1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file promotes memory references to be register references. It promotes 11 // alloca instructions which only have loads and stores as uses. An alloca is 12 // transformed by using iterated dominator frontiers to place PHI nodes, then 13 // traversing the function in depth-first order to rewrite loads and stores as 14 // appropriate. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasSetTracker.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DIBuilder.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "mem2reg" 45 46 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 47 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 48 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 49 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 50 51 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 52 // FIXME: If the memory unit is of pointer or integer type, we can permit 53 // assignments to subsections of the memory unit. 54 unsigned AS = AI->getType()->getAddressSpace(); 55 56 // Only allow direct and non-volatile loads and stores... 57 for (const User *U : AI->users()) { 58 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 59 // Note that atomic loads can be transformed; atomic semantics do 60 // not have any meaning for a local alloca. 61 if (LI->isVolatile()) 62 return false; 63 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 64 if (SI->getOperand(0) == AI) 65 return false; // Don't allow a store OF the AI, only INTO the AI. 66 // Note that atomic stores can be transformed; atomic semantics do 67 // not have any meaning for a local alloca. 68 if (SI->isVolatile()) 69 return false; 70 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 71 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 72 II->getIntrinsicID() != Intrinsic::lifetime_end) 73 return false; 74 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 75 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 76 return false; 77 if (!onlyUsedByLifetimeMarkers(BCI)) 78 return false; 79 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 80 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 81 return false; 82 if (!GEPI->hasAllZeroIndices()) 83 return false; 84 if (!onlyUsedByLifetimeMarkers(GEPI)) 85 return false; 86 } else { 87 return false; 88 } 89 } 90 91 return true; 92 } 93 94 namespace { 95 96 struct AllocaInfo { 97 SmallVector<BasicBlock *, 32> DefiningBlocks; 98 SmallVector<BasicBlock *, 32> UsingBlocks; 99 100 StoreInst *OnlyStore; 101 BasicBlock *OnlyBlock; 102 bool OnlyUsedInOneBlock; 103 104 Value *AllocaPointerVal; 105 DbgDeclareInst *DbgDeclare; 106 107 void clear() { 108 DefiningBlocks.clear(); 109 UsingBlocks.clear(); 110 OnlyStore = nullptr; 111 OnlyBlock = nullptr; 112 OnlyUsedInOneBlock = true; 113 AllocaPointerVal = nullptr; 114 DbgDeclare = nullptr; 115 } 116 117 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 118 /// by the rest of the pass to reason about the uses of this alloca. 119 void AnalyzeAlloca(AllocaInst *AI) { 120 clear(); 121 122 // As we scan the uses of the alloca instruction, keep track of stores, 123 // and decide whether all of the loads and stores to the alloca are within 124 // the same basic block. 125 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 126 Instruction *User = cast<Instruction>(*UI++); 127 128 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 129 // Remember the basic blocks which define new values for the alloca 130 DefiningBlocks.push_back(SI->getParent()); 131 AllocaPointerVal = SI->getOperand(0); 132 OnlyStore = SI; 133 } else { 134 LoadInst *LI = cast<LoadInst>(User); 135 // Otherwise it must be a load instruction, keep track of variable 136 // reads. 137 UsingBlocks.push_back(LI->getParent()); 138 AllocaPointerVal = LI; 139 } 140 141 if (OnlyUsedInOneBlock) { 142 if (!OnlyBlock) 143 OnlyBlock = User->getParent(); 144 else if (OnlyBlock != User->getParent()) 145 OnlyUsedInOneBlock = false; 146 } 147 } 148 149 DbgDeclare = FindAllocaDbgDeclare(AI); 150 } 151 }; 152 153 // Data package used by RenamePass() 154 class RenamePassData { 155 public: 156 typedef std::vector<Value *> ValVector; 157 158 RenamePassData() : BB(nullptr), Pred(nullptr), Values() {} 159 RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V) 160 : BB(B), Pred(P), Values(V) {} 161 BasicBlock *BB; 162 BasicBlock *Pred; 163 ValVector Values; 164 165 void swap(RenamePassData &RHS) { 166 std::swap(BB, RHS.BB); 167 std::swap(Pred, RHS.Pred); 168 Values.swap(RHS.Values); 169 } 170 }; 171 172 /// \brief This assigns and keeps a per-bb relative ordering of load/store 173 /// instructions in the block that directly load or store an alloca. 174 /// 175 /// This functionality is important because it avoids scanning large basic 176 /// blocks multiple times when promoting many allocas in the same block. 177 class LargeBlockInfo { 178 /// \brief For each instruction that we track, keep the index of the 179 /// instruction. 180 /// 181 /// The index starts out as the number of the instruction from the start of 182 /// the block. 183 DenseMap<const Instruction *, unsigned> InstNumbers; 184 185 public: 186 187 /// This code only looks at accesses to allocas. 188 static bool isInterestingInstruction(const Instruction *I) { 189 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 190 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 191 } 192 193 /// Get or calculate the index of the specified instruction. 194 unsigned getInstructionIndex(const Instruction *I) { 195 assert(isInterestingInstruction(I) && 196 "Not a load/store to/from an alloca?"); 197 198 // If we already have this instruction number, return it. 199 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 200 if (It != InstNumbers.end()) 201 return It->second; 202 203 // Scan the whole block to get the instruction. This accumulates 204 // information for every interesting instruction in the block, in order to 205 // avoid gratuitus rescans. 206 const BasicBlock *BB = I->getParent(); 207 unsigned InstNo = 0; 208 for (const Instruction &BBI : *BB) 209 if (isInterestingInstruction(&BBI)) 210 InstNumbers[&BBI] = InstNo++; 211 It = InstNumbers.find(I); 212 213 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 214 return It->second; 215 } 216 217 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 218 219 void clear() { InstNumbers.clear(); } 220 }; 221 222 struct PromoteMem2Reg { 223 /// The alloca instructions being promoted. 224 std::vector<AllocaInst *> Allocas; 225 DominatorTree &DT; 226 DIBuilder DIB; 227 228 /// An AliasSetTracker object to update. If null, don't update it. 229 AliasSetTracker *AST; 230 231 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 232 AssumptionCache *AC; 233 234 /// Reverse mapping of Allocas. 235 DenseMap<AllocaInst *, unsigned> AllocaLookup; 236 237 /// \brief The PhiNodes we're adding. 238 /// 239 /// That map is used to simplify some Phi nodes as we iterate over it, so 240 /// it should have deterministic iterators. We could use a MapVector, but 241 /// since we already maintain a map from BasicBlock* to a stable numbering 242 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 243 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 244 245 /// For each PHI node, keep track of which entry in Allocas it corresponds 246 /// to. 247 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 248 249 /// If we are updating an AliasSetTracker, then for each alloca that is of 250 /// pointer type, we keep track of what to copyValue to the inserted PHI 251 /// nodes here. 252 std::vector<Value *> PointerAllocaValues; 253 254 /// For each alloca, we keep track of the dbg.declare intrinsic that 255 /// describes it, if any, so that we can convert it to a dbg.value 256 /// intrinsic if the alloca gets promoted. 257 SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares; 258 259 /// The set of basic blocks the renamer has already visited. 260 /// 261 SmallPtrSet<BasicBlock *, 16> Visited; 262 263 /// Contains a stable numbering of basic blocks to avoid non-determinstic 264 /// behavior. 265 DenseMap<BasicBlock *, unsigned> BBNumbers; 266 267 /// Lazily compute the number of predecessors a block has. 268 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 269 270 public: 271 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 272 AliasSetTracker *AST, AssumptionCache *AC) 273 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 274 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 275 AST(AST), AC(AC) {} 276 277 void run(); 278 279 private: 280 void RemoveFromAllocasList(unsigned &AllocaIdx) { 281 Allocas[AllocaIdx] = Allocas.back(); 282 Allocas.pop_back(); 283 --AllocaIdx; 284 } 285 286 unsigned getNumPreds(const BasicBlock *BB) { 287 unsigned &NP = BBNumPreds[BB]; 288 if (NP == 0) 289 NP = std::distance(pred_begin(BB), pred_end(BB)) + 1; 290 return NP - 1; 291 } 292 293 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 294 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 295 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 296 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 297 RenamePassData::ValVector &IncVals, 298 std::vector<RenamePassData> &Worklist); 299 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 300 }; 301 302 } // end of anonymous namespace 303 304 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { 305 // Knowing that this alloca is promotable, we know that it's safe to kill all 306 // instructions except for load and store. 307 308 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { 309 Instruction *I = cast<Instruction>(*UI); 310 ++UI; 311 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 312 continue; 313 314 if (!I->getType()->isVoidTy()) { 315 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 316 // Follow the use/def chain to erase them now instead of leaving it for 317 // dead code elimination later. 318 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { 319 Instruction *Inst = cast<Instruction>(*UUI); 320 ++UUI; 321 Inst->eraseFromParent(); 322 } 323 } 324 I->eraseFromParent(); 325 } 326 } 327 328 /// \brief Rewrite as many loads as possible given a single store. 329 /// 330 /// When there is only a single store, we can use the domtree to trivially 331 /// replace all of the dominated loads with the stored value. Do so, and return 332 /// true if this has successfully promoted the alloca entirely. If this returns 333 /// false there were some loads which were not dominated by the single store 334 /// and thus must be phi-ed with undef. We fall back to the standard alloca 335 /// promotion algorithm in that case. 336 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, 337 LargeBlockInfo &LBI, 338 DominatorTree &DT, 339 AliasSetTracker *AST) { 340 StoreInst *OnlyStore = Info.OnlyStore; 341 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 342 BasicBlock *StoreBB = OnlyStore->getParent(); 343 int StoreIndex = -1; 344 345 // Clear out UsingBlocks. We will reconstruct it here if needed. 346 Info.UsingBlocks.clear(); 347 348 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 349 Instruction *UserInst = cast<Instruction>(*UI++); 350 if (!isa<LoadInst>(UserInst)) { 351 assert(UserInst == OnlyStore && "Should only have load/stores"); 352 continue; 353 } 354 LoadInst *LI = cast<LoadInst>(UserInst); 355 356 // Okay, if we have a load from the alloca, we want to replace it with the 357 // only value stored to the alloca. We can do this if the value is 358 // dominated by the store. If not, we use the rest of the mem2reg machinery 359 // to insert the phi nodes as needed. 360 if (!StoringGlobalVal) { // Non-instructions are always dominated. 361 if (LI->getParent() == StoreBB) { 362 // If we have a use that is in the same block as the store, compare the 363 // indices of the two instructions to see which one came first. If the 364 // load came before the store, we can't handle it. 365 if (StoreIndex == -1) 366 StoreIndex = LBI.getInstructionIndex(OnlyStore); 367 368 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 369 // Can't handle this load, bail out. 370 Info.UsingBlocks.push_back(StoreBB); 371 continue; 372 } 373 374 } else if (LI->getParent() != StoreBB && 375 !DT.dominates(StoreBB, LI->getParent())) { 376 // If the load and store are in different blocks, use BB dominance to 377 // check their relationships. If the store doesn't dom the use, bail 378 // out. 379 Info.UsingBlocks.push_back(LI->getParent()); 380 continue; 381 } 382 } 383 384 // Otherwise, we *can* safely rewrite this load. 385 Value *ReplVal = OnlyStore->getOperand(0); 386 // If the replacement value is the load, this must occur in unreachable 387 // code. 388 if (ReplVal == LI) 389 ReplVal = UndefValue::get(LI->getType()); 390 LI->replaceAllUsesWith(ReplVal); 391 if (AST && LI->getType()->isPointerTy()) 392 AST->deleteValue(LI); 393 LI->eraseFromParent(); 394 LBI.deleteValue(LI); 395 } 396 397 // Finally, after the scan, check to see if the store is all that is left. 398 if (!Info.UsingBlocks.empty()) 399 return false; // If not, we'll have to fall back for the remainder. 400 401 // Record debuginfo for the store and remove the declaration's 402 // debuginfo. 403 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 404 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 405 ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB); 406 DDI->eraseFromParent(); 407 LBI.deleteValue(DDI); 408 } 409 // Remove the (now dead) store and alloca. 410 Info.OnlyStore->eraseFromParent(); 411 LBI.deleteValue(Info.OnlyStore); 412 413 if (AST) 414 AST->deleteValue(AI); 415 AI->eraseFromParent(); 416 LBI.deleteValue(AI); 417 return true; 418 } 419 420 /// Many allocas are only used within a single basic block. If this is the 421 /// case, avoid traversing the CFG and inserting a lot of potentially useless 422 /// PHI nodes by just performing a single linear pass over the basic block 423 /// using the Alloca. 424 /// 425 /// If we cannot promote this alloca (because it is read before it is written), 426 /// return false. This is necessary in cases where, due to control flow, the 427 /// alloca is undefined only on some control flow paths. e.g. code like 428 /// this is correct in LLVM IR: 429 /// // A is an alloca with no stores so far 430 /// for (...) { 431 /// int t = *A; 432 /// if (!first_iteration) 433 /// use(t); 434 /// *A = 42; 435 /// } 436 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 437 LargeBlockInfo &LBI, 438 AliasSetTracker *AST) { 439 // The trickiest case to handle is when we have large blocks. Because of this, 440 // this code is optimized assuming that large blocks happen. This does not 441 // significantly pessimize the small block case. This uses LargeBlockInfo to 442 // make it efficient to get the index of various operations in the block. 443 444 // Walk the use-def list of the alloca, getting the locations of all stores. 445 typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy; 446 StoresByIndexTy StoresByIndex; 447 448 for (User *U : AI->users()) 449 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 450 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 451 452 // Sort the stores by their index, making it efficient to do a lookup with a 453 // binary search. 454 std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first()); 455 456 // Walk all of the loads from this alloca, replacing them with the nearest 457 // store above them, if any. 458 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 459 LoadInst *LI = dyn_cast<LoadInst>(*UI++); 460 if (!LI) 461 continue; 462 463 unsigned LoadIdx = LBI.getInstructionIndex(LI); 464 465 // Find the nearest store that has a lower index than this load. 466 StoresByIndexTy::iterator I = 467 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), 468 std::make_pair(LoadIdx, 469 static_cast<StoreInst *>(nullptr)), 470 less_first()); 471 if (I == StoresByIndex.begin()) { 472 if (StoresByIndex.empty()) 473 // If there are no stores, the load takes the undef value. 474 LI->replaceAllUsesWith(UndefValue::get(LI->getType())); 475 else 476 // There is no store before this load, bail out (load may be affected 477 // by the following stores - see main comment). 478 return false; 479 } 480 else 481 // Otherwise, there was a store before this load, the load takes its value. 482 LI->replaceAllUsesWith(std::prev(I)->second->getOperand(0)); 483 484 if (AST && LI->getType()->isPointerTy()) 485 AST->deleteValue(LI); 486 LI->eraseFromParent(); 487 LBI.deleteValue(LI); 488 } 489 490 // Remove the (now dead) stores and alloca. 491 while (!AI->use_empty()) { 492 StoreInst *SI = cast<StoreInst>(AI->user_back()); 493 // Record debuginfo for the store before removing it. 494 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 495 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 496 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 497 } 498 SI->eraseFromParent(); 499 LBI.deleteValue(SI); 500 } 501 502 if (AST) 503 AST->deleteValue(AI); 504 AI->eraseFromParent(); 505 LBI.deleteValue(AI); 506 507 // The alloca's debuginfo can be removed as well. 508 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 509 DDI->eraseFromParent(); 510 LBI.deleteValue(DDI); 511 } 512 513 ++NumLocalPromoted; 514 return true; 515 } 516 517 void PromoteMem2Reg::run() { 518 Function &F = *DT.getRoot()->getParent(); 519 520 if (AST) 521 PointerAllocaValues.resize(Allocas.size()); 522 AllocaDbgDeclares.resize(Allocas.size()); 523 524 AllocaInfo Info; 525 LargeBlockInfo LBI; 526 IDFCalculator IDF(DT); 527 528 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 529 AllocaInst *AI = Allocas[AllocaNum]; 530 531 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 532 assert(AI->getParent()->getParent() == &F && 533 "All allocas should be in the same function, which is same as DF!"); 534 535 removeLifetimeIntrinsicUsers(AI); 536 537 if (AI->use_empty()) { 538 // If there are no uses of the alloca, just delete it now. 539 if (AST) 540 AST->deleteValue(AI); 541 AI->eraseFromParent(); 542 543 // Remove the alloca from the Allocas list, since it has been processed 544 RemoveFromAllocasList(AllocaNum); 545 ++NumDeadAlloca; 546 continue; 547 } 548 549 // Calculate the set of read and write-locations for each alloca. This is 550 // analogous to finding the 'uses' and 'definitions' of each variable. 551 Info.AnalyzeAlloca(AI); 552 553 // If there is only a single store to this value, replace any loads of 554 // it that are directly dominated by the definition with the value stored. 555 if (Info.DefiningBlocks.size() == 1) { 556 if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) { 557 // The alloca has been processed, move on. 558 RemoveFromAllocasList(AllocaNum); 559 ++NumSingleStore; 560 continue; 561 } 562 } 563 564 // If the alloca is only read and written in one basic block, just perform a 565 // linear sweep over the block to eliminate it. 566 if (Info.OnlyUsedInOneBlock && 567 promoteSingleBlockAlloca(AI, Info, LBI, AST)) { 568 // The alloca has been processed, move on. 569 RemoveFromAllocasList(AllocaNum); 570 continue; 571 } 572 573 // If we haven't computed a numbering for the BB's in the function, do so 574 // now. 575 if (BBNumbers.empty()) { 576 unsigned ID = 0; 577 for (auto &BB : F) 578 BBNumbers[&BB] = ID++; 579 } 580 581 // If we have an AST to keep updated, remember some pointer value that is 582 // stored into the alloca. 583 if (AST) 584 PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal; 585 586 // Remember the dbg.declare intrinsic describing this alloca, if any. 587 if (Info.DbgDeclare) 588 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare; 589 590 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 591 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 592 593 // At this point, we're committed to promoting the alloca using IDF's, and 594 // the standard SSA construction algorithm. Determine which blocks need PHI 595 // nodes and see if we can optimize out some work by avoiding insertion of 596 // dead phi nodes. 597 598 599 // Unique the set of defining blocks for efficient lookup. 600 SmallPtrSet<BasicBlock *, 32> DefBlocks; 601 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); 602 603 // Determine which blocks the value is live in. These are blocks which lead 604 // to uses. 605 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 606 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 607 608 // At this point, we're committed to promoting the alloca using IDF's, and 609 // the standard SSA construction algorithm. Determine which blocks need phi 610 // nodes and see if we can optimize out some work by avoiding insertion of 611 // dead phi nodes. 612 IDF.setLiveInBlocks(LiveInBlocks); 613 IDF.setDefiningBlocks(DefBlocks); 614 SmallVector<BasicBlock *, 32> PHIBlocks; 615 IDF.calculate(PHIBlocks); 616 if (PHIBlocks.size() > 1) 617 std::sort(PHIBlocks.begin(), PHIBlocks.end(), 618 [this](BasicBlock *A, BasicBlock *B) { 619 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 620 }); 621 622 unsigned CurrentVersion = 0; 623 for (unsigned i = 0, e = PHIBlocks.size(); i != e; ++i) 624 QueuePhiNode(PHIBlocks[i], AllocaNum, CurrentVersion); 625 } 626 627 if (Allocas.empty()) 628 return; // All of the allocas must have been trivial! 629 630 LBI.clear(); 631 632 // Set the incoming values for the basic block to be null values for all of 633 // the alloca's. We do this in case there is a load of a value that has not 634 // been stored yet. In this case, it will get this null value. 635 // 636 RenamePassData::ValVector Values(Allocas.size()); 637 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 638 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 639 640 // Walks all basic blocks in the function performing the SSA rename algorithm 641 // and inserting the phi nodes we marked as necessary 642 // 643 std::vector<RenamePassData> RenamePassWorkList; 644 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values)); 645 do { 646 RenamePassData RPD; 647 RPD.swap(RenamePassWorkList.back()); 648 RenamePassWorkList.pop_back(); 649 // RenamePass may add new worklist entries. 650 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList); 651 } while (!RenamePassWorkList.empty()); 652 653 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 654 Visited.clear(); 655 656 // Remove the allocas themselves from the function. 657 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { 658 Instruction *A = Allocas[i]; 659 660 // If there are any uses of the alloca instructions left, they must be in 661 // unreachable basic blocks that were not processed by walking the dominator 662 // tree. Just delete the users now. 663 if (!A->use_empty()) 664 A->replaceAllUsesWith(UndefValue::get(A->getType())); 665 if (AST) 666 AST->deleteValue(A); 667 A->eraseFromParent(); 668 } 669 670 const DataLayout &DL = F.getParent()->getDataLayout(); 671 672 // Remove alloca's dbg.declare instrinsics from the function. 673 for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i) 674 if (DbgDeclareInst *DDI = AllocaDbgDeclares[i]) 675 DDI->eraseFromParent(); 676 677 // Loop over all of the PHI nodes and see if there are any that we can get 678 // rid of because they merge all of the same incoming values. This can 679 // happen due to undef values coming into the PHI nodes. This process is 680 // iterative, because eliminating one PHI node can cause others to be removed. 681 bool EliminatedAPHI = true; 682 while (EliminatedAPHI) { 683 EliminatedAPHI = false; 684 685 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 686 // simplify and RAUW them as we go. If it was not, we could add uses to 687 // the values we replace with in a non-deterministic order, thus creating 688 // non-deterministic def->use chains. 689 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 690 I = NewPhiNodes.begin(), 691 E = NewPhiNodes.end(); 692 I != E;) { 693 PHINode *PN = I->second; 694 695 // If this PHI node merges one value and/or undefs, get the value. 696 if (Value *V = SimplifyInstruction(PN, DL, nullptr, &DT, AC)) { 697 if (AST && PN->getType()->isPointerTy()) 698 AST->deleteValue(PN); 699 PN->replaceAllUsesWith(V); 700 PN->eraseFromParent(); 701 NewPhiNodes.erase(I++); 702 EliminatedAPHI = true; 703 continue; 704 } 705 ++I; 706 } 707 } 708 709 // At this point, the renamer has added entries to PHI nodes for all reachable 710 // code. Unfortunately, there may be unreachable blocks which the renamer 711 // hasn't traversed. If this is the case, the PHI nodes may not 712 // have incoming values for all predecessors. Loop over all PHI nodes we have 713 // created, inserting undef values if they are missing any incoming values. 714 // 715 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 716 I = NewPhiNodes.begin(), 717 E = NewPhiNodes.end(); 718 I != E; ++I) { 719 // We want to do this once per basic block. As such, only process a block 720 // when we find the PHI that is the first entry in the block. 721 PHINode *SomePHI = I->second; 722 BasicBlock *BB = SomePHI->getParent(); 723 if (&BB->front() != SomePHI) 724 continue; 725 726 // Only do work here if there the PHI nodes are missing incoming values. We 727 // know that all PHI nodes that were inserted in a block will have the same 728 // number of incoming values, so we can just check any of them. 729 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 730 continue; 731 732 // Get the preds for BB. 733 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 734 735 // Ok, now we know that all of the PHI nodes are missing entries for some 736 // basic blocks. Start by sorting the incoming predecessors for efficient 737 // access. 738 std::sort(Preds.begin(), Preds.end()); 739 740 // Now we loop through all BB's which have entries in SomePHI and remove 741 // them from the Preds list. 742 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 743 // Do a log(n) search of the Preds list for the entry we want. 744 SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound( 745 Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i)); 746 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 747 "PHI node has entry for a block which is not a predecessor!"); 748 749 // Remove the entry 750 Preds.erase(EntIt); 751 } 752 753 // At this point, the blocks left in the preds list must have dummy 754 // entries inserted into every PHI nodes for the block. Update all the phi 755 // nodes in this block that we are inserting (there could be phis before 756 // mem2reg runs). 757 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 758 BasicBlock::iterator BBI = BB->begin(); 759 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 760 SomePHI->getNumIncomingValues() == NumBadPreds) { 761 Value *UndefVal = UndefValue::get(SomePHI->getType()); 762 for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred) 763 SomePHI->addIncoming(UndefVal, Preds[pred]); 764 } 765 } 766 767 NewPhiNodes.clear(); 768 } 769 770 /// \brief Determine which blocks the value is live in. 771 /// 772 /// These are blocks which lead to uses. Knowing this allows us to avoid 773 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 774 /// inserted phi nodes would be dead). 775 void PromoteMem2Reg::ComputeLiveInBlocks( 776 AllocaInst *AI, AllocaInfo &Info, 777 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 778 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 779 780 // To determine liveness, we must iterate through the predecessors of blocks 781 // where the def is live. Blocks are added to the worklist if we need to 782 // check their predecessors. Start with all the using blocks. 783 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 784 Info.UsingBlocks.end()); 785 786 // If any of the using blocks is also a definition block, check to see if the 787 // definition occurs before or after the use. If it happens before the use, 788 // the value isn't really live-in. 789 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 790 BasicBlock *BB = LiveInBlockWorklist[i]; 791 if (!DefBlocks.count(BB)) 792 continue; 793 794 // Okay, this is a block that both uses and defines the value. If the first 795 // reference to the alloca is a def (store), then we know it isn't live-in. 796 for (BasicBlock::iterator I = BB->begin();; ++I) { 797 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 798 if (SI->getOperand(1) != AI) 799 continue; 800 801 // We found a store to the alloca before a load. The alloca is not 802 // actually live-in here. 803 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 804 LiveInBlockWorklist.pop_back(); 805 --i, --e; 806 break; 807 } 808 809 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 810 if (LI->getOperand(0) != AI) 811 continue; 812 813 // Okay, we found a load before a store to the alloca. It is actually 814 // live into this block. 815 break; 816 } 817 } 818 } 819 820 // Now that we have a set of blocks where the phi is live-in, recursively add 821 // their predecessors until we find the full region the value is live. 822 while (!LiveInBlockWorklist.empty()) { 823 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 824 825 // The block really is live in here, insert it into the set. If already in 826 // the set, then it has already been processed. 827 if (!LiveInBlocks.insert(BB).second) 828 continue; 829 830 // Since the value is live into BB, it is either defined in a predecessor or 831 // live into it to. Add the preds to the worklist unless they are a 832 // defining block. 833 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 834 BasicBlock *P = *PI; 835 836 // The value is not live into a predecessor if it defines the value. 837 if (DefBlocks.count(P)) 838 continue; 839 840 // Otherwise it is, add to the worklist. 841 LiveInBlockWorklist.push_back(P); 842 } 843 } 844 } 845 846 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca. 847 /// 848 /// Returns true if there wasn't already a phi-node for that variable 849 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 850 unsigned &Version) { 851 // Look up the basic-block in question. 852 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 853 854 // If the BB already has a phi node added for the i'th alloca then we're done! 855 if (PN) 856 return false; 857 858 // Create a PhiNode using the dereferenced type... and add the phi-node to the 859 // BasicBlock. 860 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 861 Allocas[AllocaNo]->getName() + "." + Twine(Version++), 862 &BB->front()); 863 ++NumPHIInsert; 864 PhiToAllocaMap[PN] = AllocaNo; 865 866 if (AST && PN->getType()->isPointerTy()) 867 AST->copyValue(PointerAllocaValues[AllocaNo], PN); 868 869 return true; 870 } 871 872 /// \brief Recursively traverse the CFG of the function, renaming loads and 873 /// stores to the allocas which we are promoting. 874 /// 875 /// IncomingVals indicates what value each Alloca contains on exit from the 876 /// predecessor block Pred. 877 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 878 RenamePassData::ValVector &IncomingVals, 879 std::vector<RenamePassData> &Worklist) { 880 NextIteration: 881 // If we are inserting any phi nodes into this BB, they will already be in the 882 // block. 883 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 884 // If we have PHI nodes to update, compute the number of edges from Pred to 885 // BB. 886 if (PhiToAllocaMap.count(APN)) { 887 // We want to be able to distinguish between PHI nodes being inserted by 888 // this invocation of mem2reg from those phi nodes that already existed in 889 // the IR before mem2reg was run. We determine that APN is being inserted 890 // because it is missing incoming edges. All other PHI nodes being 891 // inserted by this pass of mem2reg will have the same number of incoming 892 // operands so far. Remember this count. 893 unsigned NewPHINumOperands = APN->getNumOperands(); 894 895 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); 896 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 897 898 // Add entries for all the phis. 899 BasicBlock::iterator PNI = BB->begin(); 900 do { 901 unsigned AllocaNo = PhiToAllocaMap[APN]; 902 903 // Add N incoming values to the PHI node. 904 for (unsigned i = 0; i != NumEdges; ++i) 905 APN->addIncoming(IncomingVals[AllocaNo], Pred); 906 907 // The currently active variable for this block is now the PHI. 908 IncomingVals[AllocaNo] = APN; 909 910 // Get the next phi node. 911 ++PNI; 912 APN = dyn_cast<PHINode>(PNI); 913 if (!APN) 914 break; 915 916 // Verify that it is missing entries. If not, it is not being inserted 917 // by this mem2reg invocation so we want to ignore it. 918 } while (APN->getNumOperands() == NewPHINumOperands); 919 } 920 } 921 922 // Don't revisit blocks. 923 if (!Visited.insert(BB).second) 924 return; 925 926 for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) { 927 Instruction *I = &*II++; // get the instruction, increment iterator 928 929 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 930 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 931 if (!Src) 932 continue; 933 934 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 935 if (AI == AllocaLookup.end()) 936 continue; 937 938 Value *V = IncomingVals[AI->second]; 939 940 // Anything using the load now uses the current value. 941 LI->replaceAllUsesWith(V); 942 if (AST && LI->getType()->isPointerTy()) 943 AST->deleteValue(LI); 944 BB->getInstList().erase(LI); 945 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 946 // Delete this instruction and mark the name as the current holder of the 947 // value 948 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 949 if (!Dest) 950 continue; 951 952 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 953 if (ai == AllocaLookup.end()) 954 continue; 955 956 // what value were we writing? 957 IncomingVals[ai->second] = SI->getOperand(0); 958 // Record debuginfo for the store before removing it. 959 if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) 960 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 961 BB->getInstList().erase(SI); 962 } 963 } 964 965 // 'Recurse' to our successors. 966 succ_iterator I = succ_begin(BB), E = succ_end(BB); 967 if (I == E) 968 return; 969 970 // Keep track of the successors so we don't visit the same successor twice 971 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 972 973 // Handle the first successor without using the worklist. 974 VisitedSuccs.insert(*I); 975 Pred = BB; 976 BB = *I; 977 ++I; 978 979 for (; I != E; ++I) 980 if (VisitedSuccs.insert(*I).second) 981 Worklist.emplace_back(*I, Pred, IncomingVals); 982 983 goto NextIteration; 984 } 985 986 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 987 AliasSetTracker *AST, AssumptionCache *AC) { 988 // If there is nothing to do, bail out... 989 if (Allocas.empty()) 990 return; 991 992 PromoteMem2Reg(Allocas, DT, AST, AC).run(); 993 } 994