 const bool is_compressed = compressed_data != nullptr; 285 if (!image_file->PwriteFully(image_data_to_write, data_size, sizeof(ImageHeader))) { 286 PLOG(ERROR) << "Failed to write image file data " << image_filename; 287 image_file->Erase(); 288 return false; 289 } 290 291 // Write out the image bitmap at the page aligned start of the image end, also uncompressed for 292 // convenience. 293 const ImageSection& bitmap_section = image_header->GetImageSection( 294 ImageHeader::kSectionImageBitmap); 295 // Align up since data size may be unaligned if the image is compressed. 296 size_t bitmap_position_in_file = RoundUp(sizeof(ImageHeader) + data_size, kPageSize); 297 if (!is_compressed) { 298 CHECK_EQ(bitmap_position_in_file, bitmap_section.Offset()); 299 } 300 if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_bitmap_->Begin()), 301 bitmap_section.Size(), 302 bitmap_position_in_file)) { 303 PLOG(ERROR) << "Failed to write image file " << image_filename; 304 image_file->Erase(); 305 return false; 306 } 307 308 int err = image_file->Flush(); 309 if (err < 0) { 310 PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err; 311 image_file->Erase(); 312 return false; 313 } 314 315 // Write header last in case the compiler gets killed in the middle of image writing. 316 // We do not want to have a corrupted image with a valid header. 317 // The header is uncompressed since it contains whether the image is compressed or not. 318 image_header->data_size_ = data_size; 319 if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_->Begin()), 320 sizeof(ImageHeader), 321 0)) { 322 PLOG(ERROR) << "Failed to write image file header " << image_filename; 323 image_file->Erase(); 324 return false; 325 } 326 327 CHECK_EQ(bitmap_position_in_file + bitmap_section.Size(), 328 static_cast<size_t>(image_file->GetLength())); 329 if (image_file->FlushCloseOrErase() != 0) { 330 PLOG(ERROR) << "Failed to flush and close image file " << image_filename; 331 return false; 332 } 333 } 334 return true; 335 } 336 337 void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) { 338 DCHECK(object != nullptr); 339 DCHECK_NE(offset, 0U); 340 341 // The object is already deflated from when we set the bin slot. Just overwrite the lock word. 342 object->SetLockWord(LockWord::FromForwardingAddress(offset), false); 343 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u); 344 DCHECK(IsImageOffsetAssigned(object)); 345 } 346 347 void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) { 348 DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset; 349 obj->SetLockWord(LockWord::FromForwardingAddress(offset), false); 350 DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u); 351 } 352 353 void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) { 354 DCHECK(object != nullptr); 355 DCHECK_NE(image_objects_offset_begin_, 0u); 356 357 size_t oat_index = GetOatIndex(object); 358 ImageInfo& image_info = GetImageInfo(oat_index); 359 size_t bin_slot_offset = image_info.bin_slot_offsets_[bin_slot.GetBin()]; 360 size_t new_offset = bin_slot_offset + bin_slot.GetIndex(); 361 DCHECK_ALIGNED(new_offset, kObjectAlignment); 362 363 SetImageOffset(object, new_offset); 364 DCHECK_LT(new_offset, image_info.image_end_); 365 } 366 367 bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const { 368 // Will also return true if the bin slot was assigned since we are reusing the lock word. 369 DCHECK(object != nullptr); 370 return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress; 371 } 372 373 size_t ImageWriter::GetImageOffset(mirror::Object* object) const { 374 DCHECK(object != nullptr); 375 DCHECK(IsImageOffsetAssigned(object)); 376 LockWord lock_word = object->GetLockWord(false); 377 size_t offset = lock_word.ForwardingAddress(); 378 size_t oat_index = GetOatIndex(object); 379 const ImageInfo& image_info = GetImageInfo(oat_index); 380 DCHECK_LT(offset, image_info.image_end_); 381 return offset; 382 } 383 384 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) { 385 DCHECK(object != nullptr); 386 DCHECK(!IsImageOffsetAssigned(object)); 387 DCHECK(!IsImageBinSlotAssigned(object)); 388 389 // Before we stomp over the lock word, save the hash code for later. 390 Monitor::Deflate(Thread::Current(), object);; 391 LockWord lw(object->GetLockWord(false)); 392 switch (lw.GetState()) { 393 case LockWord::kFatLocked: { 394 LOG(FATAL) << "Fat locked object " << object << " found during object copy"; 395 break; 396 } 397 case LockWord::kThinLocked: { 398 LOG(FATAL) << "Thin locked object " << object << " found during object copy"; 399 break; 400 } 401 case LockWord::kUnlocked: 402 // No hash, don't need to save it. 403 break; 404 case LockWord::kHashCode: 405 DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end()); 406 saved_hashcode_map_.emplace(object, lw.GetHashCode()); 407 break; 408 default: 409 LOG(FATAL) << "Unreachable."; 410 UNREACHABLE(); 411 } 412 object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false); 413 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u); 414 DCHECK(IsImageBinSlotAssigned(object)); 415 } 416 417 void ImageWriter::PrepareDexCacheArraySlots() { 418 // Prepare dex cache array starts based on the ordering specified in the CompilerDriver. 419 // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned() 420 // when AssignImageBinSlot() assigns their indexes out or order. 421 for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) { 422 auto it = dex_file_oat_index_map_.find(dex_file); 423 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation(); 424 ImageInfo& image_info = GetImageInfo(it->second); 425 image_info.dex_cache_array_starts_.Put(dex_file, image_info.bin_slot_sizes_[kBinDexCacheArray]); 426 DexCacheArraysLayout layout(target_ptr_size_, dex_file); 427 image_info.bin_slot_sizes_[kBinDexCacheArray] += layout.Size(); 428 } 429 430 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 431 Thread* const self = Thread::Current(); 432 ReaderMutexLock mu(self, *class_linker->DexLock()); 433 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { 434 mirror::DexCache* dex_cache = 435 down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); 436 if (dex_cache == nullptr || IsInBootImage(dex_cache)) { 437 continue; 438 } 439 const DexFile* dex_file = dex_cache->GetDexFile(); 440 CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end()) 441 << "Dex cache should have been pruned " << dex_file->GetLocation() 442 << "; possibly in class path"; 443 DexCacheArraysLayout layout(target_ptr_size_, dex_file); 444 DCHECK(layout.Valid()); 445 size_t oat_index = GetOatIndexForDexCache(dex_cache); 446 ImageInfo& image_info = GetImageInfo(oat_index); 447 uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file); 448 DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr); 449 AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(), 450 start + layout.TypesOffset(), 451 dex_cache); 452 DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr); 453 AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(), 454 start + layout.MethodsOffset(), 455 dex_cache); 456 DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr); 457 AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(), 458 start + layout.FieldsOffset(), 459 dex_cache); 460 DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr); 461 AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), dex_cache); 462 } 463 } 464 465 void ImageWriter::AddDexCacheArrayRelocation(void* array, size_t offset, DexCache* dex_cache) { 466 if (array != nullptr) { 467 DCHECK(!IsInBootImage(array)); 468 size_t oat_index = GetOatIndexForDexCache(dex_cache); 469 native_object_relocations_.emplace(array, 470 NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeDexCacheArray }); 471 } 472 } 473 474 void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) { 475 DCHECK(arr != nullptr); 476 if (kIsDebugBuild) { 477 for (size_t i = 0, len = arr->GetLength(); i < len; i++) { 478 ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_); 479 if (method != nullptr && !method->IsRuntimeMethod()) { 480 mirror::Class* klass = method->GetDeclaringClass(); 481 CHECK(klass == nullptr || KeepClass(klass)) 482 << PrettyClass(klass) << " should be a kept class"; 483 } 484 } 485 } 486 // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and 487 // ArtMethods. 488 pointer_arrays_.emplace(arr, kBinArtMethodClean); 489 } 490 491 void ImageWriter::AssignImageBinSlot(mirror::Object* object) { 492 DCHECK(object != nullptr); 493 size_t object_size = object->SizeOf(); 494 495 // The magic happens here. We segregate objects into different bins based 496 // on how likely they are to get dirty at runtime. 497 // 498 // Likely-to-dirty objects get packed together into the same bin so that 499 // at runtime their page dirtiness ratio (how many dirty objects a page has) is 500 // maximized. 501 // 502 // This means more pages will stay either clean or shared dirty (with zygote) and 503 // the app will use less of its own (private) memory. 504 Bin bin = kBinRegular; 505 size_t current_offset = 0u; 506 507 if (kBinObjects) { 508 // 509 // Changing the bin of an object is purely a memory-use tuning. 510 // It has no change on runtime correctness. 511 // 512 // Memory analysis has determined that the following types of objects get dirtied 513 // the most: 514 // 515 // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have 516 // a fixed layout which helps improve generated code (using PC-relative addressing), 517 // so we pre-calculate their offsets separately in PrepareDexCacheArraySlots(). 518 // Since these arrays are huge, most pages do not overlap other objects and it's not 519 // really important where they are for the clean/dirty separation. Due to their 520 // special PC-relative addressing, we arbitrarily keep them at the end. 521 // * Class'es which are verified [their clinit runs only at runtime] 522 // - classes in general [because their static fields get overwritten] 523 // - initialized classes with all-final statics are unlikely to be ever dirty, 524 // so bin them separately 525 // * Art Methods that are: 526 // - native [their native entry point is not looked up until runtime] 527 // - have declaring classes that aren't initialized 528 // [their interpreter/quick entry points are trampolines until the class 529 // becomes initialized] 530 // 531 // We also assume the following objects get dirtied either never or extremely rarely: 532 // * Strings (they are immutable) 533 // * Art methods that aren't native and have initialized declared classes 534 // 535 // We assume that "regular" bin objects are highly unlikely to become dirtied, 536 // so packing them together will not result in a noticeably tighter dirty-to-clean ratio. 537 // 538 if (object->IsClass()) { 539 bin = kBinClassVerified; 540 mirror::Class* klass = object->AsClass(); 541 542 // Add non-embedded vtable to the pointer array table if there is one. 543 auto* vtable = klass->GetVTable(); 544 if (vtable != nullptr) { 545 AddMethodPointerArray(vtable); 546 } 547 auto* iftable = klass->GetIfTable(); 548 if (iftable != nullptr) { 549 for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { 550 if (iftable->GetMethodArrayCount(i) > 0) { 551 AddMethodPointerArray(iftable->GetMethodArray(i)); 552 } 553 } 554 } 555 556 if (klass->GetStatus() == Class::kStatusInitialized) { 557 bin = kBinClassInitialized; 558 559 // If the class's static fields are all final, put it into a separate bin 560 // since it's very likely it will stay clean. 561 uint32_t num_static_fields = klass->NumStaticFields(); 562 if (num_static_fields == 0) { 563 bin = kBinClassInitializedFinalStatics; 564 } else { 565 // Maybe all the statics are final? 566 bool all_final = true; 567 for (uint32_t i = 0; i < num_static_fields; ++i) { 568 ArtField* field = klass->GetStaticField(i); 569 if (!field->IsFinal()) { 570 all_final = false; 571 break; 572 } 573 } 574 575 if (all_final) { 576 bin = kBinClassInitializedFinalStatics; 577 } 578 } 579 } 580 } else if (object->GetClass<kVerifyNone>()->IsStringClass()) { 581 bin = kBinString; // Strings are almost always immutable (except for object header). 582 } else if (object->GetClass<kVerifyNone>() == 583 Runtime::Current()->GetClassLinker()->GetClassRoot(ClassLinker::kJavaLangObject)) { 584 // Instance of java lang object, probably a lock object. This means it will be dirty when we 585 // synchronize on it. 586 bin = kBinMiscDirty; 587 } else if (object->IsDexCache()) { 588 // Dex file field becomes dirty when the image is loaded. 589 bin = kBinMiscDirty; 590 } 591 // else bin = kBinRegular 592 } 593 594 size_t oat_index = GetOatIndex(object); 595 ImageInfo& image_info = GetImageInfo(oat_index); 596 597 size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment 598 current_offset = image_info.bin_slot_sizes_[bin]; // How many bytes the current bin is at (aligned). 599 // Move the current bin size up to accommodate the object we just assigned a bin slot. 600 image_info.bin_slot_sizes_[bin] += offset_delta; 601 602 BinSlot new_bin_slot(bin, current_offset); 603 SetImageBinSlot(object, new_bin_slot); 604 605 ++image_info.bin_slot_count_[bin]; 606 607 // Grow the image closer to the end by the object we just assigned. 608 image_info.image_end_ += offset_delta; 609 } 610 611 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const { 612 if (m->IsNative()) { 613 return true; 614 } 615 mirror::Class* declaring_class = m->GetDeclaringClass(); 616 // Initialized is highly unlikely to dirty since there's no entry points to mutate. 617 return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized; 618 } 619 620 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const { 621 DCHECK(object != nullptr); 622 623 // We always stash the bin slot into a lockword, in the 'forwarding address' state. 624 // If it's in some other state, then we haven't yet assigned an image bin slot. 625 if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) { 626 return false; 627 } else if (kIsDebugBuild) { 628 LockWord lock_word = object->GetLockWord(false); 629 size_t offset = lock_word.ForwardingAddress(); 630 BinSlot bin_slot(offset); 631 size_t oat_index = GetOatIndex(object); 632 const ImageInfo& image_info = GetImageInfo(oat_index); 633 DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]) 634 << "bin slot offset should not exceed the size of that bin"; 635 } 636 return true; 637 } 638 639 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const { 640 DCHECK(object != nullptr); 641 DCHECK(IsImageBinSlotAssigned(object)); 642 643 LockWord lock_word = object->GetLockWord(false); 644 size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t 645 DCHECK_LE(offset, std::numeric_limits<uint32_t>::max()); 646 647 BinSlot bin_slot(static_cast<uint32_t>(offset)); 648 size_t oat_index = GetOatIndex(object); 649 const ImageInfo& image_info = GetImageInfo(oat_index); 650 DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]); 651 652 return bin_slot; 653 } 654 655 bool ImageWriter::AllocMemory() { 656 for (ImageInfo& image_info : image_infos_) { 657 ImageSection unused_sections[ImageHeader::kSectionCount]; 658 const size_t length = RoundUp( 659 image_info.CreateImageSections(unused_sections), kPageSize); 660 661 std::string error_msg; 662 image_info.image_.reset(MemMap::MapAnonymous("image writer image", 663 nullptr, 664 length, 665 PROT_READ | PROT_WRITE, 666 false, 667 false, 668 &error_msg)); 669 if (UNLIKELY(image_info.image_.get() == nullptr)) { 670 LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg; 671 return false; 672 } 673 674 // Create the image bitmap, only needs to cover mirror object section which is up to image_end_. 675 CHECK_LE(image_info.image_end_, length); 676 image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create( 677 "image bitmap", image_info.image_->Begin(), RoundUp(image_info.image_end_, kPageSize))); 678 if (image_info.image_bitmap_.get() == nullptr) { 679 LOG(ERROR) << "Failed to allocate memory for image bitmap"; 680 return false; 681 } 682 } 683 return true; 684 } 685 686 class ComputeLazyFieldsForClassesVisitor : public ClassVisitor { 687 public: 688 bool operator()(Class* c) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { 689 StackHandleScope<1> hs(Thread::Current()); 690 mirror::Class::ComputeName(hs.NewHandle(c)); 691 return true; 692 } 693 }; 694 695 void ImageWriter::ComputeLazyFieldsForImageClasses() { 696 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 697 ComputeLazyFieldsForClassesVisitor visitor; 698 class_linker->VisitClassesWithoutClassesLock(&visitor); 699 } 700 701 static bool IsBootClassLoaderClass(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) { 702 return klass->GetClassLoader() == nullptr; 703 } 704 705 bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) { 706 return IsBootClassLoaderClass(klass) && !IsInBootImage(klass); 707 } 708 709 bool ImageWriter::PruneAppImageClass(mirror::Class* klass) { 710 bool early_exit = false; 711 std::unordered_set<mirror::Class*> visited; 712 return PruneAppImageClassInternal(klass, &early_exit, &visited); 713 } 714 715 bool ImageWriter::PruneAppImageClassInternal( 716 mirror::Class* klass, 717 bool* early_exit, 718 std::unordered_set<mirror::Class*>* visited) { 719 DCHECK(early_exit != nullptr); 720 DCHECK(visited != nullptr); 721 DCHECK(compile_app_image_); 722 if (klass == nullptr || IsInBootImage(klass)) { 723 return false; 724 } 725 auto found = prune_class_memo_.find(klass); 726 if (found != prune_class_memo_.end()) { 727 // Already computed, return the found value. 728 return found->second; 729 } 730 // Circular dependencies, return false but do not store the result in the memoization table. 731 if (visited->find(klass) != visited->end()) { 732 *early_exit = true; 733 return false; 734 } 735 visited->emplace(klass); 736 bool result = IsBootClassLoaderClass(klass); 737 std::string temp; 738 // Prune if not an image class, this handles any broken sets of image classes such as having a 739 // class in the set but not it's superclass. 740 result = result || !compiler_driver_.IsImageClass(klass->GetDescriptor(&temp)); 741 bool my_early_exit = false; // Only for ourselves, ignore caller. 742 // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the 743 // app image. 744 if (klass->GetStatus() == mirror::Class::kStatusError) { 745 result = true; 746 } else { 747 CHECK(klass->GetVerifyError() == nullptr) << PrettyClass(klass); 748 } 749 if (!result) { 750 // Check interfaces since these wont be visited through VisitReferences.) 751 mirror::IfTable* if_table = klass->GetIfTable(); 752 for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) { 753 result = result || PruneAppImageClassInternal(if_table->GetInterface(i), 754 &my_early_exit, 755 visited); 756 } 757 } 758 if (klass->IsObjectArrayClass()) { 759 result = result || PruneAppImageClassInternal(klass->GetComponentType(), 760 &my_early_exit, 761 visited); 762 } 763 // Check static fields and their classes. 764 size_t num_static_fields = klass->NumReferenceStaticFields(); 765 if (num_static_fields != 0 && klass->IsResolved()) { 766 // Presumably GC can happen when we are cross compiling, it should not cause performance 767 // problems to do pointer size logic. 768 MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset( 769 Runtime::Current()->GetClassLinker()->GetImagePointerSize()); 770 for (size_t i = 0u; i < num_static_fields; ++i) { 771 mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset); 772 if (ref != nullptr) { 773 if (ref->IsClass()) { 774 result = result || PruneAppImageClassInternal(ref->AsClass(), 775 &my_early_exit, 776 visited); 777 } else { 778 result = result || PruneAppImageClassInternal(ref->GetClass(), 779 &my_early_exit, 780 visited); 781 } 782 } 783 field_offset = MemberOffset(field_offset.Uint32Value() + 784 sizeof(mirror::HeapReference<mirror::Object>)); 785 } 786 } 787 result = result || PruneAppImageClassInternal(klass->GetSuperClass(), 788 &my_early_exit, 789 visited); 790 // Erase the element we stored earlier since we are exiting the function. 791 auto it = visited->find(klass); 792 DCHECK(it != visited->end()); 793 visited->erase(it); 794 // Only store result if it is true or none of the calls early exited due to circular 795 // dependencies. If visited is empty then we are the root caller, in this case the cycle was in 796 // a child call and we can remember the result. 797 if (result == true || !my_early_exit || visited->empty()) { 798 prune_class_memo_[klass] = result; 799 } 800 *early_exit |= my_early_exit; 801 return result; 802 } 803 804 bool ImageWriter::KeepClass(Class* klass) { 805 if (klass == nullptr) { 806 return false; 807 } 808 if (compile_app_image_ && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) { 809 // Already in boot image, return true. 810 return true; 811 } 812 std::string temp; 813 if (!compiler_driver_.IsImageClass(klass->GetDescriptor(&temp))) { 814 return false; 815 } 816 if (compile_app_image_) { 817 // For app images, we need to prune boot loader classes that are not in the boot image since 818 // these may have already been loaded when the app image is loaded. 819 // Keep classes in the boot image space since we don't want to re-resolve these. 820 return !PruneAppImageClass(klass); 821 } 822 return true; 823 } 824 825 class NonImageClassesVisitor : public ClassVisitor { 826 public: 827 explicit NonImageClassesVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {} 828 829 bool operator()(Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { 830 if (!image_writer_->KeepClass(klass)) { 831 classes_to_prune_.insert(klass); 832 } 833 return true; 834 } 835 836 std::unordered_set<mirror::Class*> classes_to_prune_; 837 ImageWriter* const image_writer_; 838 }; 839 840 void ImageWriter::PruneNonImageClasses() { 841 Runtime* runtime = Runtime::Current(); 842 ClassLinker* class_linker = runtime->GetClassLinker(); 843 Thread* self = Thread::Current(); 844 845 // Clear class table strong roots so that dex caches can get pruned. We require pruning the class 846 // path dex caches. 847 class_linker->ClearClassTableStrongRoots(); 848 849 // Make a list of classes we would like to prune. 850 NonImageClassesVisitor visitor(this); 851 class_linker->VisitClasses(&visitor); 852 853 // Remove the undesired classes from the class roots. 854 VLOG(compiler) << "Pruning " << visitor.classes_to_prune_.size() << " classes"; 855 for (mirror::Class* klass : visitor.classes_to_prune_) { 856 std::string temp; 857 const char* name = klass->GetDescriptor(&temp); 858 VLOG(compiler) << "Pruning class " << name; 859 if (!compile_app_image_) { 860 DCHECK(IsBootClassLoaderClass(klass)); 861 } 862 bool result = class_linker->RemoveClass(name, klass->GetClassLoader()); 863 DCHECK(result); 864 } 865 866 // Clear references to removed classes from the DexCaches. 867 ArtMethod* resolution_method = runtime->GetResolutionMethod(); 868 869 ScopedAssertNoThreadSuspension sa(self, __FUNCTION__); 870 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); // For ClassInClassTable 871 ReaderMutexLock mu2(self, *class_linker->DexLock()); 872 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { 873 if (self->IsJWeakCleared(data.weak_root)) { 874 continue; 875 } 876 mirror::DexCache* dex_cache = self->DecodeJObject(data.weak_root)->AsDexCache(); 877 for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) { 878 Class* klass = dex_cache->GetResolvedType(i); 879 if (klass != nullptr && !KeepClass(klass)) { 880 dex_cache->SetResolvedType(i, nullptr); 881 } 882 } 883 ArtMethod** resolved_methods = dex_cache->GetResolvedMethods(); 884 for (size_t i = 0, num = dex_cache->NumResolvedMethods(); i != num; ++i) { 885 ArtMethod* method = 886 mirror::DexCache::GetElementPtrSize(resolved_methods, i, target_ptr_size_); 887 DCHECK(method != nullptr) << "Expected resolution method instead of null method"; 888 mirror::Class* declaring_class = method->GetDeclaringClass(); 889 // Copied methods may be held live by a class which was not an image class but have a 890 // declaring class which is an image class. Set it to the resolution method to be safe and 891 // prevent dangling pointers. 892 if (method->IsCopied() || !KeepClass(declaring_class)) { 893 mirror::DexCache::SetElementPtrSize(resolved_methods, 894 i, 895 resolution_method, 896 target_ptr_size_); 897 } else { 898 // Check that the class is still in the classes table. 899 DCHECK(class_linker->ClassInClassTable(declaring_class)) << "Class " 900 << PrettyClass(declaring_class) << " not in class linker table"; 901 } 902 } 903 ArtField** resolved_fields = dex_cache->GetResolvedFields(); 904 for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) { 905 ArtField* field = mirror::DexCache::GetElementPtrSize(resolved_fields, i, target_ptr_size_); 906 if (field != nullptr && !KeepClass(field->GetDeclaringClass())) { 907 dex_cache->SetResolvedField(i, nullptr, target_ptr_size_); 908 } 909 } 910 // Clean the dex field. It might have been populated during the initialization phase, but 911 // contains data only valid during a real run. 912 dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr); 913 } 914 915 // Drop the array class cache in the ClassLinker, as these are roots holding those classes live. 916 class_linker->DropFindArrayClassCache(); 917 918 // Clear to save RAM. 919 prune_class_memo_.clear(); 920 } 921 922 void ImageWriter::CheckNonImageClassesRemoved() { 923 if (compiler_driver_.GetImageClasses() != nullptr) { 924 gc::Heap* heap = Runtime::Current()->GetHeap(); 925 heap->VisitObjects(CheckNonImageClassesRemovedCallback, this); 926 } 927 } 928 929 void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) { 930 ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg); 931 if (obj->IsClass() && !image_writer->IsInBootImage(obj)) { 932 Class* klass = obj->AsClass(); 933 if (!image_writer->KeepClass(klass)) { 934 image_writer->DumpImageClasses(); 935 std::string temp; 936 CHECK(image_writer->KeepClass(klass)) << klass->GetDescriptor(&temp) 937 << " " << PrettyDescriptor(klass); 938 } 939 } 940 } 941 942 void ImageWriter::DumpImageClasses() { 943 auto image_classes = compiler_driver_.GetImageClasses(); 944 CHECK(image_classes != nullptr); 945 for (const std::string& image_class : *image_classes) { 946 LOG(INFO) << " " << image_class; 947 } 948 } 949 950 mirror::String* ImageWriter::FindInternedString(mirror::String* string) { 951 Thread* const self = Thread::Current(); 952 for (const ImageInfo& image_info : image_infos_) { 953 mirror::String* const found = image_info.intern_table_->LookupStrong(self, string); 954 DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr) 955 << string->ToModifiedUtf8(); 956 if (found != nullptr) { 957 return found; 958 } 959 } 960 if (compile_app_image_) { 961 Runtime* const runtime = Runtime::Current(); 962 mirror::String* found = runtime->GetInternTable()->LookupStrong(self, string); 963 // If we found it in the runtime intern table it could either be in the boot image or interned 964 // during app image compilation. If it was in the boot image return that, otherwise return null 965 // since it belongs to another image space. 966 if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found)) { 967 return found; 968 } 969 DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr) 970 << string->ToModifiedUtf8(); 971 } 972 return nullptr; 973 } 974 975 void ImageWriter::CalculateObjectBinSlots(Object* obj) { 976 DCHECK(obj != nullptr); 977 // if it is a string, we want to intern it if its not interned. 978 if (obj->GetClass()->IsStringClass()) { 979 size_t oat_index = GetOatIndex(obj); 980 ImageInfo& image_info = GetImageInfo(oat_index); 981 982 // we must be an interned string that was forward referenced and already assigned 983 if (IsImageBinSlotAssigned(obj)) { 984 DCHECK_EQ(obj, FindInternedString(obj->AsString())); 985 return; 986 } 987 // Need to check if the string is already interned in another image info so that we don't have 988 // the intern tables of two different images contain the same string. 989 mirror::String* interned = FindInternedString(obj->AsString()); 990 if (interned == nullptr) { 991 // Not in another image space, insert to our table. 992 interned = image_info.intern_table_->InternStrongImageString(obj->AsString()); 993 } 994 if (obj != interned) { 995 if (!IsImageBinSlotAssigned(interned)) { 996 // interned obj is after us, allocate its location early 997 AssignImageBinSlot(interned); 998 } 999 // point those looking for this object to the interned version. 1000 SetImageBinSlot(obj, GetImageBinSlot(interned)); 1001 return; 1002 } 1003 // else (obj == interned), nothing to do but fall through to the normal case 1004 } 1005 1006 AssignImageBinSlot(obj); 1007 } 1008 1009 ObjectArray<Object>* ImageWriter::CreateImageRoots(size_t oat_index) const { 1010 Runtime* runtime = Runtime::Current(); 1011 ClassLinker* class_linker = runtime->GetClassLinker(); 1012 Thread* self = Thread::Current(); 1013 StackHandleScope<3> hs(self); 1014 Handle<Class> object_array_class(hs.NewHandle( 1015 class_linker->FindSystemClass(self, "[Ljava/lang/Object;"))); 1016 1017 std::unordered_set<const DexFile*> image_dex_files; 1018 for (auto& pair : dex_file_oat_index_map_) { 1019 const DexFile* image_dex_file = pair.first; 1020 size_t image_oat_index = pair.second; 1021 if (oat_index == image_oat_index) { 1022 image_dex_files.insert(image_dex_file); 1023 } 1024 } 1025 1026 // build an Object[] of all the DexCaches used in the source_space_. 1027 // Since we can't hold the dex lock when allocating the dex_caches 1028 // ObjectArray, we lock the dex lock twice, first to get the number 1029 // of dex caches first and then lock it again to copy the dex 1030 // caches. We check that the number of dex caches does not change. 1031 size_t dex_cache_count = 0; 1032 { 1033 ReaderMutexLock mu(self, *class_linker->DexLock()); 1034 // Count number of dex caches not in the boot image. 1035 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { 1036 mirror::DexCache* dex_cache = 1037 down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); 1038 if (dex_cache == nullptr) { 1039 continue; 1040 } 1041 const DexFile* dex_file = dex_cache->GetDexFile(); 1042 if (!IsInBootImage(dex_cache)) { 1043 dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u; 1044 } 1045 } 1046 } 1047 Handle<ObjectArray<Object>> dex_caches( 1048 hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), dex_cache_count))); 1049 CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array."; 1050 { 1051 ReaderMutexLock mu(self, *class_linker->DexLock()); 1052 size_t non_image_dex_caches = 0; 1053 // Re-count number of non image dex caches. 1054 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { 1055 mirror::DexCache* dex_cache = 1056 down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); 1057 if (dex_cache == nullptr) { 1058 continue; 1059 } 1060 const DexFile* dex_file = dex_cache->GetDexFile(); 1061 if (!IsInBootImage(dex_cache)) { 1062 non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u; 1063 } 1064 } 1065 CHECK_EQ(dex_cache_count, non_image_dex_caches) 1066 << "The number of non-image dex caches changed."; 1067 size_t i = 0; 1068 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { 1069 mirror::DexCache* dex_cache = 1070 down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); 1071 if (dex_cache == nullptr) { 1072 continue; 1073 } 1074 const DexFile* dex_file = dex_cache->GetDexFile(); 1075 if (!IsInBootImage(dex_cache) && image_dex_files.find(dex_file) != image_dex_files.end()) { 1076 dex_caches->Set<false>(i, dex_cache); 1077 ++i; 1078 } 1079 } 1080 } 1081 1082 // build an Object[] of the roots needed to restore the runtime 1083 auto image_roots(hs.NewHandle( 1084 ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax))); 1085 image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get()); 1086 image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots()); 1087 for (int i = 0; i < ImageHeader::kImageRootsMax; i++) { 1088 CHECK(image_roots->Get(i) != nullptr); 1089 } 1090 return image_roots.Get(); 1091 } 1092 1093 // Walk instance fields of the given Class. Separate function to allow recursion on the super 1094 // class. 1095 void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) { 1096 // Visit fields of parent classes first. 1097 StackHandleScope<1> hs(Thread::Current()); 1098 Handle<mirror::Class> h_class(hs.NewHandle(klass)); 1099 mirror::Class* super = h_class->GetSuperClass(); 1100 if (super != nullptr) { 1101 WalkInstanceFields(obj, super); 1102 } 1103 // 1104 size_t num_reference_fields = h_class->NumReferenceInstanceFields(); 1105 MemberOffset field_offset = h_class->GetFirstReferenceInstanceFieldOffset(); 1106 for (size_t i = 0; i < num_reference_fields; ++i) { 1107 mirror::Object* value = obj->GetFieldObject<mirror::Object>(field_offset); 1108 if (value != nullptr) { 1109 WalkFieldsInOrder(value); 1110 } 1111 field_offset = MemberOffset(field_offset.Uint32Value() + 1112 sizeof(mirror::HeapReference<mirror::Object>)); 1113 } 1114 } 1115 1116 // For an unvisited object, visit it then all its children found via fields. 1117 void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) { 1118 if (IsInBootImage(obj)) { 1119 // Object is in the image, don't need to fix it up. 1120 return; 1121 } 1122 // Use our own visitor routine (instead of GC visitor) to get better locality between 1123 // an object and its fields 1124 if (!IsImageBinSlotAssigned(obj)) { 1125 // Walk instance fields of all objects 1126 StackHandleScope<2> hs(Thread::Current()); 1127 Handle<mirror::Object> h_obj(hs.NewHandle(obj)); 1128 Handle<mirror::Class> klass(hs.NewHandle(obj->GetClass())); 1129 // visit the object itself. 1130 CalculateObjectBinSlots(h_obj.Get()); 1131 WalkInstanceFields(h_obj.Get(), klass.Get()); 1132 // Walk static fields of a Class. 1133 if (h_obj->IsClass()) { 1134 size_t num_reference_static_fields = klass->NumReferenceStaticFields(); 1135 MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(target_ptr_size_); 1136 for (size_t i = 0; i < num_reference_static_fields; ++i) { 1137 mirror::Object* value = h_obj->GetFieldObject<mirror::Object>(field_offset); 1138 if (value != nullptr) { 1139 WalkFieldsInOrder(value); 1140 } 1141 field_offset = MemberOffset(field_offset.Uint32Value() + 1142 sizeof(mirror::HeapReference<mirror::Object>)); 1143 } 1144 // Visit and assign offsets for fields and field arrays. 1145 auto* as_klass = h_obj->AsClass(); 1146 mirror::DexCache* dex_cache = as_klass->GetDexCache(); 1147 DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError); 1148 if (compile_app_image_) { 1149 // Extra sanity, no boot loader classes should be left! 1150 CHECK(!IsBootClassLoaderClass(as_klass)) << PrettyClass(as_klass); 1151 } 1152 LengthPrefixedArray<ArtField>* fields[] = { 1153 as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(), 1154 }; 1155 size_t oat_index = GetOatIndexForDexCache(dex_cache); 1156 ImageInfo& image_info = GetImageInfo(oat_index); 1157 { 1158 // Note: This table is only accessed from the image writer, so the lock is technically 1159 // unnecessary. 1160 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); 1161 // Insert in the class table for this iamge. 1162 image_info.class_table_->Insert(as_klass); 1163 } 1164 for (LengthPrefixedArray<ArtField>* cur_fields : fields) { 1165 // Total array length including header. 1166 if (cur_fields != nullptr) { 1167 const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0); 1168 // Forward the entire array at once. 1169 auto it = native_object_relocations_.find(cur_fields); 1170 CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields 1171 << " already forwarded"; 1172 size_t& offset = image_info.bin_slot_sizes_[kBinArtField]; 1173 DCHECK(!IsInBootImage(cur_fields)); 1174 native_object_relocations_.emplace( 1175 cur_fields, 1176 NativeObjectRelocation { 1177 oat_index, offset, kNativeObjectRelocationTypeArtFieldArray 1178 }); 1179 offset += header_size; 1180 // Forward individual fields so that we can quickly find where they belong. 1181 for (size_t i = 0, count = cur_fields->size(); i < count; ++i) { 1182 // Need to forward arrays separate of fields. 1183 ArtField* field = &cur_fields->At(i); 1184 auto it2 = native_object_relocations_.find(field); 1185 CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i 1186 << " already assigned " << PrettyField(field) << " static=" << field->IsStatic(); 1187 DCHECK(!IsInBootImage(field)); 1188 native_object_relocations_.emplace( 1189 field, 1190 NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeArtField }); 1191 offset += sizeof(ArtField); 1192 } 1193 } 1194 } 1195 // Visit and assign offsets for methods. 1196 size_t num_methods = as_klass->NumMethods(); 1197 if (num_methods != 0) { 1198 bool any_dirty = false; 1199 for (auto& m : as_klass->GetMethods(target_ptr_size_)) { 1200 if (WillMethodBeDirty(&m)) { 1201 any_dirty = true; 1202 break; 1203 } 1204 } 1205 NativeObjectRelocationType type = any_dirty 1206 ? kNativeObjectRelocationTypeArtMethodDirty 1207 : kNativeObjectRelocationTypeArtMethodClean; 1208 Bin bin_type = BinTypeForNativeRelocationType(type); 1209 // Forward the entire array at once, but header first. 1210 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_); 1211 const size_t method_size = ArtMethod::Size(target_ptr_size_); 1212 const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0, 1213 method_size, 1214 method_alignment); 1215 LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr(); 1216 auto it = native_object_relocations_.find(array); 1217 CHECK(it == native_object_relocations_.end()) 1218 << "Method array " << array << " already forwarded"; 1219 size_t& offset = image_info.bin_slot_sizes_[bin_type]; 1220 DCHECK(!IsInBootImage(array)); 1221 native_object_relocations_.emplace(array, 1222 NativeObjectRelocation { 1223 oat_index, 1224 offset, 1225 any_dirty ? kNativeObjectRelocationTypeArtMethodArrayDirty 1226 : kNativeObjectRelocationTypeArtMethodArrayClean }); 1227 offset += header_size; 1228 for (auto& m : as_klass->GetMethods(target_ptr_size_)) { 1229 AssignMethodOffset(&m, type, oat_index); 1230 } 1231 (any_dirty ? dirty_methods_ : clean_methods_) += num_methods; 1232 } 1233 // Assign offsets for all runtime methods in the IMT since these may hold conflict tables 1234 // live. 1235 if (as_klass->ShouldHaveImt()) { 1236 ImTable* imt = as_klass->GetImt(target_ptr_size_); 1237 for (size_t i = 0; i < ImTable::kSize; ++i) { 1238 ArtMethod* imt_method = imt->Get(i, target_ptr_size_); 1239 DCHECK(imt_method != nullptr); 1240 if (imt_method->IsRuntimeMethod() && 1241 !IsInBootImage(imt_method) && 1242 !NativeRelocationAssigned(imt_method)) { 1243 AssignMethodOffset(imt_method, kNativeObjectRelocationTypeRuntimeMethod, oat_index); 1244 } 1245 } 1246 } 1247 1248 if (as_klass->ShouldHaveImt()) { 1249 ImTable* imt = as_klass->GetImt(target_ptr_size_); 1250 TryAssignImTableOffset(imt, oat_index); 1251 } 1252 } else if (h_obj->IsObjectArray()) { 1253 // Walk elements of an object array. 1254 int32_t length = h_obj->AsObjectArray<mirror::Object>()->GetLength(); 1255 for (int32_t i = 0; i < length; i++) { 1256 mirror::ObjectArray<mirror::Object>* obj_array = h_obj->AsObjectArray<mirror::Object>(); 1257 mirror::Object* value = obj_array->Get(i); 1258 if (value != nullptr) { 1259 WalkFieldsInOrder(value); 1260 } 1261 } 1262 } else if (h_obj->IsClassLoader()) { 1263 // Register the class loader if it has a class table. 1264 // The fake boot class loader should not get registered and we should end up with only one 1265 // class loader. 1266 mirror::ClassLoader* class_loader = h_obj->AsClassLoader(); 1267 if (class_loader->GetClassTable() != nullptr) { 1268 class_loaders_.insert(class_loader); 1269 } 1270 } 1271 } 1272 } 1273 1274 bool ImageWriter::NativeRelocationAssigned(void* ptr) const { 1275 return native_object_relocations_.find(ptr) != native_object_relocations_.end(); 1276 } 1277 1278 void ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) { 1279 // No offset, or already assigned. 1280 if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) { 1281 return; 1282 } 1283 // If the method is a conflict method we also want to assign the conflict table offset. 1284 ImageInfo& image_info = GetImageInfo(oat_index); 1285 const size_t size = ImTable::SizeInBytes(target_ptr_size_); 1286 native_object_relocations_.emplace( 1287 imt, 1288 NativeObjectRelocation { 1289 oat_index, 1290 image_info.bin_slot_sizes_[kBinImTable], 1291 kNativeObjectRelocationTypeIMTable}); 1292 image_info.bin_slot_sizes_[kBinImTable] += size; 1293 } 1294 1295 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) { 1296 // No offset, or already assigned. 1297 if (table == nullptr || NativeRelocationAssigned(table)) { 1298 return; 1299 } 1300 CHECK(!IsInBootImage(table)); 1301 // If the method is a conflict method we also want to assign the conflict table offset. 1302 ImageInfo& image_info = GetImageInfo(oat_index); 1303 const size_t size = table->ComputeSize(target_ptr_size_); 1304 native_object_relocations_.emplace( 1305 table, 1306 NativeObjectRelocation { 1307 oat_index, 1308 image_info.bin_slot_sizes_[kBinIMTConflictTable], 1309 kNativeObjectRelocationTypeIMTConflictTable}); 1310 image_info.bin_slot_sizes_[kBinIMTConflictTable] += size; 1311 } 1312 1313 void ImageWriter::AssignMethodOffset(ArtMethod* method, 1314 NativeObjectRelocationType type, 1315 size_t oat_index) { 1316 DCHECK(!IsInBootImage(method)); 1317 CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned " 1318 << PrettyMethod(method); 1319 if (method->IsRuntimeMethod()) { 1320 TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index); 1321 } 1322 ImageInfo& image_info = GetImageInfo(oat_index); 1323 size_t& offset = image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(type)]; 1324 native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type }); 1325 offset += ArtMethod::Size(target_ptr_size_); 1326 } 1327 1328 void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) { 1329 ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg); 1330 DCHECK(writer != nullptr); 1331 writer->WalkFieldsInOrder(obj); 1332 } 1333 1334 void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) { 1335 ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg); 1336 DCHECK(writer != nullptr); 1337 if (!writer->IsInBootImage(obj)) { 1338 writer->UnbinObjectsIntoOffset(obj); 1339 } 1340 } 1341 1342 void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) { 1343 DCHECK(!IsInBootImage(obj)); 1344 CHECK(obj != nullptr); 1345 1346 // We know the bin slot, and the total bin sizes for all objects by now, 1347 // so calculate the object's final image offset. 1348 1349 DCHECK(IsImageBinSlotAssigned(obj)); 1350 BinSlot bin_slot = GetImageBinSlot(obj); 1351 // Change the lockword from a bin slot into an offset 1352 AssignImageOffset(obj, bin_slot); 1353 } 1354 1355 void ImageWriter::CalculateNewObjectOffsets() { 1356 Thread* const self = Thread::Current(); 1357 StackHandleScopeCollection handles(self); 1358 std::vector<Handle<ObjectArray<Object>>> image_roots; 1359 for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) { 1360 image_roots.push_back(handles.NewHandle(CreateImageRoots(i))); 1361 } 1362 1363 auto* runtime = Runtime::Current(); 1364 auto* heap = runtime->GetHeap(); 1365 1366 // Leave space for the header, but do not write it yet, we need to 1367 // know where image_roots is going to end up 1368 image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment 1369 1370 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_); 1371 // Write the image runtime methods. 1372 image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod(); 1373 image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod(); 1374 image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod(); 1375 image_methods_[ImageHeader::kCalleeSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kSaveAll); 1376 image_methods_[ImageHeader::kRefsOnlySaveMethod] = 1377 runtime->GetCalleeSaveMethod(Runtime::kRefsOnly); 1378 image_methods_[ImageHeader::kRefsAndArgsSaveMethod] = 1379 runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs); 1380 // Visit image methods first to have the main runtime methods in the first image. 1381 for (auto* m : image_methods_) { 1382 CHECK(m != nullptr); 1383 CHECK(m->IsRuntimeMethod()); 1384 DCHECK_EQ(compile_app_image_, IsInBootImage(m)) << "Trampolines should be in boot image"; 1385 if (!IsInBootImage(m)) { 1386 AssignMethodOffset(m, kNativeObjectRelocationTypeRuntimeMethod, GetDefaultOatIndex()); 1387 } 1388 } 1389 1390 // Clear any pre-existing monitors which may have been in the monitor words, assign bin slots. 1391 heap->VisitObjects(WalkFieldsCallback, this); 1392 1393 // Calculate size of the dex cache arrays slot and prepare offsets. 1394 PrepareDexCacheArraySlots(); 1395 1396 // Calculate the sizes of the intern tables and class tables. 1397 for (ImageInfo& image_info : image_infos_) { 1398 // Calculate how big the intern table will be after being serialized. 1399 InternTable* const intern_table = image_info.intern_table_.get(); 1400 CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings"; 1401 image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr); 1402 // Calculate the size of the class table. 1403 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); 1404 image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr); 1405 } 1406 1407 // Calculate bin slot offsets. 1408 for (ImageInfo& image_info : image_infos_) { 1409 size_t bin_offset = image_objects_offset_begin_; 1410 for (size_t i = 0; i != kBinSize; ++i) { 1411 switch (i) { 1412 case kBinArtMethodClean: 1413 case kBinArtMethodDirty: { 1414 bin_offset = RoundUp(bin_offset, method_alignment); 1415 break; 1416 } 1417 case kBinImTable: 1418 case kBinIMTConflictTable: { 1419 bin_offset = RoundUp(bin_offset, target_ptr_size_); 1420 break; 1421 } 1422 default: { 1423 // Normal alignment. 1424 } 1425 } 1426 image_info.bin_slot_offsets_[i] = bin_offset; 1427 bin_offset += image_info.bin_slot_sizes_[i]; 1428 } 1429 // NOTE: There may be additional padding between the bin slots and the intern table. 1430 DCHECK_EQ(image_info.image_end_, 1431 GetBinSizeSum(image_info, kBinMirrorCount) + image_objects_offset_begin_); 1432 } 1433 1434 // Calculate image offsets. 1435 size_t image_offset = 0; 1436 for (ImageInfo& image_info : image_infos_) { 1437 image_info.image_begin_ = global_image_begin_ + image_offset; 1438 image_info.image_offset_ = image_offset; 1439 ImageSection unused_sections[ImageHeader::kSectionCount]; 1440 image_info.image_size_ = RoundUp(image_info.CreateImageSections(unused_sections), kPageSize); 1441 // There should be no gaps until the next image. 1442 image_offset += image_info.image_size_; 1443 } 1444 1445 // Transform each object's bin slot into an offset which will be used to do the final copy. 1446 heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this); 1447 1448 // DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_); 1449 1450 size_t i = 0; 1451 for (ImageInfo& image_info : image_infos_) { 1452 image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get())); 1453 i++; 1454 } 1455 1456 // Update the native relocations by adding their bin sums. 1457 for (auto& pair : native_object_relocations_) { 1458 NativeObjectRelocation& relocation = pair.second; 1459 Bin bin_type = BinTypeForNativeRelocationType(relocation.type); 1460 ImageInfo& image_info = GetImageInfo(relocation.oat_index); 1461 relocation.offset += image_info.bin_slot_offsets_[bin_type]; 1462 } 1463 1464 // Note that image_info.image_end_ is left at end of used mirror object section. 1465 } 1466 1467 size_t ImageWriter::ImageInfo::CreateImageSections(ImageSection* out_sections) const { 1468 DCHECK(out_sections != nullptr); 1469 1470 // Do not round up any sections here that are represented by the bins since it will break 1471 // offsets. 1472 1473 // Objects section 1474 ImageSection* objects_section = &out_sections[ImageHeader::kSectionObjects]; 1475 *objects_section = ImageSection(0u, image_end_); 1476 1477 // Add field section. 1478 ImageSection* field_section = &out_sections[ImageHeader::kSectionArtFields]; 1479 *field_section = ImageSection(bin_slot_offsets_[kBinArtField], bin_slot_sizes_[kBinArtField]); 1480 CHECK_EQ(bin_slot_offsets_[kBinArtField], field_section->Offset()); 1481 1482 // Add method section. 1483 ImageSection* methods_section = &out_sections[ImageHeader::kSectionArtMethods]; 1484 *methods_section = ImageSection( 1485 bin_slot_offsets_[kBinArtMethodClean], 1486 bin_slot_sizes_[kBinArtMethodClean] + bin_slot_sizes_[kBinArtMethodDirty]); 1487 1488 // IMT section. 1489 ImageSection* imt_section = &out_sections[ImageHeader::kSectionImTables]; 1490 *imt_section = ImageSection(bin_slot_offsets_[kBinImTable], bin_slot_sizes_[kBinImTable]); 1491 1492 // Conflict tables section. 1493 ImageSection* imt_conflict_tables_section = &out_sections[ImageHeader::kSectionIMTConflictTables]; 1494 *imt_conflict_tables_section = ImageSection(bin_slot_offsets_[kBinIMTConflictTable], 1495 bin_slot_sizes_[kBinIMTConflictTable]); 1496 1497 // Runtime methods section. 1498 ImageSection* runtime_methods_section = &out_sections[ImageHeader::kSectionRuntimeMethods]; 1499 *runtime_methods_section = ImageSection(bin_slot_offsets_[kBinRuntimeMethod], 1500 bin_slot_sizes_[kBinRuntimeMethod]); 1501 1502 // Add dex cache arrays section. 1503 ImageSection* dex_cache_arrays_section = &out_sections[ImageHeader::kSectionDexCacheArrays]; 1504 *dex_cache_arrays_section = ImageSection(bin_slot_offsets_[kBinDexCacheArray], 1505 bin_slot_sizes_[kBinDexCacheArray]); 1506 1507 // Round up to the alignment the string table expects. See HashSet::WriteToMemory. 1508 size_t cur_pos = RoundUp(dex_cache_arrays_section->End(), sizeof(uint64_t)); 1509 // Calculate the size of the interned strings. 1510 ImageSection* interned_strings_section = &out_sections[ImageHeader::kSectionInternedStrings]; 1511 *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_); 1512 cur_pos = interned_strings_section->End(); 1513 // Round up to the alignment the class table expects. See HashSet::WriteToMemory. 1514 cur_pos = RoundUp(cur_pos, sizeof(uint64_t)); 1515 // Calculate the size of the class table section. 1516 ImageSection* class_table_section = &out_sections[ImageHeader::kSectionClassTable]; 1517 *class_table_section = ImageSection(cur_pos, class_table_bytes_); 1518 cur_pos = class_table_section->End(); 1519 // Image end goes right before the start of the image bitmap. 1520 return cur_pos; 1521 } 1522 1523 void ImageWriter::CreateHeader(size_t oat_index) { 1524 ImageInfo& image_info = GetImageInfo(oat_index); 1525 const uint8_t* oat_file_begin = image_info.oat_file_begin_; 1526 const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_; 1527 const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_; 1528 1529 // Create the image sections. 1530 ImageSection sections[ImageHeader::kSectionCount]; 1531 const size_t image_end = image_info.CreateImageSections(sections); 1532 1533 // Finally bitmap section. 1534 const size_t bitmap_bytes = image_info.image_bitmap_->Size(); 1535 auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap]; 1536 *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize)); 1537 if (VLOG_IS_ON(compiler)) { 1538 LOG(INFO) << "Creating header for " << oat_filenames_[oat_index]; 1539 size_t idx = 0; 1540 for (const ImageSection& section : sections) { 1541 LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section; 1542 ++idx; 1543 } 1544 LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_; 1545 LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec; 1546 LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_) 1547 << " Image offset=" << image_info.image_offset_ << std::dec; 1548 LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin) 1549 << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_) 1550 << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end) 1551 << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end); 1552 } 1553 // Store boot image info for app image so that we can relocate. 1554 uint32_t boot_image_begin = 0; 1555 uint32_t boot_image_end = 0; 1556 uint32_t boot_oat_begin = 0; 1557 uint32_t boot_oat_end = 0; 1558 gc::Heap* const heap = Runtime::Current()->GetHeap(); 1559 heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end); 1560 1561 // Create the header, leave 0 for data size since we will fill this in as we are writing the 1562 // image. 1563 new (image_info.image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_info.image_begin_), 1564 image_end, 1565 sections, 1566 image_info.image_roots_address_, 1567 image_info.oat_checksum_, 1568 PointerToLowMemUInt32(oat_file_begin), 1569 PointerToLowMemUInt32(image_info.oat_data_begin_), 1570 PointerToLowMemUInt32(oat_data_end), 1571 PointerToLowMemUInt32(oat_file_end), 1572 boot_image_begin, 1573 boot_image_end - boot_image_begin, 1574 boot_oat_begin, 1575 boot_oat_end - boot_oat_begin, 1576 target_ptr_size_, 1577 compile_pic_, 1578 /*is_pic*/compile_app_image_, 1579 image_storage_mode_, 1580 /*data_size*/0u); 1581 } 1582 1583 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) { 1584 auto it = native_object_relocations_.find(method); 1585 CHECK(it != native_object_relocations_.end()) << PrettyMethod(method) << " @ " << method; 1586 size_t oat_index = GetOatIndex(method->GetDexCache()); 1587 ImageInfo& image_info = GetImageInfo(oat_index); 1588 CHECK_GE(it->second.offset, image_info.image_end_) << "ArtMethods should be after Objects"; 1589 return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + it->second.offset); 1590 } 1591 1592 class FixupRootVisitor : public RootVisitor { 1593 public: 1594 explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) { 1595 } 1596 1597 void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) 1598 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { 1599 for (size_t i = 0; i < count; ++i) { 1600 *roots[i] = image_writer_->GetImageAddress(*roots[i]); 1601 } 1602 } 1603 1604 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count, 1605 const RootInfo& info ATTRIBUTE_UNUSED) 1606 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { 1607 for (size_t i = 0; i < count; ++i) { 1608 roots[i]->Assign(image_writer_->GetImageAddress(roots[i]->AsMirrorPtr())); 1609 } 1610 } 1611 1612 private: 1613 ImageWriter* const image_writer_; 1614 }; 1615 1616 void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) { 1617 for (size_t i = 0; i < ImTable::kSize; ++i) { 1618 ArtMethod* method = orig->Get(i, target_ptr_size_); 1619 copy->Set(i, NativeLocationInImage(method), target_ptr_size_); 1620 } 1621 } 1622 1623 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) { 1624 const size_t count = orig->NumEntries(target_ptr_size_); 1625 for (size_t i = 0; i < count; ++i) { 1626 ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_); 1627 ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_); 1628 copy->SetInterfaceMethod(i, target_ptr_size_, NativeLocationInImage(interface_method)); 1629 copy->SetImplementationMethod(i, 1630 target_ptr_size_, 1631 NativeLocationInImage(implementation_method)); 1632 } 1633 } 1634 1635 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) { 1636 const ImageInfo& image_info = GetImageInfo(oat_index); 1637 // Copy ArtFields and methods to their locations and update the array for convenience. 1638 for (auto& pair : native_object_relocations_) { 1639 NativeObjectRelocation& relocation = pair.second; 1640 // Only work with fields and methods that are in the current oat file. 1641 if (relocation.oat_index != oat_index) { 1642 continue; 1643 } 1644 auto* dest = image_info.image_->Begin() + relocation.offset; 1645 DCHECK_GE(dest, image_info.image_->Begin() + image_info.image_end_); 1646 DCHECK(!IsInBootImage(pair.first)); 1647 switch (relocation.type) { 1648 case kNativeObjectRelocationTypeArtField: { 1649 memcpy(dest, pair.first, sizeof(ArtField)); 1650 reinterpret_cast<ArtField*>(dest)->SetDeclaringClass( 1651 GetImageAddress(reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass())); 1652 break; 1653 } 1654 case kNativeObjectRelocationTypeRuntimeMethod: 1655 case kNativeObjectRelocationTypeArtMethodClean: 1656 case kNativeObjectRelocationTypeArtMethodDirty: { 1657 CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first), 1658 reinterpret_cast<ArtMethod*>(dest), 1659 image_info); 1660 break; 1661 } 1662 // For arrays, copy just the header since the elements will get copied by their corresponding 1663 // relocations. 1664 case kNativeObjectRelocationTypeArtFieldArray: { 1665 memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0)); 1666 break; 1667 } 1668 case kNativeObjectRelocationTypeArtMethodArrayClean: 1669 case kNativeObjectRelocationTypeArtMethodArrayDirty: { 1670 size_t size = ArtMethod::Size(target_ptr_size_); 1671 size_t alignment = ArtMethod::Alignment(target_ptr_size_); 1672 memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment)); 1673 // Clear padding to avoid non-deterministic data in the image (and placate valgrind). 1674 reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment); 1675 break; 1676 } 1677 case kNativeObjectRelocationTypeDexCacheArray: 1678 // Nothing to copy here, everything is done in FixupDexCache(). 1679 break; 1680 case kNativeObjectRelocationTypeIMTable: { 1681 ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first); 1682 ImTable* dest_imt = reinterpret_cast<ImTable*>(dest); 1683 CopyAndFixupImTable(orig_imt, dest_imt); 1684 break; 1685 } 1686 case kNativeObjectRelocationTypeIMTConflictTable: { 1687 auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first); 1688 CopyAndFixupImtConflictTable( 1689 orig_table, 1690 new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_)); 1691 break; 1692 } 1693 } 1694 } 1695 // Fixup the image method roots. 1696 auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin()); 1697 for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) { 1698 ArtMethod* method = image_methods_[i]; 1699 CHECK(method != nullptr); 1700 if (!IsInBootImage(method)) { 1701 method = NativeLocationInImage(method); 1702 } 1703 image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), method); 1704 } 1705 FixupRootVisitor root_visitor(this); 1706 1707 // Write the intern table into the image. 1708 if (image_info.intern_table_bytes_ > 0) { 1709 const ImageSection& intern_table_section = image_header->GetImageSection( 1710 ImageHeader::kSectionInternedStrings); 1711 InternTable* const intern_table = image_info.intern_table_.get(); 1712 uint8_t* const intern_table_memory_ptr = 1713 image_info.image_->Begin() + intern_table_section.Offset(); 1714 const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr); 1715 CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_); 1716 // Fixup the pointers in the newly written intern table to contain image addresses. 1717 InternTable temp_intern_table; 1718 // Note that we require that ReadFromMemory does not make an internal copy of the elements so that 1719 // the VisitRoots() will update the memory directly rather than the copies. 1720 // This also relies on visit roots not doing any verification which could fail after we update 1721 // the roots to be the image addresses. 1722 temp_intern_table.AddTableFromMemory(intern_table_memory_ptr); 1723 CHECK_EQ(temp_intern_table.Size(), intern_table->Size()); 1724 temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots); 1725 } 1726 // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple 1727 // class loaders. Writing multiple class tables into the image is currently unsupported. 1728 if (image_info.class_table_bytes_ > 0u) { 1729 const ImageSection& class_table_section = image_header->GetImageSection( 1730 ImageHeader::kSectionClassTable); 1731 uint8_t* const class_table_memory_ptr = 1732 image_info.image_->Begin() + class_table_section.Offset(); 1733 ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); 1734 1735 ClassTable* table = image_info.class_table_.get(); 1736 CHECK(table != nullptr); 1737 const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr); 1738 CHECK_EQ(class_table_bytes, image_info.class_table_bytes_); 1739 // Fixup the pointers in the newly written class table to contain image addresses. See 1740 // above comment for intern tables. 1741 ClassTable temp_class_table; 1742 temp_class_table.ReadFromMemory(class_table_memory_ptr); 1743 CHECK_EQ(temp_class_table.NumZygoteClasses(), table->NumNonZygoteClasses() + 1744 table->NumZygoteClasses()); 1745 BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(&root_visitor, 1746 RootInfo(kRootUnknown)); 1747 temp_class_table.VisitRoots(buffered_visitor); 1748 } 1749 } 1750 1751 void ImageWriter::CopyAndFixupObjects() { 1752 gc::Heap* heap = Runtime::Current()->GetHeap(); 1753 heap->VisitObjects(CopyAndFixupObjectsCallback, this); 1754 // Fix up the object previously had hash codes. 1755 for (const auto& hash_pair : saved_hashcode_map_) { 1756 Object* obj = hash_pair.first; 1757 DCHECK_EQ(obj->GetLockWord<kVerifyNone>(false).ReadBarrierState(), 0U); 1758 obj->SetLockWord<kVerifyNone>(LockWord::FromHashCode(hash_pair.second, 0U), false); 1759 } 1760 saved_hashcode_map_.clear(); 1761 } 1762 1763 void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) { 1764 DCHECK(obj != nullptr); 1765 DCHECK(arg != nullptr); 1766 reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj); 1767 } 1768 1769 void ImageWriter::FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr, 1770 mirror::Class* klass, Bin array_type) { 1771 CHECK(klass->IsArrayClass()); 1772 CHECK(arr->IsIntArray() || arr->IsLongArray()) << PrettyClass(klass) << " " << arr; 1773 // Fixup int and long pointers for the ArtMethod or ArtField arrays. 1774 const size_t num_elements = arr->GetLength(); 1775 dst->SetClass(GetImageAddress(arr->GetClass())); 1776 auto* dest_array = down_cast<mirror::PointerArray*>(dst); 1777 for (size_t i = 0, count = num_elements; i < count; ++i) { 1778 void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_); 1779 if (elem != nullptr && !IsInBootImage(elem)) { 1780 auto it = native_object_relocations_.find(elem); 1781 if (UNLIKELY(it == native_object_relocations_.end())) { 1782 if (it->second.IsArtMethodRelocation()) { 1783 auto* method = reinterpret_cast<ArtMethod*>(elem); 1784 LOG(FATAL) << "No relocation entry for ArtMethod " << PrettyMethod(method) << " @ " 1785 << method << " idx=" << i << "/" << num_elements << " with declaring class " 1786 << PrettyClass(method->GetDeclaringClass()); 1787 } else { 1788 CHECK_EQ(array_type, kBinArtField); 1789 auto* field = reinterpret_cast<ArtField*>(elem); 1790 LOG(FATAL) << "No relocation entry for ArtField " << PrettyField(field) << " @ " 1791 << field << " idx=" << i << "/" << num_elements << " with declaring class " 1792 << PrettyClass(field->GetDeclaringClass()); 1793 } 1794 UNREACHABLE(); 1795 } else { 1796 ImageInfo& image_info = GetImageInfo(it->second.oat_index); 1797 elem = image_info.image_begin_ + it->second.offset; 1798 } 1799 } 1800 dest_array->SetElementPtrSize<false, true>(i, elem, target_ptr_size_); 1801 } 1802 } 1803 1804 void ImageWriter::CopyAndFixupObject(Object* obj) { 1805 if (IsInBootImage(obj)) { 1806 return; 1807 } 1808 size_t offset = GetImageOffset(obj); 1809 size_t oat_index = GetOatIndex(obj); 1810 ImageInfo& image_info = GetImageInfo(oat_index); 1811 auto* dst = reinterpret_cast<Object*>(image_info.image_->Begin() + offset); 1812 DCHECK_LT(offset, image_info.image_end_); 1813 const auto* src = reinterpret_cast<const uint8_t*>(obj); 1814 1815 image_info.image_bitmap_->Set(dst); // Mark the obj as live. 1816 1817 const size_t n = obj->SizeOf(); 1818 DCHECK_LE(offset + n, image_info.image_->Size()); 1819 memcpy(dst, src, n); 1820 1821 // Write in a hash code of objects which have inflated monitors or a hash code in their monitor 1822 // word. 1823 const auto it = saved_hashcode_map_.find(obj); 1824 dst->SetLockWord(it != saved_hashcode_map_.end() ? 1825 LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false); 1826 FixupObject(obj, dst); 1827 } 1828 1829 // Rewrite all the references in the copied object to point to their image address equivalent 1830 class FixupVisitor { 1831 public: 1832 FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) { 1833 } 1834 1835 // Ignore class roots since we don't have a way to map them to the destination. These are handled 1836 // with other logic. 1837 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) 1838 const {} 1839 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} 1840 1841 1842 void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const 1843 REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 1844 Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset); 1845 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the 1846 // image. 1847 copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( 1848 offset, 1849 image_writer_->GetImageAddress(ref)); 1850 } 1851 1852 // java.lang.ref.Reference visitor. 1853 void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const 1854 SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { 1855 copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( 1856 mirror::Reference::ReferentOffset(), 1857 image_writer_->GetImageAddress(ref->GetReferent())); 1858 } 1859 1860 protected: 1861 ImageWriter* const image_writer_; 1862 mirror::Object* const copy_; 1863 }; 1864 1865 class FixupClassVisitor FINAL : public FixupVisitor { 1866 public: 1867 FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) { 1868 } 1869 1870 void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const 1871 REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 1872 DCHECK(obj->IsClass()); 1873 FixupVisitor::operator()(obj, offset, /*is_static*/false); 1874 } 1875 1876 void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, 1877 mirror::Reference* ref ATTRIBUTE_UNUSED) const 1878 SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { 1879 LOG(FATAL) << "Reference not expected here."; 1880 } 1881 }; 1882 1883 uintptr_t ImageWriter::NativeOffsetInImage(void* obj) { 1884 DCHECK(obj != nullptr); 1885 DCHECK(!IsInBootImage(obj)); 1886 auto it = native_object_relocations_.find(obj); 1887 CHECK(it != native_object_relocations_.end()) << obj << " spaces " 1888 << Runtime::Current()->GetHeap()->DumpSpaces(); 1889 const NativeObjectRelocation& relocation = it->second; 1890 return relocation.offset; 1891 } 1892 1893 template <typename T> 1894 std::string PrettyPrint(T* ptr) SHARED_REQUIRES(Locks::mutator_lock_) { 1895 std::ostringstream oss; 1896 oss << ptr; 1897 return oss.str(); 1898 } 1899 1900 template <> 1901 std::string PrettyPrint(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_) { 1902 return PrettyMethod(method); 1903 } 1904 1905 template <typename T> 1906 T* ImageWriter::NativeLocationInImage(T* obj) { 1907 if (obj == nullptr || IsInBootImage(obj)) { 1908 return obj; 1909 } else { 1910 auto it = native_object_relocations_.find(obj); 1911 CHECK(it != native_object_relocations_.end()) << obj << " " << PrettyPrint(obj) 1912 << " spaces " << Runtime::Current()->GetHeap()->DumpSpaces(); 1913 const NativeObjectRelocation& relocation = it->second; 1914 ImageInfo& image_info = GetImageInfo(relocation.oat_index); 1915 return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset); 1916 } 1917 } 1918 1919 template <typename T> 1920 T* ImageWriter::NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) { 1921 if (obj == nullptr || IsInBootImage(obj)) { 1922 return obj; 1923 } else { 1924 size_t oat_index = GetOatIndexForDexCache(dex_cache); 1925 ImageInfo& image_info = GetImageInfo(oat_index); 1926 return reinterpret_cast<T*>(image_info.image_->Begin() + NativeOffsetInImage(obj)); 1927 } 1928 } 1929 1930 class NativeLocationVisitor { 1931 public: 1932 explicit NativeLocationVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {} 1933 1934 template <typename T> 1935 T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) { 1936 return image_writer_->NativeLocationInImage(ptr); 1937 } 1938 1939 private: 1940 ImageWriter* const image_writer_; 1941 }; 1942 1943 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) { 1944 orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this)); 1945 FixupClassVisitor visitor(this, copy); 1946 static_cast<mirror::Object*>(orig)->VisitReferences(visitor, visitor); 1947 1948 // Remove the clinitThreadId. This is required for image determinism. 1949 copy->SetClinitThreadId(static_cast<pid_t>(0)); 1950 } 1951 1952 void ImageWriter::FixupObject(Object* orig, Object* copy) { 1953 DCHECK(orig != nullptr); 1954 DCHECK(copy != nullptr); 1955 if (kUseBakerOrBrooksReadBarrier) { 1956 orig->AssertReadBarrierPointer(); 1957 if (kUseBrooksReadBarrier) { 1958 // Note the address 'copy' isn't the same as the image address of 'orig'. 1959 copy->SetReadBarrierPointer(GetImageAddress(orig)); 1960 DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig)); 1961 } 1962 } 1963 auto* klass = orig->GetClass(); 1964 if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) { 1965 // Is this a native pointer array? 1966 auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig)); 1967 if (it != pointer_arrays_.end()) { 1968 // Should only need to fixup every pointer array exactly once. 1969 FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second); 1970 pointer_arrays_.erase(it); 1971 return; 1972 } 1973 } 1974 if (orig->IsClass()) { 1975 FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy)); 1976 } else { 1977 if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) { 1978 // Need to go update the ArtMethod. 1979 auto* dest = down_cast<mirror::AbstractMethod*>(copy); 1980 auto* src = down_cast<mirror::AbstractMethod*>(orig); 1981 ArtMethod* src_method = src->GetArtMethod(); 1982 auto it = native_object_relocations_.find(src_method); 1983 CHECK(it != native_object_relocations_.end()) 1984 << "Missing relocation for AbstractMethod.artMethod " << PrettyMethod(src_method); 1985 dest->SetArtMethod( 1986 reinterpret_cast<ArtMethod*>(global_image_begin_ + it->second.offset)); 1987 } else if (!klass->IsArrayClass()) { 1988 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 1989 if (klass == class_linker->GetClassRoot(ClassLinker::kJavaLangDexCache)) { 1990 FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy)); 1991 } else if (klass->IsClassLoaderClass()) { 1992 mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy); 1993 // If src is a ClassLoader, set the class table to null so that it gets recreated by the 1994 // ClassLoader. 1995 copy_loader->SetClassTable(nullptr); 1996 // Also set allocator to null to be safe. The allocator is created when we create the class 1997 // table. We also never expect to unload things in the image since they are held live as 1998 // roots. 1999 copy_loader->SetAllocator(nullptr); 2000 } 2001 } 2002 FixupVisitor visitor(this, copy); 2003 orig->VisitReferences(visitor, visitor); 2004 } 2005 } 2006 2007 2008 class ImageAddressVisitor { 2009 public: 2010 explicit ImageAddressVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {} 2011 2012 template <typename T> 2013 T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) { 2014 return image_writer_->GetImageAddress(ptr); 2015 } 2016 2017 private: 2018 ImageWriter* const image_writer_; 2019 }; 2020 2021 2022 void ImageWriter::FixupDexCache(mirror::DexCache* orig_dex_cache, 2023 mirror::DexCache* copy_dex_cache) { 2024 // Though the DexCache array fields are usually treated as native pointers, we set the full 2025 // 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is 2026 // done by casting to the unsigned type uintptr_t before casting to int64_t, i.e. 2027 // static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))). 2028 GcRoot<mirror::String>* orig_strings = orig_dex_cache->GetStrings(); 2029 if (orig_strings != nullptr) { 2030 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::StringsOffset(), 2031 NativeLocationInImage(orig_strings), 2032 /*pointer size*/8u); 2033 orig_dex_cache->FixupStrings(NativeCopyLocation(orig_strings, orig_dex_cache), 2034 ImageAddressVisitor(this)); 2035 } 2036 GcRoot<mirror::Class>* orig_types = orig_dex_cache->GetResolvedTypes(); 2037 if (orig_types != nullptr) { 2038 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedTypesOffset(), 2039 NativeLocationInImage(orig_types), 2040 /*pointer size*/8u); 2041 orig_dex_cache->FixupResolvedTypes(NativeCopyLocation(orig_types, orig_dex_cache), 2042 ImageAddressVisitor(this)); 2043 } 2044 ArtMethod** orig_methods = orig_dex_cache->GetResolvedMethods(); 2045 if (orig_methods != nullptr) { 2046 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodsOffset(), 2047 NativeLocationInImage(orig_methods), 2048 /*pointer size*/8u); 2049 ArtMethod** copy_methods = NativeCopyLocation(orig_methods, orig_dex_cache); 2050 for (size_t i = 0, num = orig_dex_cache->NumResolvedMethods(); i != num; ++i) { 2051 ArtMethod* orig = mirror::DexCache::GetElementPtrSize(orig_methods, i, target_ptr_size_); 2052 // NativeLocationInImage also handles runtime methods since these have relocation info. 2053 ArtMethod* copy = NativeLocationInImage(orig); 2054 mirror::DexCache::SetElementPtrSize(copy_methods, i, copy, target_ptr_size_); 2055 } 2056 } 2057 ArtField** orig_fields = orig_dex_cache->GetResolvedFields(); 2058 if (orig_fields != nullptr) { 2059 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedFieldsOffset(), 2060 NativeLocationInImage(orig_fields), 2061 /*pointer size*/8u); 2062 ArtField** copy_fields = NativeCopyLocation(orig_fields, orig_dex_cache); 2063 for (size_t i = 0, num = orig_dex_cache->NumResolvedFields(); i != num; ++i) { 2064 ArtField* orig = mirror::DexCache::GetElementPtrSize(orig_fields, i, target_ptr_size_); 2065 ArtField* copy = NativeLocationInImage(orig); 2066 mirror::DexCache::SetElementPtrSize(copy_fields, i, copy, target_ptr_size_); 2067 } 2068 } 2069 2070 // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving 2071 // compiler pointers in here will make the output non-deterministic. 2072 copy_dex_cache->SetDexFile(nullptr); 2073 } 2074 2075 const uint8_t* ImageWriter::GetOatAddress(OatAddress type) const { 2076 DCHECK_LT(type, kOatAddressCount); 2077 // If we are compiling an app image, we need to use the stubs of the boot image. 2078 if (compile_app_image_) { 2079 // Use the current image pointers. 2080 const std::vector<gc::space::ImageSpace*>& image_spaces = 2081 Runtime::Current()->GetHeap()->GetBootImageSpaces(); 2082 DCHECK(!image_spaces.empty()); 2083 const OatFile* oat_file = image_spaces[0]->GetOatFile(); 2084 CHECK(oat_file != nullptr); 2085 const OatHeader& header = oat_file->GetOatHeader(); 2086 switch (type) { 2087 // TODO: We could maybe clean this up if we stored them in an array in the oat header. 2088 case kOatAddressQuickGenericJNITrampoline: 2089 return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline()); 2090 case kOatAddressInterpreterToInterpreterBridge: 2091 return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge()); 2092 case kOatAddressInterpreterToCompiledCodeBridge: 2093 return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge()); 2094 case kOatAddressJNIDlsymLookup: 2095 return static_cast<const uint8_t*>(header.GetJniDlsymLookup()); 2096 case kOatAddressQuickIMTConflictTrampoline: 2097 return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline()); 2098 case kOatAddressQuickResolutionTrampoline: 2099 return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline()); 2100 case kOatAddressQuickToInterpreterBridge: 2101 return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge()); 2102 default: 2103 UNREACHABLE(); 2104 } 2105 } 2106 const ImageInfo& primary_image_info = GetImageInfo(0); 2107 return GetOatAddressForOffset(primary_image_info.oat_address_offsets_[type], primary_image_info); 2108 } 2109 2110 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, 2111 const ImageInfo& image_info, 2112 bool* quick_is_interpreted) { 2113 DCHECK(!method->IsResolutionMethod()) << PrettyMethod(method); 2114 DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << PrettyMethod(method); 2115 DCHECK(!method->IsImtUnimplementedMethod()) << PrettyMethod(method); 2116 DCHECK(method->IsInvokable()) << PrettyMethod(method); 2117 DCHECK(!IsInBootImage(method)) << PrettyMethod(method); 2118 2119 // Use original code if it exists. Otherwise, set the code pointer to the resolution 2120 // trampoline. 2121 2122 // Quick entrypoint: 2123 const void* quick_oat_entry_point = 2124 method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_); 2125 const uint8_t* quick_code; 2126 2127 if (UNLIKELY(IsInBootImage(method->GetDeclaringClass()))) { 2128 DCHECK(method->IsCopied()); 2129 // If the code is not in the oat file corresponding to this image (e.g. default methods) 2130 quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point); 2131 } else { 2132 uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point); 2133 quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info); 2134 } 2135 2136 *quick_is_interpreted = false; 2137 if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() || 2138 method->GetDeclaringClass()->IsInitialized())) { 2139 // We have code for a non-static or initialized method, just use the code. 2140 } else if (quick_code == nullptr && method->IsNative() && 2141 (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) { 2142 // Non-static or initialized native method missing compiled code, use generic JNI version. 2143 quick_code = GetOatAddress(kOatAddressQuickGenericJNITrampoline); 2144 } else if (quick_code == nullptr && !method->IsNative()) { 2145 // We don't have code at all for a non-native method, use the interpreter. 2146 quick_code = GetOatAddress(kOatAddressQuickToInterpreterBridge); 2147 *quick_is_interpreted = true; 2148 } else { 2149 CHECK(!method->GetDeclaringClass()->IsInitialized()); 2150 // We have code for a static method, but need to go through the resolution stub for class 2151 // initialization. 2152 quick_code = GetOatAddress(kOatAddressQuickResolutionTrampoline); 2153 } 2154 if (!IsInBootOatFile(quick_code)) { 2155 // DCHECK_GE(quick_code, oat_data_begin_); 2156 } 2157 return quick_code; 2158 } 2159 2160 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig, 2161 ArtMethod* copy, 2162 const ImageInfo& image_info) { 2163 memcpy(copy, orig, ArtMethod::Size(target_ptr_size_)); 2164 2165 copy->SetDeclaringClass(GetImageAddress(orig->GetDeclaringClassUnchecked())); 2166 ArtMethod** orig_resolved_methods = orig->GetDexCacheResolvedMethods(target_ptr_size_); 2167 copy->SetDexCacheResolvedMethods(NativeLocationInImage(orig_resolved_methods), target_ptr_size_); 2168 GcRoot<mirror::Class>* orig_resolved_types = orig->GetDexCacheResolvedTypes(target_ptr_size_); 2169 copy->SetDexCacheResolvedTypes(NativeLocationInImage(orig_resolved_types), target_ptr_size_); 2170 2171 // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to 2172 // oat_begin_ 2173 2174 // The resolution method has a special trampoline to call. 2175 Runtime* runtime = Runtime::Current(); 2176 if (orig->IsRuntimeMethod()) { 2177 ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_); 2178 if (orig_table != nullptr) { 2179 // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method. 2180 copy->SetEntryPointFromQuickCompiledCodePtrSize( 2181 GetOatAddress(kOatAddressQuickIMTConflictTrampoline), target_ptr_size_); 2182 copy->SetImtConflictTable(NativeLocationInImage(orig_table), target_ptr_size_); 2183 } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) { 2184 copy->SetEntryPointFromQuickCompiledCodePtrSize( 2185 GetOatAddress(kOatAddressQuickResolutionTrampoline), target_ptr_size_); 2186 } else { 2187 bool found_one = false; 2188 for (size_t i = 0; i < static_cast<size_t>(Runtime::kLastCalleeSaveType); ++i) { 2189 auto idx = static_cast<Runtime::CalleeSaveType>(i); 2190 if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) { 2191 found_one = true; 2192 break; 2193 } 2194 } 2195 CHECK(found_one) << "Expected to find callee save method but got " << PrettyMethod(orig); 2196 CHECK(copy->IsRuntimeMethod()); 2197 } 2198 } else { 2199 // We assume all methods have code. If they don't currently then we set them to the use the 2200 // resolution trampoline. Abstract methods never have code and so we need to make sure their 2201 // use results in an AbstractMethodError. We use the interpreter to achieve this. 2202 if (UNLIKELY(!orig->IsInvokable())) { 2203 copy->SetEntryPointFromQuickCompiledCodePtrSize( 2204 GetOatAddress(kOatAddressQuickToInterpreterBridge), target_ptr_size_); 2205 } else { 2206 bool quick_is_interpreted; 2207 const uint8_t* quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted); 2208 copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_); 2209 2210 // JNI entrypoint: 2211 if (orig->IsNative()) { 2212 // The native method's pointer is set to a stub to lookup via dlsym. 2213 // Note this is not the code_ pointer, that is handled above. 2214 copy->SetEntryPointFromJniPtrSize( 2215 GetOatAddress(kOatAddressJNIDlsymLookup), target_ptr_size_); 2216 } 2217 } 2218 } 2219 } 2220 2221 size_t ImageWriter::GetBinSizeSum(ImageWriter::ImageInfo& image_info, ImageWriter::Bin up_to) const { 2222 DCHECK_LE(up_to, kBinSize); 2223 return std::accumulate(&image_info.bin_slot_sizes_[0], 2224 &image_info.bin_slot_sizes_[up_to], 2225 /*init*/0); 2226 } 2227 2228 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) { 2229 // These values may need to get updated if more bins are added to the enum Bin 2230 static_assert(kBinBits == 3, "wrong number of bin bits"); 2231 static_assert(kBinShift == 27, "wrong number of shift"); 2232 static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes"); 2233 2234 DCHECK_LT(GetBin(), kBinSize); 2235 DCHECK_ALIGNED(GetIndex(), kObjectAlignment); 2236 } 2237 2238 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index) 2239 : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) { 2240 DCHECK_EQ(index, GetIndex()); 2241 } 2242 2243 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const { 2244 return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift); 2245 } 2246 2247 uint32_t ImageWriter::BinSlot::GetIndex() const { 2248 return lockword_ & ~kBinMask; 2249 } 2250 2251 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) { 2252 switch (type) { 2253 case kNativeObjectRelocationTypeArtField: 2254 case kNativeObjectRelocationTypeArtFieldArray: 2255 return kBinArtField; 2256 case kNativeObjectRelocationTypeArtMethodClean: 2257 case kNativeObjectRelocationTypeArtMethodArrayClean: 2258 return kBinArtMethodClean; 2259 case kNativeObjectRelocationTypeArtMethodDirty: 2260 case kNativeObjectRelocationTypeArtMethodArrayDirty: 2261 return kBinArtMethodDirty; 2262 case kNativeObjectRelocationTypeDexCacheArray: 2263 return kBinDexCacheArray; 2264 case kNativeObjectRelocationTypeRuntimeMethod: 2265 return kBinRuntimeMethod; 2266 case kNativeObjectRelocationTypeIMTable: 2267 return kBinImTable; 2268 case kNativeObjectRelocationTypeIMTConflictTable: 2269 return kBinIMTConflictTable; 2270 } 2271 UNREACHABLE(); 2272 } 2273 2274 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const { 2275 if (compile_app_image_) { 2276 return GetDefaultOatIndex(); 2277 } else { 2278 mirror::DexCache* dex_cache = 2279 obj->IsDexCache() ? obj->AsDexCache() 2280 : obj->IsClass() ? obj->AsClass()->GetDexCache() 2281 : obj->GetClass()->GetDexCache(); 2282 return GetOatIndexForDexCache(dex_cache); 2283 } 2284 } 2285 2286 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const { 2287 if (compile_app_image_) { 2288 return GetDefaultOatIndex(); 2289 } else { 2290 auto it = dex_file_oat_index_map_.find(dex_file); 2291 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation(); 2292 return it->second; 2293 } 2294 } 2295 2296 size_t ImageWriter::GetOatIndexForDexCache(mirror::DexCache* dex_cache) const { 2297 if (dex_cache == nullptr) { 2298 return GetDefaultOatIndex(); 2299 } else { 2300 return GetOatIndexForDexFile(dex_cache->GetDexFile()); 2301 } 2302 } 2303 2304 void ImageWriter::UpdateOatFileLayout(size_t oat_index, 2305 size_t oat_loaded_size, 2306 size_t oat_data_offset, 2307 size_t oat_data_size) { 2308 const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_; 2309 for (const ImageInfo& info : image_infos_) { 2310 DCHECK_LE(info.image_begin_ + info.image_size_, images_end); 2311 } 2312 DCHECK(images_end != nullptr); // Image space must be ready. 2313 2314 ImageInfo& cur_image_info = GetImageInfo(oat_index); 2315 cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_; 2316 cur_image_info.oat_loaded_size_ = oat_loaded_size; 2317 cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset; 2318 cur_image_info.oat_size_ = oat_data_size; 2319 2320 if (compile_app_image_) { 2321 CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image."; 2322 return; 2323 } 2324 2325 // Update the oat_offset of the next image info. 2326 if (oat_index + 1u != oat_filenames_.size()) { 2327 // There is a following one. 2328 ImageInfo& next_image_info = GetImageInfo(oat_index + 1u); 2329 next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size; 2330 } 2331 } 2332 2333 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) { 2334 ImageInfo& cur_image_info = GetImageInfo(oat_index); 2335 cur_image_info.oat_checksum_ = oat_header.GetChecksum(); 2336 2337 if (oat_index == GetDefaultOatIndex()) { 2338 // Primary oat file, read the trampolines. 2339 cur_image_info.oat_address_offsets_[kOatAddressInterpreterToInterpreterBridge] = 2340 oat_header.GetInterpreterToInterpreterBridgeOffset(); 2341 cur_image_info.oat_address_offsets_[kOatAddressInterpreterToCompiledCodeBridge] = 2342 oat_header.GetInterpreterToCompiledCodeBridgeOffset(); 2343 cur_image_info.oat_address_offsets_[kOatAddressJNIDlsymLookup] = 2344 oat_header.GetJniDlsymLookupOffset(); 2345 cur_image_info.oat_address_offsets_[kOatAddressQuickGenericJNITrampoline] = 2346 oat_header.GetQuickGenericJniTrampolineOffset(); 2347 cur_image_info.oat_address_offsets_[kOatAddressQuickIMTConflictTrampoline] = 2348 oat_header.GetQuickImtConflictTrampolineOffset(); 2349 cur_image_info.oat_address_offsets_[kOatAddressQuickResolutionTrampoline] = 2350 oat_header.GetQuickResolutionTrampolineOffset(); 2351 cur_image_info.oat_address_offsets_[kOatAddressQuickToInterpreterBridge] = 2352 oat_header.GetQuickToInterpreterBridgeOffset(); 2353 } 2354 } 2355 2356 ImageWriter::ImageWriter( 2357 const CompilerDriver& compiler_driver, 2358 uintptr_t image_begin, 2359 bool compile_pic, 2360 bool compile_app_image, 2361 ImageHeader::StorageMode image_storage_mode, 2362 const std::vector<const char*>& oat_filenames, 2363 const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map) 2364 : compiler_driver_(compiler_driver), 2365 global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)), 2366 image_objects_offset_begin_(0), 2367 compile_pic_(compile_pic), 2368 compile_app_image_(compile_app_image), 2369 target_ptr_size_(InstructionSetPointerSize(compiler_driver_.GetInstructionSet())), 2370 image_infos_(oat_filenames.size()), 2371 dirty_methods_(0u), 2372 clean_methods_(0u), 2373 image_storage_mode_(image_storage_mode), 2374 oat_filenames_(oat_filenames), 2375 dex_file_oat_index_map_(dex_file_oat_index_map) { 2376 CHECK_NE(image_begin, 0U); 2377 std::fill_n(image_methods_, arraysize(image_methods_), nullptr); 2378 CHECK_EQ(compile_app_image, !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty()) 2379 << "Compiling a boot image should occur iff there are no boot image spaces loaded"; 2380 } 2381 2382 ImageWriter::ImageInfo::ImageInfo() 2383 : intern_table_(new InternTable), 2384 class_table_(new ClassTable) {} 2385 2386 } // namespace art 2387