1 #ifndef FIO_STAT_H 2 #define FIO_STAT_H 3 4 #include "iolog.h" 5 6 struct group_run_stats { 7 uint64_t max_run[DDIR_RWDIR_CNT], min_run[DDIR_RWDIR_CNT]; 8 uint64_t max_bw[DDIR_RWDIR_CNT], min_bw[DDIR_RWDIR_CNT]; 9 uint64_t io_kb[DDIR_RWDIR_CNT]; 10 uint64_t agg[DDIR_RWDIR_CNT]; 11 uint32_t kb_base; 12 uint32_t unit_base; 13 uint32_t groupid; 14 uint32_t unified_rw_rep; 15 } __attribute__((packed)); 16 17 /* 18 * How many depth levels to log 19 */ 20 #define FIO_IO_U_MAP_NR 7 21 #define FIO_IO_U_LAT_U_NR 10 22 #define FIO_IO_U_LAT_M_NR 12 23 24 /* 25 * Aggregate clat samples to report percentile(s) of them. 26 * 27 * EXECUTIVE SUMMARY 28 * 29 * FIO_IO_U_PLAT_BITS determines the maximum statistical error on the 30 * value of resulting percentiles. The error will be approximately 31 * 1/2^(FIO_IO_U_PLAT_BITS+1) of the value. 32 * 33 * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum 34 * range being tracked for latency samples. The maximum value tracked 35 * accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds. 36 * 37 * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory 38 * requirement of storing those aggregate counts. The memory used will 39 * be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int) 40 * bytes. 41 * 42 * FIO_IO_U_PLAT_NR is the total number of buckets. 43 * 44 * DETAILS 45 * 46 * Suppose the clat varies from 0 to 999 (usec), the straightforward 47 * method is to keep an array of (999 + 1) buckets, in which a counter 48 * keeps the count of samples which fall in the bucket, e.g., 49 * {[0],[1],...,[999]}. However this consumes a huge amount of space, 50 * and can be avoided if an approximation is acceptable. 51 * 52 * One such method is to let the range of the bucket to be greater 53 * than one. This method has low accuracy when the value is small. For 54 * example, let the buckets be {[0,99],[100,199],...,[900,999]}, and 55 * the represented value of each bucket be the mean of the range. Then 56 * a value 0 has an round-off error of 49.5. To improve on this, we 57 * use buckets with non-uniform ranges, while bounding the error of 58 * each bucket within a ratio of the sample value. A simple example 59 * would be when error_bound = 0.005, buckets are { 60 * {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},.., 61 * {[900,909],[910,919]...} }. The total range is partitioned into 62 * groups with different ranges, then buckets with uniform ranges. An 63 * upper bound of the error is (range_of_bucket/2)/value_of_bucket 64 * 65 * For better efficiency, we implement this using base two. We group 66 * samples by their Most Significant Bit (MSB), extract the next M bit 67 * of them as an index within the group, and discard the rest of the 68 * bits. 69 * 70 * E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0), 71 * and use M bit for indexing 72 * 73 * | n | M bits | bit (n-M-1) ... bit 0 | 74 * 75 * Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most 76 * (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off 77 * error 78 * 79 * 2^(n-M)-1 2^(n-M) 1 80 * e <= --------- <= ------- = --- 81 * 2^n 2^n 2^M 82 * 83 * Furthermore, we use "mean" of the range to represent the bucket, 84 * the error e can be lowered by half to 1 / 2^(M+1). By using M bits 85 * as the index, each group must contains 2^M buckets. 86 * 87 * E.g. Let M (FIO_IO_U_PLAT_BITS) be 6 88 * Error bound is 1/2^(6+1) = 0.0078125 (< 1%) 89 * 90 * Group MSB #discarded range of #buckets 91 * error_bits value 92 * ---------------------------------------------------------------- 93 * 0* 0~5 0 [0,63] 64 94 * 1* 6 0 [64,127] 64 95 * 2 7 1 [128,255] 64 96 * 3 8 2 [256,511] 64 97 * 4 9 3 [512,1023] 64 98 * ... ... ... [...,...] ... 99 * 18 23 17 [8838608,+inf]** 64 100 * 101 * * Special cases: when n < (M-1) or when n == (M-1), in both cases, 102 * the value cannot be rounded off. Use all bits of the sample as 103 * index. 104 * 105 * ** If a sample's MSB is greater than 23, it will be counted as 23. 106 */ 107 108 #define FIO_IO_U_PLAT_BITS 6 109 #define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS) 110 #define FIO_IO_U_PLAT_GROUP_NR 19 111 #define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL) 112 #define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified 113 list of percentiles */ 114 115 #define MAX_PATTERN_SIZE 512 116 #define FIO_JOBNAME_SIZE 128 117 #define FIO_JOBDESC_SIZE 256 118 #define FIO_VERROR_SIZE 128 119 120 struct thread_stat { 121 char name[FIO_JOBNAME_SIZE]; 122 char verror[FIO_VERROR_SIZE]; 123 uint32_t error; 124 uint32_t thread_number; 125 uint32_t groupid; 126 uint32_t pid; 127 char description[FIO_JOBDESC_SIZE]; 128 uint32_t members; 129 uint32_t unified_rw_rep; 130 131 /* 132 * bandwidth and latency stats 133 */ 134 struct io_stat clat_stat[DDIR_RWDIR_CNT]; /* completion latency */ 135 struct io_stat slat_stat[DDIR_RWDIR_CNT]; /* submission latency */ 136 struct io_stat lat_stat[DDIR_RWDIR_CNT]; /* total latency */ 137 struct io_stat bw_stat[DDIR_RWDIR_CNT]; /* bandwidth stats */ 138 struct io_stat iops_stat[DDIR_RWDIR_CNT]; /* IOPS stats */ 139 140 /* 141 * fio system usage accounting 142 */ 143 uint64_t usr_time; 144 uint64_t sys_time; 145 uint64_t ctx; 146 uint64_t minf, majf; 147 148 /* 149 * IO depth and latency stats 150 */ 151 uint64_t clat_percentiles; 152 uint64_t percentile_precision; 153 fio_fp64_t percentile_list[FIO_IO_U_LIST_MAX_LEN]; 154 155 uint32_t io_u_map[FIO_IO_U_MAP_NR]; 156 uint32_t io_u_submit[FIO_IO_U_MAP_NR]; 157 uint32_t io_u_complete[FIO_IO_U_MAP_NR]; 158 uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR]; 159 uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR]; 160 uint32_t io_u_plat[DDIR_RWDIR_CNT][FIO_IO_U_PLAT_NR]; 161 uint32_t pad; 162 163 uint64_t total_io_u[3]; 164 uint64_t short_io_u[3]; 165 uint64_t drop_io_u[3]; 166 uint64_t total_submit; 167 uint64_t total_complete; 168 169 uint64_t io_bytes[DDIR_RWDIR_CNT]; 170 uint64_t runtime[DDIR_RWDIR_CNT]; 171 uint64_t total_run_time; 172 173 /* 174 * IO Error related stats 175 */ 176 union { 177 uint16_t continue_on_error; 178 uint64_t pad2; 179 }; 180 uint64_t total_err_count; 181 uint32_t first_error; 182 183 uint32_t kb_base; 184 uint32_t unit_base; 185 186 uint32_t latency_depth; 187 uint64_t latency_target; 188 fio_fp64_t latency_percentile; 189 uint64_t latency_window; 190 } __attribute__((packed)); 191 192 struct jobs_eta { 193 uint32_t nr_running; 194 uint32_t nr_ramp; 195 196 uint32_t nr_pending; 197 uint32_t nr_setting_up; 198 199 uint32_t files_open; 200 201 uint32_t m_rate[DDIR_RWDIR_CNT], t_rate[DDIR_RWDIR_CNT]; 202 uint32_t m_iops[DDIR_RWDIR_CNT], t_iops[DDIR_RWDIR_CNT]; 203 uint32_t rate[DDIR_RWDIR_CNT]; 204 uint32_t iops[DDIR_RWDIR_CNT]; 205 uint64_t elapsed_sec; 206 uint64_t eta_sec; 207 uint32_t is_pow2; 208 uint32_t unit_base; 209 210 /* 211 * Network 'copy' of run_str[] 212 */ 213 uint32_t nr_threads; 214 uint8_t run_str[]; 215 } __attribute__((packed)); 216 217 extern struct fio_mutex *stat_mutex; 218 219 extern struct jobs_eta *get_jobs_eta(int force, size_t *size); 220 221 extern void stat_init(void); 222 extern void stat_exit(void); 223 224 extern struct json_object * show_thread_status(struct thread_stat *ts, struct group_run_stats *rs); 225 extern void show_group_stats(struct group_run_stats *rs); 226 extern int calc_thread_status(struct jobs_eta *je, int force); 227 extern void display_thread_status(struct jobs_eta *je); 228 extern void show_run_stats(void); 229 extern void __show_run_stats(void); 230 extern void __show_running_run_stats(void); 231 extern void show_running_run_stats(void); 232 extern void check_for_running_stats(void); 233 extern void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, int nr); 234 extern void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src); 235 extern void init_thread_stat(struct thread_stat *ts); 236 extern void init_group_run_stat(struct group_run_stats *gs); 237 extern void eta_to_str(char *str, unsigned long eta_sec); 238 extern int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max, double *mean, double *dev); 239 extern unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, fio_fp64_t *plist, unsigned int **output, unsigned int *maxv, unsigned int *minv); 240 extern void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat); 241 extern void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat); 242 extern void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist); 243 extern void reset_io_stats(struct thread_data *); 244 245 static inline int usec_to_msec(unsigned long *min, unsigned long *max, 246 double *mean, double *dev) 247 { 248 if (*min > 1000 && *max > 1000 && *mean > 1000.0 && *dev > 1000.0) { 249 *min /= 1000; 250 *max /= 1000; 251 *mean /= 1000.0; 252 *dev /= 1000.0; 253 return 0; 254 } 255 256 return 1; 257 } 258 /* 259 * Worst level condensing would be 1:5, so allow enough room for that 260 */ 261 #define __THREAD_RUNSTR_SZ(nr) ((nr) * 5) 262 #define THREAD_RUNSTR_SZ __THREAD_RUNSTR_SZ(thread_number) 263 264 #endif 265