Home | History | Annotate | Download | only in Utils
      1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file promotes memory references to be register references.  It promotes
     11 // alloca instructions which only have loads and stores as uses.  An alloca is
     12 // transformed by using iterated dominator frontiers to place PHI nodes, then
     13 // traversing the function in depth-first order to rewrite loads and stores as
     14 // appropriate.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/SmallPtrSet.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/Analysis/AliasSetTracker.h"
     26 #include "llvm/Analysis/InstructionSimplify.h"
     27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
     28 #include "llvm/Analysis/ValueTracking.h"
     29 #include "llvm/IR/CFG.h"
     30 #include "llvm/IR/Constants.h"
     31 #include "llvm/IR/DIBuilder.h"
     32 #include "llvm/IR/DebugInfo.h"
     33 #include "llvm/IR/DerivedTypes.h"
     34 #include "llvm/IR/Dominators.h"
     35 #include "llvm/IR/Function.h"
     36 #include "llvm/IR/Instructions.h"
     37 #include "llvm/IR/IntrinsicInst.h"
     38 #include "llvm/IR/Metadata.h"
     39 #include "llvm/IR/Module.h"
     40 #include "llvm/Transforms/Utils/Local.h"
     41 #include <algorithm>
     42 using namespace llvm;
     43 
     44 #define DEBUG_TYPE "mem2reg"
     45 
     46 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
     47 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
     48 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
     49 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
     50 
     51 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
     52   // FIXME: If the memory unit is of pointer or integer type, we can permit
     53   // assignments to subsections of the memory unit.
     54   unsigned AS = AI->getType()->getAddressSpace();
     55 
     56   // Only allow direct and non-volatile loads and stores...
     57   for (const User *U : AI->users()) {
     58     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
     59       // Note that atomic loads can be transformed; atomic semantics do
     60       // not have any meaning for a local alloca.
     61       if (LI->isVolatile())
     62         return false;
     63     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
     64       if (SI->getOperand(0) == AI)
     65         return false; // Don't allow a store OF the AI, only INTO the AI.
     66       // Note that atomic stores can be transformed; atomic semantics do
     67       // not have any meaning for a local alloca.
     68       if (SI->isVolatile())
     69         return false;
     70     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
     71       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
     72           II->getIntrinsicID() != Intrinsic::lifetime_end)
     73         return false;
     74     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
     75       if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
     76         return false;
     77       if (!onlyUsedByLifetimeMarkers(BCI))
     78         return false;
     79     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
     80       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
     81         return false;
     82       if (!GEPI->hasAllZeroIndices())
     83         return false;
     84       if (!onlyUsedByLifetimeMarkers(GEPI))
     85         return false;
     86     } else {
     87       return false;
     88     }
     89   }
     90 
     91   return true;
     92 }
     93 
     94 namespace {
     95 
     96 struct AllocaInfo {
     97   SmallVector<BasicBlock *, 32> DefiningBlocks;
     98   SmallVector<BasicBlock *, 32> UsingBlocks;
     99 
    100   StoreInst *OnlyStore;
    101   BasicBlock *OnlyBlock;
    102   bool OnlyUsedInOneBlock;
    103 
    104   Value *AllocaPointerVal;
    105   DbgDeclareInst *DbgDeclare;
    106 
    107   void clear() {
    108     DefiningBlocks.clear();
    109     UsingBlocks.clear();
    110     OnlyStore = nullptr;
    111     OnlyBlock = nullptr;
    112     OnlyUsedInOneBlock = true;
    113     AllocaPointerVal = nullptr;
    114     DbgDeclare = nullptr;
    115   }
    116 
    117   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
    118   /// by the rest of the pass to reason about the uses of this alloca.
    119   void AnalyzeAlloca(AllocaInst *AI) {
    120     clear();
    121 
    122     // As we scan the uses of the alloca instruction, keep track of stores,
    123     // and decide whether all of the loads and stores to the alloca are within
    124     // the same basic block.
    125     for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    126       Instruction *User = cast<Instruction>(*UI++);
    127 
    128       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    129         // Remember the basic blocks which define new values for the alloca
    130         DefiningBlocks.push_back(SI->getParent());
    131         AllocaPointerVal = SI->getOperand(0);
    132         OnlyStore = SI;
    133       } else {
    134         LoadInst *LI = cast<LoadInst>(User);
    135         // Otherwise it must be a load instruction, keep track of variable
    136         // reads.
    137         UsingBlocks.push_back(LI->getParent());
    138         AllocaPointerVal = LI;
    139       }
    140 
    141       if (OnlyUsedInOneBlock) {
    142         if (!OnlyBlock)
    143           OnlyBlock = User->getParent();
    144         else if (OnlyBlock != User->getParent())
    145           OnlyUsedInOneBlock = false;
    146       }
    147     }
    148 
    149     DbgDeclare = FindAllocaDbgDeclare(AI);
    150   }
    151 };
    152 
    153 // Data package used by RenamePass()
    154 class RenamePassData {
    155 public:
    156   typedef std::vector<Value *> ValVector;
    157 
    158   RenamePassData() : BB(nullptr), Pred(nullptr), Values() {}
    159   RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V)
    160       : BB(B), Pred(P), Values(V) {}
    161   BasicBlock *BB;
    162   BasicBlock *Pred;
    163   ValVector Values;
    164 
    165   void swap(RenamePassData &RHS) {
    166     std::swap(BB, RHS.BB);
    167     std::swap(Pred, RHS.Pred);
    168     Values.swap(RHS.Values);
    169   }
    170 };
    171 
    172 /// \brief This assigns and keeps a per-bb relative ordering of load/store
    173 /// instructions in the block that directly load or store an alloca.
    174 ///
    175 /// This functionality is important because it avoids scanning large basic
    176 /// blocks multiple times when promoting many allocas in the same block.
    177 class LargeBlockInfo {
    178   /// \brief For each instruction that we track, keep the index of the
    179   /// instruction.
    180   ///
    181   /// The index starts out as the number of the instruction from the start of
    182   /// the block.
    183   DenseMap<const Instruction *, unsigned> InstNumbers;
    184 
    185 public:
    186 
    187   /// This code only looks at accesses to allocas.
    188   static bool isInterestingInstruction(const Instruction *I) {
    189     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
    190            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
    191   }
    192 
    193   /// Get or calculate the index of the specified instruction.
    194   unsigned getInstructionIndex(const Instruction *I) {
    195     assert(isInterestingInstruction(I) &&
    196            "Not a load/store to/from an alloca?");
    197 
    198     // If we already have this instruction number, return it.
    199     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
    200     if (It != InstNumbers.end())
    201       return It->second;
    202 
    203     // Scan the whole block to get the instruction.  This accumulates
    204     // information for every interesting instruction in the block, in order to
    205     // avoid gratuitus rescans.
    206     const BasicBlock *BB = I->getParent();
    207     unsigned InstNo = 0;
    208     for (const Instruction &BBI : *BB)
    209       if (isInterestingInstruction(&BBI))
    210         InstNumbers[&BBI] = InstNo++;
    211     It = InstNumbers.find(I);
    212 
    213     assert(It != InstNumbers.end() && "Didn't insert instruction?");
    214     return It->second;
    215   }
    216 
    217   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
    218 
    219   void clear() { InstNumbers.clear(); }
    220 };
    221 
    222 struct PromoteMem2Reg {
    223   /// The alloca instructions being promoted.
    224   std::vector<AllocaInst *> Allocas;
    225   DominatorTree &DT;
    226   DIBuilder DIB;
    227 
    228   /// An AliasSetTracker object to update.  If null, don't update it.
    229   AliasSetTracker *AST;
    230 
    231   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
    232   AssumptionCache *AC;
    233 
    234   /// Reverse mapping of Allocas.
    235   DenseMap<AllocaInst *, unsigned> AllocaLookup;
    236 
    237   /// \brief The PhiNodes we're adding.
    238   ///
    239   /// That map is used to simplify some Phi nodes as we iterate over it, so
    240   /// it should have deterministic iterators.  We could use a MapVector, but
    241   /// since we already maintain a map from BasicBlock* to a stable numbering
    242   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
    243   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
    244 
    245   /// For each PHI node, keep track of which entry in Allocas it corresponds
    246   /// to.
    247   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
    248 
    249   /// If we are updating an AliasSetTracker, then for each alloca that is of
    250   /// pointer type, we keep track of what to copyValue to the inserted PHI
    251   /// nodes here.
    252   std::vector<Value *> PointerAllocaValues;
    253 
    254   /// For each alloca, we keep track of the dbg.declare intrinsic that
    255   /// describes it, if any, so that we can convert it to a dbg.value
    256   /// intrinsic if the alloca gets promoted.
    257   SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
    258 
    259   /// The set of basic blocks the renamer has already visited.
    260   ///
    261   SmallPtrSet<BasicBlock *, 16> Visited;
    262 
    263   /// Contains a stable numbering of basic blocks to avoid non-determinstic
    264   /// behavior.
    265   DenseMap<BasicBlock *, unsigned> BBNumbers;
    266 
    267   /// Lazily compute the number of predecessors a block has.
    268   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
    269 
    270 public:
    271   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
    272                  AliasSetTracker *AST, AssumptionCache *AC)
    273       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
    274         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
    275         AST(AST), AC(AC) {}
    276 
    277   void run();
    278 
    279 private:
    280   void RemoveFromAllocasList(unsigned &AllocaIdx) {
    281     Allocas[AllocaIdx] = Allocas.back();
    282     Allocas.pop_back();
    283     --AllocaIdx;
    284   }
    285 
    286   unsigned getNumPreds(const BasicBlock *BB) {
    287     unsigned &NP = BBNumPreds[BB];
    288     if (NP == 0)
    289       NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
    290     return NP - 1;
    291   }
    292 
    293   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
    294                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
    295                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
    296   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
    297                   RenamePassData::ValVector &IncVals,
    298                   std::vector<RenamePassData> &Worklist);
    299   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
    300 };
    301 
    302 } // end of anonymous namespace
    303 
    304 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
    305   // Knowing that this alloca is promotable, we know that it's safe to kill all
    306   // instructions except for load and store.
    307 
    308   for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
    309     Instruction *I = cast<Instruction>(*UI);
    310     ++UI;
    311     if (isa<LoadInst>(I) || isa<StoreInst>(I))
    312       continue;
    313 
    314     if (!I->getType()->isVoidTy()) {
    315       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
    316       // Follow the use/def chain to erase them now instead of leaving it for
    317       // dead code elimination later.
    318       for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
    319         Instruction *Inst = cast<Instruction>(*UUI);
    320         ++UUI;
    321         Inst->eraseFromParent();
    322       }
    323     }
    324     I->eraseFromParent();
    325   }
    326 }
    327 
    328 /// \brief Rewrite as many loads as possible given a single store.
    329 ///
    330 /// When there is only a single store, we can use the domtree to trivially
    331 /// replace all of the dominated loads with the stored value. Do so, and return
    332 /// true if this has successfully promoted the alloca entirely. If this returns
    333 /// false there were some loads which were not dominated by the single store
    334 /// and thus must be phi-ed with undef. We fall back to the standard alloca
    335 /// promotion algorithm in that case.
    336 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
    337                                      LargeBlockInfo &LBI,
    338                                      DominatorTree &DT,
    339                                      AliasSetTracker *AST) {
    340   StoreInst *OnlyStore = Info.OnlyStore;
    341   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
    342   BasicBlock *StoreBB = OnlyStore->getParent();
    343   int StoreIndex = -1;
    344 
    345   // Clear out UsingBlocks.  We will reconstruct it here if needed.
    346   Info.UsingBlocks.clear();
    347 
    348   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    349     Instruction *UserInst = cast<Instruction>(*UI++);
    350     if (!isa<LoadInst>(UserInst)) {
    351       assert(UserInst == OnlyStore && "Should only have load/stores");
    352       continue;
    353     }
    354     LoadInst *LI = cast<LoadInst>(UserInst);
    355 
    356     // Okay, if we have a load from the alloca, we want to replace it with the
    357     // only value stored to the alloca.  We can do this if the value is
    358     // dominated by the store.  If not, we use the rest of the mem2reg machinery
    359     // to insert the phi nodes as needed.
    360     if (!StoringGlobalVal) { // Non-instructions are always dominated.
    361       if (LI->getParent() == StoreBB) {
    362         // If we have a use that is in the same block as the store, compare the
    363         // indices of the two instructions to see which one came first.  If the
    364         // load came before the store, we can't handle it.
    365         if (StoreIndex == -1)
    366           StoreIndex = LBI.getInstructionIndex(OnlyStore);
    367 
    368         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
    369           // Can't handle this load, bail out.
    370           Info.UsingBlocks.push_back(StoreBB);
    371           continue;
    372         }
    373 
    374       } else if (LI->getParent() != StoreBB &&
    375                  !DT.dominates(StoreBB, LI->getParent())) {
    376         // If the load and store are in different blocks, use BB dominance to
    377         // check their relationships.  If the store doesn't dom the use, bail
    378         // out.
    379         Info.UsingBlocks.push_back(LI->getParent());
    380         continue;
    381       }
    382     }
    383 
    384     // Otherwise, we *can* safely rewrite this load.
    385     Value *ReplVal = OnlyStore->getOperand(0);
    386     // If the replacement value is the load, this must occur in unreachable
    387     // code.
    388     if (ReplVal == LI)
    389       ReplVal = UndefValue::get(LI->getType());
    390     LI->replaceAllUsesWith(ReplVal);
    391     if (AST && LI->getType()->isPointerTy())
    392       AST->deleteValue(LI);
    393     LI->eraseFromParent();
    394     LBI.deleteValue(LI);
    395   }
    396 
    397   // Finally, after the scan, check to see if the store is all that is left.
    398   if (!Info.UsingBlocks.empty())
    399     return false; // If not, we'll have to fall back for the remainder.
    400 
    401   // Record debuginfo for the store and remove the declaration's
    402   // debuginfo.
    403   if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    404     DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
    405     ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
    406     DDI->eraseFromParent();
    407     LBI.deleteValue(DDI);
    408   }
    409   // Remove the (now dead) store and alloca.
    410   Info.OnlyStore->eraseFromParent();
    411   LBI.deleteValue(Info.OnlyStore);
    412 
    413   if (AST)
    414     AST->deleteValue(AI);
    415   AI->eraseFromParent();
    416   LBI.deleteValue(AI);
    417   return true;
    418 }
    419 
    420 /// Many allocas are only used within a single basic block.  If this is the
    421 /// case, avoid traversing the CFG and inserting a lot of potentially useless
    422 /// PHI nodes by just performing a single linear pass over the basic block
    423 /// using the Alloca.
    424 ///
    425 /// If we cannot promote this alloca (because it is read before it is written),
    426 /// return false.  This is necessary in cases where, due to control flow, the
    427 /// alloca is undefined only on some control flow paths.  e.g. code like
    428 /// this is correct in LLVM IR:
    429 ///  // A is an alloca with no stores so far
    430 ///  for (...) {
    431 ///    int t = *A;
    432 ///    if (!first_iteration)
    433 ///      use(t);
    434 ///    *A = 42;
    435 ///  }
    436 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
    437                                      LargeBlockInfo &LBI,
    438                                      AliasSetTracker *AST) {
    439   // The trickiest case to handle is when we have large blocks. Because of this,
    440   // this code is optimized assuming that large blocks happen.  This does not
    441   // significantly pessimize the small block case.  This uses LargeBlockInfo to
    442   // make it efficient to get the index of various operations in the block.
    443 
    444   // Walk the use-def list of the alloca, getting the locations of all stores.
    445   typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
    446   StoresByIndexTy StoresByIndex;
    447 
    448   for (User *U : AI->users())
    449     if (StoreInst *SI = dyn_cast<StoreInst>(U))
    450       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
    451 
    452   // Sort the stores by their index, making it efficient to do a lookup with a
    453   // binary search.
    454   std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first());
    455 
    456   // Walk all of the loads from this alloca, replacing them with the nearest
    457   // store above them, if any.
    458   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    459     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
    460     if (!LI)
    461       continue;
    462 
    463     unsigned LoadIdx = LBI.getInstructionIndex(LI);
    464 
    465     // Find the nearest store that has a lower index than this load.
    466     StoresByIndexTy::iterator I =
    467         std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
    468                          std::make_pair(LoadIdx,
    469                                         static_cast<StoreInst *>(nullptr)),
    470                          less_first());
    471     if (I == StoresByIndex.begin()) {
    472       if (StoresByIndex.empty())
    473         // If there are no stores, the load takes the undef value.
    474         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
    475       else
    476         // There is no store before this load, bail out (load may be affected
    477         // by the following stores - see main comment).
    478         return false;
    479     }
    480     else
    481       // Otherwise, there was a store before this load, the load takes its value.
    482       LI->replaceAllUsesWith(std::prev(I)->second->getOperand(0));
    483 
    484     if (AST && LI->getType()->isPointerTy())
    485       AST->deleteValue(LI);
    486     LI->eraseFromParent();
    487     LBI.deleteValue(LI);
    488   }
    489 
    490   // Remove the (now dead) stores and alloca.
    491   while (!AI->use_empty()) {
    492     StoreInst *SI = cast<StoreInst>(AI->user_back());
    493     // Record debuginfo for the store before removing it.
    494     if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    495       DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
    496       ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
    497     }
    498     SI->eraseFromParent();
    499     LBI.deleteValue(SI);
    500   }
    501 
    502   if (AST)
    503     AST->deleteValue(AI);
    504   AI->eraseFromParent();
    505   LBI.deleteValue(AI);
    506 
    507   // The alloca's debuginfo can be removed as well.
    508   if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    509     DDI->eraseFromParent();
    510     LBI.deleteValue(DDI);
    511   }
    512 
    513   ++NumLocalPromoted;
    514   return true;
    515 }
    516 
    517 void PromoteMem2Reg::run() {
    518   Function &F = *DT.getRoot()->getParent();
    519 
    520   if (AST)
    521     PointerAllocaValues.resize(Allocas.size());
    522   AllocaDbgDeclares.resize(Allocas.size());
    523 
    524   AllocaInfo Info;
    525   LargeBlockInfo LBI;
    526   IDFCalculator IDF(DT);
    527 
    528   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
    529     AllocaInst *AI = Allocas[AllocaNum];
    530 
    531     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
    532     assert(AI->getParent()->getParent() == &F &&
    533            "All allocas should be in the same function, which is same as DF!");
    534 
    535     removeLifetimeIntrinsicUsers(AI);
    536 
    537     if (AI->use_empty()) {
    538       // If there are no uses of the alloca, just delete it now.
    539       if (AST)
    540         AST->deleteValue(AI);
    541       AI->eraseFromParent();
    542 
    543       // Remove the alloca from the Allocas list, since it has been processed
    544       RemoveFromAllocasList(AllocaNum);
    545       ++NumDeadAlloca;
    546       continue;
    547     }
    548 
    549     // Calculate the set of read and write-locations for each alloca.  This is
    550     // analogous to finding the 'uses' and 'definitions' of each variable.
    551     Info.AnalyzeAlloca(AI);
    552 
    553     // If there is only a single store to this value, replace any loads of
    554     // it that are directly dominated by the definition with the value stored.
    555     if (Info.DefiningBlocks.size() == 1) {
    556       if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) {
    557         // The alloca has been processed, move on.
    558         RemoveFromAllocasList(AllocaNum);
    559         ++NumSingleStore;
    560         continue;
    561       }
    562     }
    563 
    564     // If the alloca is only read and written in one basic block, just perform a
    565     // linear sweep over the block to eliminate it.
    566     if (Info.OnlyUsedInOneBlock &&
    567         promoteSingleBlockAlloca(AI, Info, LBI, AST)) {
    568       // The alloca has been processed, move on.
    569       RemoveFromAllocasList(AllocaNum);
    570       continue;
    571     }
    572 
    573     // If we haven't computed a numbering for the BB's in the function, do so
    574     // now.
    575     if (BBNumbers.empty()) {
    576       unsigned ID = 0;
    577       for (auto &BB : F)
    578         BBNumbers[&BB] = ID++;
    579     }
    580 
    581     // If we have an AST to keep updated, remember some pointer value that is
    582     // stored into the alloca.
    583     if (AST)
    584       PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
    585 
    586     // Remember the dbg.declare intrinsic describing this alloca, if any.
    587     if (Info.DbgDeclare)
    588       AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
    589 
    590     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
    591     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
    592 
    593     // At this point, we're committed to promoting the alloca using IDF's, and
    594     // the standard SSA construction algorithm.  Determine which blocks need PHI
    595     // nodes and see if we can optimize out some work by avoiding insertion of
    596     // dead phi nodes.
    597 
    598 
    599     // Unique the set of defining blocks for efficient lookup.
    600     SmallPtrSet<BasicBlock *, 32> DefBlocks;
    601     DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
    602 
    603     // Determine which blocks the value is live in.  These are blocks which lead
    604     // to uses.
    605     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
    606     ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
    607 
    608     // At this point, we're committed to promoting the alloca using IDF's, and
    609     // the standard SSA construction algorithm.  Determine which blocks need phi
    610     // nodes and see if we can optimize out some work by avoiding insertion of
    611     // dead phi nodes.
    612     IDF.setLiveInBlocks(LiveInBlocks);
    613     IDF.setDefiningBlocks(DefBlocks);
    614     SmallVector<BasicBlock *, 32> PHIBlocks;
    615     IDF.calculate(PHIBlocks);
    616     if (PHIBlocks.size() > 1)
    617       std::sort(PHIBlocks.begin(), PHIBlocks.end(),
    618                 [this](BasicBlock *A, BasicBlock *B) {
    619                   return BBNumbers.lookup(A) < BBNumbers.lookup(B);
    620                 });
    621 
    622     unsigned CurrentVersion = 0;
    623     for (unsigned i = 0, e = PHIBlocks.size(); i != e; ++i)
    624       QueuePhiNode(PHIBlocks[i], AllocaNum, CurrentVersion);
    625   }
    626 
    627   if (Allocas.empty())
    628     return; // All of the allocas must have been trivial!
    629 
    630   LBI.clear();
    631 
    632   // Set the incoming values for the basic block to be null values for all of
    633   // the alloca's.  We do this in case there is a load of a value that has not
    634   // been stored yet.  In this case, it will get this null value.
    635   //
    636   RenamePassData::ValVector Values(Allocas.size());
    637   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
    638     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
    639 
    640   // Walks all basic blocks in the function performing the SSA rename algorithm
    641   // and inserting the phi nodes we marked as necessary
    642   //
    643   std::vector<RenamePassData> RenamePassWorkList;
    644   RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values));
    645   do {
    646     RenamePassData RPD;
    647     RPD.swap(RenamePassWorkList.back());
    648     RenamePassWorkList.pop_back();
    649     // RenamePass may add new worklist entries.
    650     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
    651   } while (!RenamePassWorkList.empty());
    652 
    653   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
    654   Visited.clear();
    655 
    656   // Remove the allocas themselves from the function.
    657   for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
    658     Instruction *A = Allocas[i];
    659 
    660     // If there are any uses of the alloca instructions left, they must be in
    661     // unreachable basic blocks that were not processed by walking the dominator
    662     // tree. Just delete the users now.
    663     if (!A->use_empty())
    664       A->replaceAllUsesWith(UndefValue::get(A->getType()));
    665     if (AST)
    666       AST->deleteValue(A);
    667     A->eraseFromParent();
    668   }
    669 
    670   const DataLayout &DL = F.getParent()->getDataLayout();
    671 
    672   // Remove alloca's dbg.declare instrinsics from the function.
    673   for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
    674     if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
    675       DDI->eraseFromParent();
    676 
    677   // Loop over all of the PHI nodes and see if there are any that we can get
    678   // rid of because they merge all of the same incoming values.  This can
    679   // happen due to undef values coming into the PHI nodes.  This process is
    680   // iterative, because eliminating one PHI node can cause others to be removed.
    681   bool EliminatedAPHI = true;
    682   while (EliminatedAPHI) {
    683     EliminatedAPHI = false;
    684 
    685     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
    686     // simplify and RAUW them as we go.  If it was not, we could add uses to
    687     // the values we replace with in a non-deterministic order, thus creating
    688     // non-deterministic def->use chains.
    689     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
    690              I = NewPhiNodes.begin(),
    691              E = NewPhiNodes.end();
    692          I != E;) {
    693       PHINode *PN = I->second;
    694 
    695       // If this PHI node merges one value and/or undefs, get the value.
    696       if (Value *V = SimplifyInstruction(PN, DL, nullptr, &DT, AC)) {
    697         if (AST && PN->getType()->isPointerTy())
    698           AST->deleteValue(PN);
    699         PN->replaceAllUsesWith(V);
    700         PN->eraseFromParent();
    701         NewPhiNodes.erase(I++);
    702         EliminatedAPHI = true;
    703         continue;
    704       }
    705       ++I;
    706     }
    707   }
    708 
    709   // At this point, the renamer has added entries to PHI nodes for all reachable
    710   // code.  Unfortunately, there may be unreachable blocks which the renamer
    711   // hasn't traversed.  If this is the case, the PHI nodes may not
    712   // have incoming values for all predecessors.  Loop over all PHI nodes we have
    713   // created, inserting undef values if they are missing any incoming values.
    714   //
    715   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
    716            I = NewPhiNodes.begin(),
    717            E = NewPhiNodes.end();
    718        I != E; ++I) {
    719     // We want to do this once per basic block.  As such, only process a block
    720     // when we find the PHI that is the first entry in the block.
    721     PHINode *SomePHI = I->second;
    722     BasicBlock *BB = SomePHI->getParent();
    723     if (&BB->front() != SomePHI)
    724       continue;
    725 
    726     // Only do work here if there the PHI nodes are missing incoming values.  We
    727     // know that all PHI nodes that were inserted in a block will have the same
    728     // number of incoming values, so we can just check any of them.
    729     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
    730       continue;
    731 
    732     // Get the preds for BB.
    733     SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
    734 
    735     // Ok, now we know that all of the PHI nodes are missing entries for some
    736     // basic blocks.  Start by sorting the incoming predecessors for efficient
    737     // access.
    738     std::sort(Preds.begin(), Preds.end());
    739 
    740     // Now we loop through all BB's which have entries in SomePHI and remove
    741     // them from the Preds list.
    742     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
    743       // Do a log(n) search of the Preds list for the entry we want.
    744       SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
    745           Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
    746       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
    747              "PHI node has entry for a block which is not a predecessor!");
    748 
    749       // Remove the entry
    750       Preds.erase(EntIt);
    751     }
    752 
    753     // At this point, the blocks left in the preds list must have dummy
    754     // entries inserted into every PHI nodes for the block.  Update all the phi
    755     // nodes in this block that we are inserting (there could be phis before
    756     // mem2reg runs).
    757     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
    758     BasicBlock::iterator BBI = BB->begin();
    759     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
    760            SomePHI->getNumIncomingValues() == NumBadPreds) {
    761       Value *UndefVal = UndefValue::get(SomePHI->getType());
    762       for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
    763         SomePHI->addIncoming(UndefVal, Preds[pred]);
    764     }
    765   }
    766 
    767   NewPhiNodes.clear();
    768 }
    769 
    770 /// \brief Determine which blocks the value is live in.
    771 ///
    772 /// These are blocks which lead to uses.  Knowing this allows us to avoid
    773 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
    774 /// inserted phi nodes would be dead).
    775 void PromoteMem2Reg::ComputeLiveInBlocks(
    776     AllocaInst *AI, AllocaInfo &Info,
    777     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
    778     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
    779 
    780   // To determine liveness, we must iterate through the predecessors of blocks
    781   // where the def is live.  Blocks are added to the worklist if we need to
    782   // check their predecessors.  Start with all the using blocks.
    783   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
    784                                                     Info.UsingBlocks.end());
    785 
    786   // If any of the using blocks is also a definition block, check to see if the
    787   // definition occurs before or after the use.  If it happens before the use,
    788   // the value isn't really live-in.
    789   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
    790     BasicBlock *BB = LiveInBlockWorklist[i];
    791     if (!DefBlocks.count(BB))
    792       continue;
    793 
    794     // Okay, this is a block that both uses and defines the value.  If the first
    795     // reference to the alloca is a def (store), then we know it isn't live-in.
    796     for (BasicBlock::iterator I = BB->begin();; ++I) {
    797       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    798         if (SI->getOperand(1) != AI)
    799           continue;
    800 
    801         // We found a store to the alloca before a load.  The alloca is not
    802         // actually live-in here.
    803         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
    804         LiveInBlockWorklist.pop_back();
    805         --i, --e;
    806         break;
    807       }
    808 
    809       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    810         if (LI->getOperand(0) != AI)
    811           continue;
    812 
    813         // Okay, we found a load before a store to the alloca.  It is actually
    814         // live into this block.
    815         break;
    816       }
    817     }
    818   }
    819 
    820   // Now that we have a set of blocks where the phi is live-in, recursively add
    821   // their predecessors until we find the full region the value is live.
    822   while (!LiveInBlockWorklist.empty()) {
    823     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
    824 
    825     // The block really is live in here, insert it into the set.  If already in
    826     // the set, then it has already been processed.
    827     if (!LiveInBlocks.insert(BB).second)
    828       continue;
    829 
    830     // Since the value is live into BB, it is either defined in a predecessor or
    831     // live into it to.  Add the preds to the worklist unless they are a
    832     // defining block.
    833     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    834       BasicBlock *P = *PI;
    835 
    836       // The value is not live into a predecessor if it defines the value.
    837       if (DefBlocks.count(P))
    838         continue;
    839 
    840       // Otherwise it is, add to the worklist.
    841       LiveInBlockWorklist.push_back(P);
    842     }
    843   }
    844 }
    845 
    846 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
    847 ///
    848 /// Returns true if there wasn't already a phi-node for that variable
    849 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
    850                                   unsigned &Version) {
    851   // Look up the basic-block in question.
    852   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
    853 
    854   // If the BB already has a phi node added for the i'th alloca then we're done!
    855   if (PN)
    856     return false;
    857 
    858   // Create a PhiNode using the dereferenced type... and add the phi-node to the
    859   // BasicBlock.
    860   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
    861                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
    862                        &BB->front());
    863   ++NumPHIInsert;
    864   PhiToAllocaMap[PN] = AllocaNo;
    865 
    866   if (AST && PN->getType()->isPointerTy())
    867     AST->copyValue(PointerAllocaValues[AllocaNo], PN);
    868 
    869   return true;
    870 }
    871 
    872 /// \brief Recursively traverse the CFG of the function, renaming loads and
    873 /// stores to the allocas which we are promoting.
    874 ///
    875 /// IncomingVals indicates what value each Alloca contains on exit from the
    876 /// predecessor block Pred.
    877 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
    878                                 RenamePassData::ValVector &IncomingVals,
    879                                 std::vector<RenamePassData> &Worklist) {
    880 NextIteration:
    881   // If we are inserting any phi nodes into this BB, they will already be in the
    882   // block.
    883   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
    884     // If we have PHI nodes to update, compute the number of edges from Pred to
    885     // BB.
    886     if (PhiToAllocaMap.count(APN)) {
    887       // We want to be able to distinguish between PHI nodes being inserted by
    888       // this invocation of mem2reg from those phi nodes that already existed in
    889       // the IR before mem2reg was run.  We determine that APN is being inserted
    890       // because it is missing incoming edges.  All other PHI nodes being
    891       // inserted by this pass of mem2reg will have the same number of incoming
    892       // operands so far.  Remember this count.
    893       unsigned NewPHINumOperands = APN->getNumOperands();
    894 
    895       unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
    896       assert(NumEdges && "Must be at least one edge from Pred to BB!");
    897 
    898       // Add entries for all the phis.
    899       BasicBlock::iterator PNI = BB->begin();
    900       do {
    901         unsigned AllocaNo = PhiToAllocaMap[APN];
    902 
    903         // Add N incoming values to the PHI node.
    904         for (unsigned i = 0; i != NumEdges; ++i)
    905           APN->addIncoming(IncomingVals[AllocaNo], Pred);
    906 
    907         // The currently active variable for this block is now the PHI.
    908         IncomingVals[AllocaNo] = APN;
    909 
    910         // Get the next phi node.
    911         ++PNI;
    912         APN = dyn_cast<PHINode>(PNI);
    913         if (!APN)
    914           break;
    915 
    916         // Verify that it is missing entries.  If not, it is not being inserted
    917         // by this mem2reg invocation so we want to ignore it.
    918       } while (APN->getNumOperands() == NewPHINumOperands);
    919     }
    920   }
    921 
    922   // Don't revisit blocks.
    923   if (!Visited.insert(BB).second)
    924     return;
    925 
    926   for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
    927     Instruction *I = &*II++; // get the instruction, increment iterator
    928 
    929     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    930       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
    931       if (!Src)
    932         continue;
    933 
    934       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
    935       if (AI == AllocaLookup.end())
    936         continue;
    937 
    938       Value *V = IncomingVals[AI->second];
    939 
    940       // Anything using the load now uses the current value.
    941       LI->replaceAllUsesWith(V);
    942       if (AST && LI->getType()->isPointerTy())
    943         AST->deleteValue(LI);
    944       BB->getInstList().erase(LI);
    945     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    946       // Delete this instruction and mark the name as the current holder of the
    947       // value
    948       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
    949       if (!Dest)
    950         continue;
    951 
    952       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
    953       if (ai == AllocaLookup.end())
    954         continue;
    955 
    956       // what value were we writing?
    957       IncomingVals[ai->second] = SI->getOperand(0);
    958       // Record debuginfo for the store before removing it.
    959       if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
    960         ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
    961       BB->getInstList().erase(SI);
    962     }
    963   }
    964 
    965   // 'Recurse' to our successors.
    966   succ_iterator I = succ_begin(BB), E = succ_end(BB);
    967   if (I == E)
    968     return;
    969 
    970   // Keep track of the successors so we don't visit the same successor twice
    971   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
    972 
    973   // Handle the first successor without using the worklist.
    974   VisitedSuccs.insert(*I);
    975   Pred = BB;
    976   BB = *I;
    977   ++I;
    978 
    979   for (; I != E; ++I)
    980     if (VisitedSuccs.insert(*I).second)
    981       Worklist.emplace_back(*I, Pred, IncomingVals);
    982 
    983   goto NextIteration;
    984 }
    985 
    986 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
    987                            AliasSetTracker *AST, AssumptionCache *AC) {
    988   // If there is nothing to do, bail out...
    989   if (Allocas.empty())
    990     return;
    991 
    992   PromoteMem2Reg(Allocas, DT, AST, AC).run();
    993 }
    994