1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Expr class and subclasses. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/EvaluatedExprVisitor.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/AST/Mangle.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/Builtins.h" 27 #include "clang/Basic/CharInfo.h" 28 #include "clang/Basic/SourceManager.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/Lexer.h" 31 #include "clang/Lex/LiteralSupport.h" 32 #include "clang/Sema/SemaDiagnostic.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> 36 #include <cstring> 37 using namespace clang; 38 39 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 40 const Expr *E = ignoreParenBaseCasts(); 41 42 QualType DerivedType = E->getType(); 43 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 44 DerivedType = PTy->getPointeeType(); 45 46 if (DerivedType->isDependentType()) 47 return nullptr; 48 49 const RecordType *Ty = DerivedType->castAs<RecordType>(); 50 Decl *D = Ty->getDecl(); 51 return cast<CXXRecordDecl>(D); 52 } 53 54 const Expr *Expr::skipRValueSubobjectAdjustments( 55 SmallVectorImpl<const Expr *> &CommaLHSs, 56 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 57 const Expr *E = this; 58 while (true) { 59 E = E->IgnoreParens(); 60 61 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 62 if ((CE->getCastKind() == CK_DerivedToBase || 63 CE->getCastKind() == CK_UncheckedDerivedToBase) && 64 E->getType()->isRecordType()) { 65 E = CE->getSubExpr(); 66 CXXRecordDecl *Derived 67 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 68 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 69 continue; 70 } 71 72 if (CE->getCastKind() == CK_NoOp) { 73 E = CE->getSubExpr(); 74 continue; 75 } 76 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 77 if (!ME->isArrow()) { 78 assert(ME->getBase()->getType()->isRecordType()); 79 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 80 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 81 E = ME->getBase(); 82 Adjustments.push_back(SubobjectAdjustment(Field)); 83 continue; 84 } 85 } 86 } 87 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 88 if (BO->isPtrMemOp()) { 89 assert(BO->getRHS()->isRValue()); 90 E = BO->getLHS(); 91 const MemberPointerType *MPT = 92 BO->getRHS()->getType()->getAs<MemberPointerType>(); 93 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 94 continue; 95 } else if (BO->getOpcode() == BO_Comma) { 96 CommaLHSs.push_back(BO->getLHS()); 97 E = BO->getRHS(); 98 continue; 99 } 100 } 101 102 // Nothing changed. 103 break; 104 } 105 return E; 106 } 107 108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression 109 /// that is known to return 0 or 1. This happens for _Bool/bool expressions 110 /// but also int expressions which are produced by things like comparisons in 111 /// C. 112 bool Expr::isKnownToHaveBooleanValue() const { 113 const Expr *E = IgnoreParens(); 114 115 // If this value has _Bool type, it is obvious 0/1. 116 if (E->getType()->isBooleanType()) return true; 117 // If this is a non-scalar-integer type, we don't care enough to try. 118 if (!E->getType()->isIntegralOrEnumerationType()) return false; 119 120 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 121 switch (UO->getOpcode()) { 122 case UO_Plus: 123 return UO->getSubExpr()->isKnownToHaveBooleanValue(); 124 case UO_LNot: 125 return true; 126 default: 127 return false; 128 } 129 } 130 131 // Only look through implicit casts. If the user writes 132 // '(int) (a && b)' treat it as an arbitrary int. 133 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 134 return CE->getSubExpr()->isKnownToHaveBooleanValue(); 135 136 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 137 switch (BO->getOpcode()) { 138 default: return false; 139 case BO_LT: // Relational operators. 140 case BO_GT: 141 case BO_LE: 142 case BO_GE: 143 case BO_EQ: // Equality operators. 144 case BO_NE: 145 case BO_LAnd: // AND operator. 146 case BO_LOr: // Logical OR operator. 147 return true; 148 149 case BO_And: // Bitwise AND operator. 150 case BO_Xor: // Bitwise XOR operator. 151 case BO_Or: // Bitwise OR operator. 152 // Handle things like (x==2)|(y==12). 153 return BO->getLHS()->isKnownToHaveBooleanValue() && 154 BO->getRHS()->isKnownToHaveBooleanValue(); 155 156 case BO_Comma: 157 case BO_Assign: 158 return BO->getRHS()->isKnownToHaveBooleanValue(); 159 } 160 } 161 162 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 163 return CO->getTrueExpr()->isKnownToHaveBooleanValue() && 164 CO->getFalseExpr()->isKnownToHaveBooleanValue(); 165 166 return false; 167 } 168 169 // Amusing macro metaprogramming hack: check whether a class provides 170 // a more specific implementation of getExprLoc(). 171 // 172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}. 173 namespace { 174 /// This implementation is used when a class provides a custom 175 /// implementation of getExprLoc. 176 template <class E, class T> 177 SourceLocation getExprLocImpl(const Expr *expr, 178 SourceLocation (T::*v)() const) { 179 return static_cast<const E*>(expr)->getExprLoc(); 180 } 181 182 /// This implementation is used when a class doesn't provide 183 /// a custom implementation of getExprLoc. Overload resolution 184 /// should pick it over the implementation above because it's 185 /// more specialized according to function template partial ordering. 186 template <class E> 187 SourceLocation getExprLocImpl(const Expr *expr, 188 SourceLocation (Expr::*v)() const) { 189 return static_cast<const E*>(expr)->getLocStart(); 190 } 191 } 192 193 SourceLocation Expr::getExprLoc() const { 194 switch (getStmtClass()) { 195 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 196 #define ABSTRACT_STMT(type) 197 #define STMT(type, base) \ 198 case Stmt::type##Class: break; 199 #define EXPR(type, base) \ 200 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 201 #include "clang/AST/StmtNodes.inc" 202 } 203 llvm_unreachable("unknown expression kind"); 204 } 205 206 //===----------------------------------------------------------------------===// 207 // Primary Expressions. 208 //===----------------------------------------------------------------------===// 209 210 /// \brief Compute the type-, value-, and instantiation-dependence of a 211 /// declaration reference 212 /// based on the declaration being referenced. 213 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, 214 QualType T, bool &TypeDependent, 215 bool &ValueDependent, 216 bool &InstantiationDependent) { 217 TypeDependent = false; 218 ValueDependent = false; 219 InstantiationDependent = false; 220 221 // (TD) C++ [temp.dep.expr]p3: 222 // An id-expression is type-dependent if it contains: 223 // 224 // and 225 // 226 // (VD) C++ [temp.dep.constexpr]p2: 227 // An identifier is value-dependent if it is: 228 229 // (TD) - an identifier that was declared with dependent type 230 // (VD) - a name declared with a dependent type, 231 if (T->isDependentType()) { 232 TypeDependent = true; 233 ValueDependent = true; 234 InstantiationDependent = true; 235 return; 236 } else if (T->isInstantiationDependentType()) { 237 InstantiationDependent = true; 238 } 239 240 // (TD) - a conversion-function-id that specifies a dependent type 241 if (D->getDeclName().getNameKind() 242 == DeclarationName::CXXConversionFunctionName) { 243 QualType T = D->getDeclName().getCXXNameType(); 244 if (T->isDependentType()) { 245 TypeDependent = true; 246 ValueDependent = true; 247 InstantiationDependent = true; 248 return; 249 } 250 251 if (T->isInstantiationDependentType()) 252 InstantiationDependent = true; 253 } 254 255 // (VD) - the name of a non-type template parameter, 256 if (isa<NonTypeTemplateParmDecl>(D)) { 257 ValueDependent = true; 258 InstantiationDependent = true; 259 return; 260 } 261 262 // (VD) - a constant with integral or enumeration type and is 263 // initialized with an expression that is value-dependent. 264 // (VD) - a constant with literal type and is initialized with an 265 // expression that is value-dependent [C++11]. 266 // (VD) - FIXME: Missing from the standard: 267 // - an entity with reference type and is initialized with an 268 // expression that is value-dependent [C++11] 269 if (VarDecl *Var = dyn_cast<VarDecl>(D)) { 270 if ((Ctx.getLangOpts().CPlusPlus11 ? 271 Var->getType()->isLiteralType(Ctx) : 272 Var->getType()->isIntegralOrEnumerationType()) && 273 (Var->getType().isConstQualified() || 274 Var->getType()->isReferenceType())) { 275 if (const Expr *Init = Var->getAnyInitializer()) 276 if (Init->isValueDependent()) { 277 ValueDependent = true; 278 InstantiationDependent = true; 279 } 280 } 281 282 // (VD) - FIXME: Missing from the standard: 283 // - a member function or a static data member of the current 284 // instantiation 285 if (Var->isStaticDataMember() && 286 Var->getDeclContext()->isDependentContext()) { 287 ValueDependent = true; 288 InstantiationDependent = true; 289 TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo(); 290 if (TInfo->getType()->isIncompleteArrayType()) 291 TypeDependent = true; 292 } 293 294 return; 295 } 296 297 // (VD) - FIXME: Missing from the standard: 298 // - a member function or a static data member of the current 299 // instantiation 300 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { 301 ValueDependent = true; 302 InstantiationDependent = true; 303 } 304 } 305 306 void DeclRefExpr::computeDependence(const ASTContext &Ctx) { 307 bool TypeDependent = false; 308 bool ValueDependent = false; 309 bool InstantiationDependent = false; 310 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent, 311 ValueDependent, InstantiationDependent); 312 313 ExprBits.TypeDependent |= TypeDependent; 314 ExprBits.ValueDependent |= ValueDependent; 315 ExprBits.InstantiationDependent |= InstantiationDependent; 316 317 // Is the declaration a parameter pack? 318 if (getDecl()->isParameterPack()) 319 ExprBits.ContainsUnexpandedParameterPack = true; 320 } 321 322 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 323 NestedNameSpecifierLoc QualifierLoc, 324 SourceLocation TemplateKWLoc, 325 ValueDecl *D, bool RefersToEnclosingVariableOrCapture, 326 const DeclarationNameInfo &NameInfo, 327 NamedDecl *FoundD, 328 const TemplateArgumentListInfo *TemplateArgs, 329 QualType T, ExprValueKind VK) 330 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), 331 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) { 332 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 333 if (QualifierLoc) { 334 getInternalQualifierLoc() = QualifierLoc; 335 auto *NNS = QualifierLoc.getNestedNameSpecifier(); 336 if (NNS->isInstantiationDependent()) 337 ExprBits.InstantiationDependent = true; 338 if (NNS->containsUnexpandedParameterPack()) 339 ExprBits.ContainsUnexpandedParameterPack = true; 340 } 341 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 342 if (FoundD) 343 getInternalFoundDecl() = FoundD; 344 DeclRefExprBits.HasTemplateKWAndArgsInfo 345 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 346 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 347 RefersToEnclosingVariableOrCapture; 348 if (TemplateArgs) { 349 bool Dependent = false; 350 bool InstantiationDependent = false; 351 bool ContainsUnexpandedParameterPack = false; 352 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs, 353 Dependent, 354 InstantiationDependent, 355 ContainsUnexpandedParameterPack); 356 assert(!Dependent && "built a DeclRefExpr with dependent template args"); 357 ExprBits.InstantiationDependent |= InstantiationDependent; 358 ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 359 } else if (TemplateKWLoc.isValid()) { 360 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); 361 } 362 DeclRefExprBits.HadMultipleCandidates = 0; 363 364 computeDependence(Ctx); 365 } 366 367 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 368 NestedNameSpecifierLoc QualifierLoc, 369 SourceLocation TemplateKWLoc, 370 ValueDecl *D, 371 bool RefersToEnclosingVariableOrCapture, 372 SourceLocation NameLoc, 373 QualType T, 374 ExprValueKind VK, 375 NamedDecl *FoundD, 376 const TemplateArgumentListInfo *TemplateArgs) { 377 return Create(Context, QualifierLoc, TemplateKWLoc, D, 378 RefersToEnclosingVariableOrCapture, 379 DeclarationNameInfo(D->getDeclName(), NameLoc), 380 T, VK, FoundD, TemplateArgs); 381 } 382 383 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 384 NestedNameSpecifierLoc QualifierLoc, 385 SourceLocation TemplateKWLoc, 386 ValueDecl *D, 387 bool RefersToEnclosingVariableOrCapture, 388 const DeclarationNameInfo &NameInfo, 389 QualType T, 390 ExprValueKind VK, 391 NamedDecl *FoundD, 392 const TemplateArgumentListInfo *TemplateArgs) { 393 // Filter out cases where the found Decl is the same as the value refenenced. 394 if (D == FoundD) 395 FoundD = nullptr; 396 397 std::size_t Size = sizeof(DeclRefExpr); 398 if (QualifierLoc) 399 Size += sizeof(NestedNameSpecifierLoc); 400 if (FoundD) 401 Size += sizeof(NamedDecl *); 402 if (TemplateArgs) { 403 Size = llvm::RoundUpToAlignment(Size, 404 llvm::alignOf<ASTTemplateKWAndArgsInfo>()); 405 Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size()); 406 } else if (TemplateKWLoc.isValid()) { 407 Size = llvm::RoundUpToAlignment(Size, 408 llvm::alignOf<ASTTemplateKWAndArgsInfo>()); 409 Size += ASTTemplateKWAndArgsInfo::sizeFor(0); 410 } 411 412 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 413 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 414 RefersToEnclosingVariableOrCapture, 415 NameInfo, FoundD, TemplateArgs, T, VK); 416 } 417 418 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 419 bool HasQualifier, 420 bool HasFoundDecl, 421 bool HasTemplateKWAndArgsInfo, 422 unsigned NumTemplateArgs) { 423 std::size_t Size = sizeof(DeclRefExpr); 424 if (HasQualifier) 425 Size += sizeof(NestedNameSpecifierLoc); 426 if (HasFoundDecl) 427 Size += sizeof(NamedDecl *); 428 if (HasTemplateKWAndArgsInfo) { 429 Size = llvm::RoundUpToAlignment(Size, 430 llvm::alignOf<ASTTemplateKWAndArgsInfo>()); 431 Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs); 432 } 433 434 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 435 return new (Mem) DeclRefExpr(EmptyShell()); 436 } 437 438 SourceLocation DeclRefExpr::getLocStart() const { 439 if (hasQualifier()) 440 return getQualifierLoc().getBeginLoc(); 441 return getNameInfo().getLocStart(); 442 } 443 SourceLocation DeclRefExpr::getLocEnd() const { 444 if (hasExplicitTemplateArgs()) 445 return getRAngleLoc(); 446 return getNameInfo().getLocEnd(); 447 } 448 449 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT, 450 StringLiteral *SL) 451 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary, 452 FNTy->isDependentType(), FNTy->isDependentType(), 453 FNTy->isInstantiationDependentType(), 454 /*ContainsUnexpandedParameterPack=*/false), 455 Loc(L), Type(IT), FnName(SL) {} 456 457 StringLiteral *PredefinedExpr::getFunctionName() { 458 return cast_or_null<StringLiteral>(FnName); 459 } 460 461 StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) { 462 switch (IT) { 463 case Func: 464 return "__func__"; 465 case Function: 466 return "__FUNCTION__"; 467 case FuncDName: 468 return "__FUNCDNAME__"; 469 case LFunction: 470 return "L__FUNCTION__"; 471 case PrettyFunction: 472 return "__PRETTY_FUNCTION__"; 473 case FuncSig: 474 return "__FUNCSIG__"; 475 case PrettyFunctionNoVirtual: 476 break; 477 } 478 llvm_unreachable("Unknown ident type for PredefinedExpr"); 479 } 480 481 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 482 // expr" policy instead. 483 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { 484 ASTContext &Context = CurrentDecl->getASTContext(); 485 486 if (IT == PredefinedExpr::FuncDName) { 487 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 488 std::unique_ptr<MangleContext> MC; 489 MC.reset(Context.createMangleContext()); 490 491 if (MC->shouldMangleDeclName(ND)) { 492 SmallString<256> Buffer; 493 llvm::raw_svector_ostream Out(Buffer); 494 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 495 MC->mangleCXXCtor(CD, Ctor_Base, Out); 496 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 497 MC->mangleCXXDtor(DD, Dtor_Base, Out); 498 else 499 MC->mangleName(ND, Out); 500 501 if (!Buffer.empty() && Buffer.front() == '\01') 502 return Buffer.substr(1); 503 return Buffer.str(); 504 } else 505 return ND->getIdentifier()->getName(); 506 } 507 return ""; 508 } 509 if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) { 510 std::unique_ptr<MangleContext> MC; 511 MC.reset(Context.createMangleContext()); 512 SmallString<256> Buffer; 513 llvm::raw_svector_ostream Out(Buffer); 514 auto DC = CurrentDecl->getDeclContext(); 515 if (DC->isFileContext()) 516 MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out); 517 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 518 MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out); 519 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 520 MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out); 521 else 522 MC->mangleBlock(DC, BD, Out); 523 return Out.str(); 524 } 525 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 526 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig) 527 return FD->getNameAsString(); 528 529 SmallString<256> Name; 530 llvm::raw_svector_ostream Out(Name); 531 532 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 533 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) 534 Out << "virtual "; 535 if (MD->isStatic()) 536 Out << "static "; 537 } 538 539 PrintingPolicy Policy(Context.getLangOpts()); 540 std::string Proto; 541 llvm::raw_string_ostream POut(Proto); 542 543 const FunctionDecl *Decl = FD; 544 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 545 Decl = Pattern; 546 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 547 const FunctionProtoType *FT = nullptr; 548 if (FD->hasWrittenPrototype()) 549 FT = dyn_cast<FunctionProtoType>(AFT); 550 551 if (IT == FuncSig) { 552 switch (FT->getCallConv()) { 553 case CC_C: POut << "__cdecl "; break; 554 case CC_X86StdCall: POut << "__stdcall "; break; 555 case CC_X86FastCall: POut << "__fastcall "; break; 556 case CC_X86ThisCall: POut << "__thiscall "; break; 557 case CC_X86VectorCall: POut << "__vectorcall "; break; 558 // Only bother printing the conventions that MSVC knows about. 559 default: break; 560 } 561 } 562 563 FD->printQualifiedName(POut, Policy); 564 565 POut << "("; 566 if (FT) { 567 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 568 if (i) POut << ", "; 569 POut << Decl->getParamDecl(i)->getType().stream(Policy); 570 } 571 572 if (FT->isVariadic()) { 573 if (FD->getNumParams()) POut << ", "; 574 POut << "..."; 575 } 576 } 577 POut << ")"; 578 579 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 580 const FunctionType *FT = MD->getType()->castAs<FunctionType>(); 581 if (FT->isConst()) 582 POut << " const"; 583 if (FT->isVolatile()) 584 POut << " volatile"; 585 RefQualifierKind Ref = MD->getRefQualifier(); 586 if (Ref == RQ_LValue) 587 POut << " &"; 588 else if (Ref == RQ_RValue) 589 POut << " &&"; 590 } 591 592 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 593 SpecsTy Specs; 594 const DeclContext *Ctx = FD->getDeclContext(); 595 while (Ctx && isa<NamedDecl>(Ctx)) { 596 const ClassTemplateSpecializationDecl *Spec 597 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 598 if (Spec && !Spec->isExplicitSpecialization()) 599 Specs.push_back(Spec); 600 Ctx = Ctx->getParent(); 601 } 602 603 std::string TemplateParams; 604 llvm::raw_string_ostream TOut(TemplateParams); 605 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); 606 I != E; ++I) { 607 const TemplateParameterList *Params 608 = (*I)->getSpecializedTemplate()->getTemplateParameters(); 609 const TemplateArgumentList &Args = (*I)->getTemplateArgs(); 610 assert(Params->size() == Args.size()); 611 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 612 StringRef Param = Params->getParam(i)->getName(); 613 if (Param.empty()) continue; 614 TOut << Param << " = "; 615 Args.get(i).print(Policy, TOut); 616 TOut << ", "; 617 } 618 } 619 620 FunctionTemplateSpecializationInfo *FSI 621 = FD->getTemplateSpecializationInfo(); 622 if (FSI && !FSI->isExplicitSpecialization()) { 623 const TemplateParameterList* Params 624 = FSI->getTemplate()->getTemplateParameters(); 625 const TemplateArgumentList* Args = FSI->TemplateArguments; 626 assert(Params->size() == Args->size()); 627 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 628 StringRef Param = Params->getParam(i)->getName(); 629 if (Param.empty()) continue; 630 TOut << Param << " = "; 631 Args->get(i).print(Policy, TOut); 632 TOut << ", "; 633 } 634 } 635 636 TOut.flush(); 637 if (!TemplateParams.empty()) { 638 // remove the trailing comma and space 639 TemplateParams.resize(TemplateParams.size() - 2); 640 POut << " [" << TemplateParams << "]"; 641 } 642 643 POut.flush(); 644 645 // Print "auto" for all deduced return types. This includes C++1y return 646 // type deduction and lambdas. For trailing return types resolve the 647 // decltype expression. Otherwise print the real type when this is 648 // not a constructor or destructor. 649 if (isa<CXXMethodDecl>(FD) && 650 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 651 Proto = "auto " + Proto; 652 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 653 FT->getReturnType() 654 ->getAs<DecltypeType>() 655 ->getUnderlyingType() 656 .getAsStringInternal(Proto, Policy); 657 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 658 AFT->getReturnType().getAsStringInternal(Proto, Policy); 659 660 Out << Proto; 661 662 return Name.str().str(); 663 } 664 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 665 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 666 // Skip to its enclosing function or method, but not its enclosing 667 // CapturedDecl. 668 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 669 const Decl *D = Decl::castFromDeclContext(DC); 670 return ComputeName(IT, D); 671 } 672 llvm_unreachable("CapturedDecl not inside a function or method"); 673 } 674 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 675 SmallString<256> Name; 676 llvm::raw_svector_ostream Out(Name); 677 Out << (MD->isInstanceMethod() ? '-' : '+'); 678 Out << '['; 679 680 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 681 // a null check to avoid a crash. 682 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 683 Out << *ID; 684 685 if (const ObjCCategoryImplDecl *CID = 686 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 687 Out << '(' << *CID << ')'; 688 689 Out << ' '; 690 MD->getSelector().print(Out); 691 Out << ']'; 692 693 return Name.str().str(); 694 } 695 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { 696 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 697 return "top level"; 698 } 699 return ""; 700 } 701 702 void APNumericStorage::setIntValue(const ASTContext &C, 703 const llvm::APInt &Val) { 704 if (hasAllocation()) 705 C.Deallocate(pVal); 706 707 BitWidth = Val.getBitWidth(); 708 unsigned NumWords = Val.getNumWords(); 709 const uint64_t* Words = Val.getRawData(); 710 if (NumWords > 1) { 711 pVal = new (C) uint64_t[NumWords]; 712 std::copy(Words, Words + NumWords, pVal); 713 } else if (NumWords == 1) 714 VAL = Words[0]; 715 else 716 VAL = 0; 717 } 718 719 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 720 QualType type, SourceLocation l) 721 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false, 722 false, false), 723 Loc(l) { 724 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 725 assert(V.getBitWidth() == C.getIntWidth(type) && 726 "Integer type is not the correct size for constant."); 727 setValue(C, V); 728 } 729 730 IntegerLiteral * 731 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 732 QualType type, SourceLocation l) { 733 return new (C) IntegerLiteral(C, V, type, l); 734 } 735 736 IntegerLiteral * 737 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 738 return new (C) IntegerLiteral(Empty); 739 } 740 741 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 742 bool isexact, QualType Type, SourceLocation L) 743 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false, 744 false, false), Loc(L) { 745 setSemantics(V.getSemantics()); 746 FloatingLiteralBits.IsExact = isexact; 747 setValue(C, V); 748 } 749 750 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 751 : Expr(FloatingLiteralClass, Empty) { 752 setRawSemantics(IEEEhalf); 753 FloatingLiteralBits.IsExact = false; 754 } 755 756 FloatingLiteral * 757 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 758 bool isexact, QualType Type, SourceLocation L) { 759 return new (C) FloatingLiteral(C, V, isexact, Type, L); 760 } 761 762 FloatingLiteral * 763 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 764 return new (C) FloatingLiteral(C, Empty); 765 } 766 767 const llvm::fltSemantics &FloatingLiteral::getSemantics() const { 768 switch(FloatingLiteralBits.Semantics) { 769 case IEEEhalf: 770 return llvm::APFloat::IEEEhalf; 771 case IEEEsingle: 772 return llvm::APFloat::IEEEsingle; 773 case IEEEdouble: 774 return llvm::APFloat::IEEEdouble; 775 case x87DoubleExtended: 776 return llvm::APFloat::x87DoubleExtended; 777 case IEEEquad: 778 return llvm::APFloat::IEEEquad; 779 case PPCDoubleDouble: 780 return llvm::APFloat::PPCDoubleDouble; 781 } 782 llvm_unreachable("Unrecognised floating semantics"); 783 } 784 785 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) { 786 if (&Sem == &llvm::APFloat::IEEEhalf) 787 FloatingLiteralBits.Semantics = IEEEhalf; 788 else if (&Sem == &llvm::APFloat::IEEEsingle) 789 FloatingLiteralBits.Semantics = IEEEsingle; 790 else if (&Sem == &llvm::APFloat::IEEEdouble) 791 FloatingLiteralBits.Semantics = IEEEdouble; 792 else if (&Sem == &llvm::APFloat::x87DoubleExtended) 793 FloatingLiteralBits.Semantics = x87DoubleExtended; 794 else if (&Sem == &llvm::APFloat::IEEEquad) 795 FloatingLiteralBits.Semantics = IEEEquad; 796 else if (&Sem == &llvm::APFloat::PPCDoubleDouble) 797 FloatingLiteralBits.Semantics = PPCDoubleDouble; 798 else 799 llvm_unreachable("Unknown floating semantics"); 800 } 801 802 /// getValueAsApproximateDouble - This returns the value as an inaccurate 803 /// double. Note that this may cause loss of precision, but is useful for 804 /// debugging dumps, etc. 805 double FloatingLiteral::getValueAsApproximateDouble() const { 806 llvm::APFloat V = getValue(); 807 bool ignored; 808 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, 809 &ignored); 810 return V.convertToDouble(); 811 } 812 813 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) { 814 int CharByteWidth = 0; 815 switch(k) { 816 case Ascii: 817 case UTF8: 818 CharByteWidth = target.getCharWidth(); 819 break; 820 case Wide: 821 CharByteWidth = target.getWCharWidth(); 822 break; 823 case UTF16: 824 CharByteWidth = target.getChar16Width(); 825 break; 826 case UTF32: 827 CharByteWidth = target.getChar32Width(); 828 break; 829 } 830 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 831 CharByteWidth /= 8; 832 assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4) 833 && "character byte widths supported are 1, 2, and 4 only"); 834 return CharByteWidth; 835 } 836 837 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str, 838 StringKind Kind, bool Pascal, QualType Ty, 839 const SourceLocation *Loc, 840 unsigned NumStrs) { 841 assert(C.getAsConstantArrayType(Ty) && 842 "StringLiteral must be of constant array type!"); 843 844 // Allocate enough space for the StringLiteral plus an array of locations for 845 // any concatenated string tokens. 846 void *Mem = C.Allocate(sizeof(StringLiteral)+ 847 sizeof(SourceLocation)*(NumStrs-1), 848 llvm::alignOf<StringLiteral>()); 849 StringLiteral *SL = new (Mem) StringLiteral(Ty); 850 851 // OPTIMIZE: could allocate this appended to the StringLiteral. 852 SL->setString(C,Str,Kind,Pascal); 853 854 SL->TokLocs[0] = Loc[0]; 855 SL->NumConcatenated = NumStrs; 856 857 if (NumStrs != 1) 858 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); 859 return SL; 860 } 861 862 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C, 863 unsigned NumStrs) { 864 void *Mem = C.Allocate(sizeof(StringLiteral)+ 865 sizeof(SourceLocation)*(NumStrs-1), 866 llvm::alignOf<StringLiteral>()); 867 StringLiteral *SL = new (Mem) StringLiteral(QualType()); 868 SL->CharByteWidth = 0; 869 SL->Length = 0; 870 SL->NumConcatenated = NumStrs; 871 return SL; 872 } 873 874 void StringLiteral::outputString(raw_ostream &OS) const { 875 switch (getKind()) { 876 case Ascii: break; // no prefix. 877 case Wide: OS << 'L'; break; 878 case UTF8: OS << "u8"; break; 879 case UTF16: OS << 'u'; break; 880 case UTF32: OS << 'U'; break; 881 } 882 OS << '"'; 883 static const char Hex[] = "0123456789ABCDEF"; 884 885 unsigned LastSlashX = getLength(); 886 for (unsigned I = 0, N = getLength(); I != N; ++I) { 887 switch (uint32_t Char = getCodeUnit(I)) { 888 default: 889 // FIXME: Convert UTF-8 back to codepoints before rendering. 890 891 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 892 // Leave invalid surrogates alone; we'll use \x for those. 893 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 894 Char <= 0xdbff) { 895 uint32_t Trail = getCodeUnit(I + 1); 896 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 897 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 898 ++I; 899 } 900 } 901 902 if (Char > 0xff) { 903 // If this is a wide string, output characters over 0xff using \x 904 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 905 // codepoint: use \x escapes for invalid codepoints. 906 if (getKind() == Wide || 907 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 908 // FIXME: Is this the best way to print wchar_t? 909 OS << "\\x"; 910 int Shift = 28; 911 while ((Char >> Shift) == 0) 912 Shift -= 4; 913 for (/**/; Shift >= 0; Shift -= 4) 914 OS << Hex[(Char >> Shift) & 15]; 915 LastSlashX = I; 916 break; 917 } 918 919 if (Char > 0xffff) 920 OS << "\\U00" 921 << Hex[(Char >> 20) & 15] 922 << Hex[(Char >> 16) & 15]; 923 else 924 OS << "\\u"; 925 OS << Hex[(Char >> 12) & 15] 926 << Hex[(Char >> 8) & 15] 927 << Hex[(Char >> 4) & 15] 928 << Hex[(Char >> 0) & 15]; 929 break; 930 } 931 932 // If we used \x... for the previous character, and this character is a 933 // hexadecimal digit, prevent it being slurped as part of the \x. 934 if (LastSlashX + 1 == I) { 935 switch (Char) { 936 case '0': case '1': case '2': case '3': case '4': 937 case '5': case '6': case '7': case '8': case '9': 938 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 939 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 940 OS << "\"\""; 941 } 942 } 943 944 assert(Char <= 0xff && 945 "Characters above 0xff should already have been handled."); 946 947 if (isPrintable(Char)) 948 OS << (char)Char; 949 else // Output anything hard as an octal escape. 950 OS << '\\' 951 << (char)('0' + ((Char >> 6) & 7)) 952 << (char)('0' + ((Char >> 3) & 7)) 953 << (char)('0' + ((Char >> 0) & 7)); 954 break; 955 // Handle some common non-printable cases to make dumps prettier. 956 case '\\': OS << "\\\\"; break; 957 case '"': OS << "\\\""; break; 958 case '\n': OS << "\\n"; break; 959 case '\t': OS << "\\t"; break; 960 case '\a': OS << "\\a"; break; 961 case '\b': OS << "\\b"; break; 962 } 963 } 964 OS << '"'; 965 } 966 967 void StringLiteral::setString(const ASTContext &C, StringRef Str, 968 StringKind Kind, bool IsPascal) { 969 //FIXME: we assume that the string data comes from a target that uses the same 970 // code unit size and endianess for the type of string. 971 this->Kind = Kind; 972 this->IsPascal = IsPascal; 973 974 CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind); 975 assert((Str.size()%CharByteWidth == 0) 976 && "size of data must be multiple of CharByteWidth"); 977 Length = Str.size()/CharByteWidth; 978 979 switch(CharByteWidth) { 980 case 1: { 981 char *AStrData = new (C) char[Length]; 982 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 983 StrData.asChar = AStrData; 984 break; 985 } 986 case 2: { 987 uint16_t *AStrData = new (C) uint16_t[Length]; 988 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 989 StrData.asUInt16 = AStrData; 990 break; 991 } 992 case 4: { 993 uint32_t *AStrData = new (C) uint32_t[Length]; 994 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 995 StrData.asUInt32 = AStrData; 996 break; 997 } 998 default: 999 assert(false && "unsupported CharByteWidth"); 1000 } 1001 } 1002 1003 /// getLocationOfByte - Return a source location that points to the specified 1004 /// byte of this string literal. 1005 /// 1006 /// Strings are amazingly complex. They can be formed from multiple tokens and 1007 /// can have escape sequences in them in addition to the usual trigraph and 1008 /// escaped newline business. This routine handles this complexity. 1009 /// 1010 /// The *StartToken sets the first token to be searched in this function and 1011 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1012 /// returning, it updates the *StartToken to the TokNo of the token being found 1013 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1014 /// string. 1015 /// Using these two parameters can reduce the time complexity from O(n^2) to 1016 /// O(n) if one wants to get the location of byte for all the tokens in a 1017 /// string. 1018 /// 1019 SourceLocation 1020 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1021 const LangOptions &Features, 1022 const TargetInfo &Target, unsigned *StartToken, 1023 unsigned *StartTokenByteOffset) const { 1024 assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) && 1025 "Only narrow string literals are currently supported"); 1026 1027 // Loop over all of the tokens in this string until we find the one that 1028 // contains the byte we're looking for. 1029 unsigned TokNo = 0; 1030 unsigned StringOffset = 0; 1031 if (StartToken) 1032 TokNo = *StartToken; 1033 if (StartTokenByteOffset) { 1034 StringOffset = *StartTokenByteOffset; 1035 ByteNo -= StringOffset; 1036 } 1037 while (1) { 1038 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1039 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1040 1041 // Get the spelling of the string so that we can get the data that makes up 1042 // the string literal, not the identifier for the macro it is potentially 1043 // expanded through. 1044 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1045 1046 // Re-lex the token to get its length and original spelling. 1047 std::pair<FileID, unsigned> LocInfo = 1048 SM.getDecomposedLoc(StrTokSpellingLoc); 1049 bool Invalid = false; 1050 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1051 if (Invalid) { 1052 if (StartTokenByteOffset != nullptr) 1053 *StartTokenByteOffset = StringOffset; 1054 if (StartToken != nullptr) 1055 *StartToken = TokNo; 1056 return StrTokSpellingLoc; 1057 } 1058 1059 const char *StrData = Buffer.data()+LocInfo.second; 1060 1061 // Create a lexer starting at the beginning of this token. 1062 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1063 Buffer.begin(), StrData, Buffer.end()); 1064 Token TheTok; 1065 TheLexer.LexFromRawLexer(TheTok); 1066 1067 // Use the StringLiteralParser to compute the length of the string in bytes. 1068 StringLiteralParser SLP(TheTok, SM, Features, Target); 1069 unsigned TokNumBytes = SLP.GetStringLength(); 1070 1071 // If the byte is in this token, return the location of the byte. 1072 if (ByteNo < TokNumBytes || 1073 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1074 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1075 1076 // Now that we know the offset of the token in the spelling, use the 1077 // preprocessor to get the offset in the original source. 1078 if (StartTokenByteOffset != nullptr) 1079 *StartTokenByteOffset = StringOffset; 1080 if (StartToken != nullptr) 1081 *StartToken = TokNo; 1082 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1083 } 1084 1085 // Move to the next string token. 1086 StringOffset += TokNumBytes; 1087 ++TokNo; 1088 ByteNo -= TokNumBytes; 1089 } 1090 } 1091 1092 1093 1094 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1095 /// corresponds to, e.g. "sizeof" or "[pre]++". 1096 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1097 switch (Op) { 1098 case UO_PostInc: return "++"; 1099 case UO_PostDec: return "--"; 1100 case UO_PreInc: return "++"; 1101 case UO_PreDec: return "--"; 1102 case UO_AddrOf: return "&"; 1103 case UO_Deref: return "*"; 1104 case UO_Plus: return "+"; 1105 case UO_Minus: return "-"; 1106 case UO_Not: return "~"; 1107 case UO_LNot: return "!"; 1108 case UO_Real: return "__real"; 1109 case UO_Imag: return "__imag"; 1110 case UO_Extension: return "__extension__"; 1111 case UO_Coawait: return "co_await"; 1112 } 1113 llvm_unreachable("Unknown unary operator"); 1114 } 1115 1116 UnaryOperatorKind 1117 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1118 switch (OO) { 1119 default: llvm_unreachable("No unary operator for overloaded function"); 1120 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1121 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1122 case OO_Amp: return UO_AddrOf; 1123 case OO_Star: return UO_Deref; 1124 case OO_Plus: return UO_Plus; 1125 case OO_Minus: return UO_Minus; 1126 case OO_Tilde: return UO_Not; 1127 case OO_Exclaim: return UO_LNot; 1128 case OO_Coawait: return UO_Coawait; 1129 } 1130 } 1131 1132 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1133 switch (Opc) { 1134 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1135 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1136 case UO_AddrOf: return OO_Amp; 1137 case UO_Deref: return OO_Star; 1138 case UO_Plus: return OO_Plus; 1139 case UO_Minus: return OO_Minus; 1140 case UO_Not: return OO_Tilde; 1141 case UO_LNot: return OO_Exclaim; 1142 case UO_Coawait: return OO_Coawait; 1143 default: return OO_None; 1144 } 1145 } 1146 1147 1148 //===----------------------------------------------------------------------===// 1149 // Postfix Operators. 1150 //===----------------------------------------------------------------------===// 1151 1152 CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn, 1153 unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t, 1154 ExprValueKind VK, SourceLocation rparenloc) 1155 : Expr(SC, t, VK, OK_Ordinary, 1156 fn->isTypeDependent(), 1157 fn->isValueDependent(), 1158 fn->isInstantiationDependent(), 1159 fn->containsUnexpandedParameterPack()), 1160 NumArgs(args.size()) { 1161 1162 SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs]; 1163 SubExprs[FN] = fn; 1164 for (unsigned i = 0; i != args.size(); ++i) { 1165 if (args[i]->isTypeDependent()) 1166 ExprBits.TypeDependent = true; 1167 if (args[i]->isValueDependent()) 1168 ExprBits.ValueDependent = true; 1169 if (args[i]->isInstantiationDependent()) 1170 ExprBits.InstantiationDependent = true; 1171 if (args[i]->containsUnexpandedParameterPack()) 1172 ExprBits.ContainsUnexpandedParameterPack = true; 1173 1174 SubExprs[i+PREARGS_START+NumPreArgs] = args[i]; 1175 } 1176 1177 CallExprBits.NumPreArgs = NumPreArgs; 1178 RParenLoc = rparenloc; 1179 } 1180 1181 CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args, 1182 QualType t, ExprValueKind VK, SourceLocation rparenloc) 1183 : CallExpr(C, CallExprClass, fn, /*NumPreArgs=*/0, args, t, VK, rparenloc) { 1184 } 1185 1186 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty) 1187 : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {} 1188 1189 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs, 1190 EmptyShell Empty) 1191 : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) { 1192 // FIXME: Why do we allocate this? 1193 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]; 1194 CallExprBits.NumPreArgs = NumPreArgs; 1195 } 1196 1197 Decl *CallExpr::getCalleeDecl() { 1198 Expr *CEE = getCallee()->IgnoreParenImpCasts(); 1199 1200 while (SubstNonTypeTemplateParmExpr *NTTP 1201 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 1202 CEE = NTTP->getReplacement()->IgnoreParenCasts(); 1203 } 1204 1205 // If we're calling a dereference, look at the pointer instead. 1206 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 1207 if (BO->isPtrMemOp()) 1208 CEE = BO->getRHS()->IgnoreParenCasts(); 1209 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 1210 if (UO->getOpcode() == UO_Deref) 1211 CEE = UO->getSubExpr()->IgnoreParenCasts(); 1212 } 1213 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 1214 return DRE->getDecl(); 1215 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 1216 return ME->getMemberDecl(); 1217 1218 return nullptr; 1219 } 1220 1221 FunctionDecl *CallExpr::getDirectCallee() { 1222 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); 1223 } 1224 1225 /// setNumArgs - This changes the number of arguments present in this call. 1226 /// Any orphaned expressions are deleted by this, and any new operands are set 1227 /// to null. 1228 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) { 1229 // No change, just return. 1230 if (NumArgs == getNumArgs()) return; 1231 1232 // If shrinking # arguments, just delete the extras and forgot them. 1233 if (NumArgs < getNumArgs()) { 1234 this->NumArgs = NumArgs; 1235 return; 1236 } 1237 1238 // Otherwise, we are growing the # arguments. New an bigger argument array. 1239 unsigned NumPreArgs = getNumPreArgs(); 1240 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs]; 1241 // Copy over args. 1242 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i) 1243 NewSubExprs[i] = SubExprs[i]; 1244 // Null out new args. 1245 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs; 1246 i != NumArgs+PREARGS_START+NumPreArgs; ++i) 1247 NewSubExprs[i] = nullptr; 1248 1249 if (SubExprs) C.Deallocate(SubExprs); 1250 SubExprs = NewSubExprs; 1251 this->NumArgs = NumArgs; 1252 } 1253 1254 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If 1255 /// not, return 0. 1256 unsigned CallExpr::getBuiltinCallee() const { 1257 // All simple function calls (e.g. func()) are implicitly cast to pointer to 1258 // function. As a result, we try and obtain the DeclRefExpr from the 1259 // ImplicitCastExpr. 1260 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); 1261 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). 1262 return 0; 1263 1264 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); 1265 if (!DRE) 1266 return 0; 1267 1268 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); 1269 if (!FDecl) 1270 return 0; 1271 1272 if (!FDecl->getIdentifier()) 1273 return 0; 1274 1275 return FDecl->getBuiltinID(); 1276 } 1277 1278 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1279 if (unsigned BI = getBuiltinCallee()) 1280 return Ctx.BuiltinInfo.isUnevaluated(BI); 1281 return false; 1282 } 1283 1284 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1285 const Expr *Callee = getCallee(); 1286 QualType CalleeType = Callee->getType(); 1287 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1288 CalleeType = FnTypePtr->getPointeeType(); 1289 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1290 CalleeType = BPT->getPointeeType(); 1291 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1292 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1293 return Ctx.VoidTy; 1294 1295 // This should never be overloaded and so should never return null. 1296 CalleeType = Expr::findBoundMemberType(Callee); 1297 } 1298 1299 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1300 return FnType->getReturnType(); 1301 } 1302 1303 SourceLocation CallExpr::getLocStart() const { 1304 if (isa<CXXOperatorCallExpr>(this)) 1305 return cast<CXXOperatorCallExpr>(this)->getLocStart(); 1306 1307 SourceLocation begin = getCallee()->getLocStart(); 1308 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1309 begin = getArg(0)->getLocStart(); 1310 return begin; 1311 } 1312 SourceLocation CallExpr::getLocEnd() const { 1313 if (isa<CXXOperatorCallExpr>(this)) 1314 return cast<CXXOperatorCallExpr>(this)->getLocEnd(); 1315 1316 SourceLocation end = getRParenLoc(); 1317 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1318 end = getArg(getNumArgs() - 1)->getLocEnd(); 1319 return end; 1320 } 1321 1322 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1323 SourceLocation OperatorLoc, 1324 TypeSourceInfo *tsi, 1325 ArrayRef<OffsetOfNode> comps, 1326 ArrayRef<Expr*> exprs, 1327 SourceLocation RParenLoc) { 1328 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 1329 sizeof(OffsetOfNode) * comps.size() + 1330 sizeof(Expr*) * exprs.size()); 1331 1332 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1333 RParenLoc); 1334 } 1335 1336 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1337 unsigned numComps, unsigned numExprs) { 1338 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 1339 sizeof(OffsetOfNode) * numComps + 1340 sizeof(Expr*) * numExprs); 1341 return new (Mem) OffsetOfExpr(numComps, numExprs); 1342 } 1343 1344 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1345 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1346 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs, 1347 SourceLocation RParenLoc) 1348 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, 1349 /*TypeDependent=*/false, 1350 /*ValueDependent=*/tsi->getType()->isDependentType(), 1351 tsi->getType()->isInstantiationDependentType(), 1352 tsi->getType()->containsUnexpandedParameterPack()), 1353 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1354 NumComps(comps.size()), NumExprs(exprs.size()) 1355 { 1356 for (unsigned i = 0; i != comps.size(); ++i) { 1357 setComponent(i, comps[i]); 1358 } 1359 1360 for (unsigned i = 0; i != exprs.size(); ++i) { 1361 if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent()) 1362 ExprBits.ValueDependent = true; 1363 if (exprs[i]->containsUnexpandedParameterPack()) 1364 ExprBits.ContainsUnexpandedParameterPack = true; 1365 1366 setIndexExpr(i, exprs[i]); 1367 } 1368 } 1369 1370 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const { 1371 assert(getKind() == Field || getKind() == Identifier); 1372 if (getKind() == Field) 1373 return getField()->getIdentifier(); 1374 1375 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1376 } 1377 1378 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1379 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1380 SourceLocation op, SourceLocation rp) 1381 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary, 1382 false, // Never type-dependent (C++ [temp.dep.expr]p3). 1383 // Value-dependent if the argument is type-dependent. 1384 E->isTypeDependent(), E->isInstantiationDependent(), 1385 E->containsUnexpandedParameterPack()), 1386 OpLoc(op), RParenLoc(rp) { 1387 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1388 UnaryExprOrTypeTraitExprBits.IsType = false; 1389 Argument.Ex = E; 1390 1391 // Check to see if we are in the situation where alignof(decl) should be 1392 // dependent because decl's alignment is dependent. 1393 if (ExprKind == UETT_AlignOf) { 1394 if (!isValueDependent() || !isInstantiationDependent()) { 1395 E = E->IgnoreParens(); 1396 1397 const ValueDecl *D = nullptr; 1398 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 1399 D = DRE->getDecl(); 1400 else if (const auto *ME = dyn_cast<MemberExpr>(E)) 1401 D = ME->getMemberDecl(); 1402 1403 if (D) { 1404 for (const auto *I : D->specific_attrs<AlignedAttr>()) { 1405 if (I->isAlignmentDependent()) { 1406 setValueDependent(true); 1407 setInstantiationDependent(true); 1408 break; 1409 } 1410 } 1411 } 1412 } 1413 } 1414 } 1415 1416 MemberExpr *MemberExpr::Create( 1417 const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc, 1418 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1419 ValueDecl *memberdecl, DeclAccessPair founddecl, 1420 DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs, 1421 QualType ty, ExprValueKind vk, ExprObjectKind ok) { 1422 std::size_t Size = sizeof(MemberExpr); 1423 1424 bool hasQualOrFound = (QualifierLoc || 1425 founddecl.getDecl() != memberdecl || 1426 founddecl.getAccess() != memberdecl->getAccess()); 1427 if (hasQualOrFound) 1428 Size += sizeof(MemberNameQualifier); 1429 1430 if (targs) 1431 Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size()); 1432 else if (TemplateKWLoc.isValid()) 1433 Size += ASTTemplateKWAndArgsInfo::sizeFor(0); 1434 1435 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>()); 1436 MemberExpr *E = new (Mem) 1437 MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok); 1438 1439 if (hasQualOrFound) { 1440 // FIXME: Wrong. We should be looking at the member declaration we found. 1441 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { 1442 E->setValueDependent(true); 1443 E->setTypeDependent(true); 1444 E->setInstantiationDependent(true); 1445 } 1446 else if (QualifierLoc && 1447 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 1448 E->setInstantiationDependent(true); 1449 1450 E->HasQualifierOrFoundDecl = true; 1451 1452 MemberNameQualifier *NQ = E->getMemberQualifier(); 1453 NQ->QualifierLoc = QualifierLoc; 1454 NQ->FoundDecl = founddecl; 1455 } 1456 1457 E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid()); 1458 1459 if (targs) { 1460 bool Dependent = false; 1461 bool InstantiationDependent = false; 1462 bool ContainsUnexpandedParameterPack = false; 1463 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs, 1464 Dependent, 1465 InstantiationDependent, 1466 ContainsUnexpandedParameterPack); 1467 if (InstantiationDependent) 1468 E->setInstantiationDependent(true); 1469 } else if (TemplateKWLoc.isValid()) { 1470 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); 1471 } 1472 1473 return E; 1474 } 1475 1476 SourceLocation MemberExpr::getLocStart() const { 1477 if (isImplicitAccess()) { 1478 if (hasQualifier()) 1479 return getQualifierLoc().getBeginLoc(); 1480 return MemberLoc; 1481 } 1482 1483 // FIXME: We don't want this to happen. Rather, we should be able to 1484 // detect all kinds of implicit accesses more cleanly. 1485 SourceLocation BaseStartLoc = getBase()->getLocStart(); 1486 if (BaseStartLoc.isValid()) 1487 return BaseStartLoc; 1488 return MemberLoc; 1489 } 1490 SourceLocation MemberExpr::getLocEnd() const { 1491 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1492 if (hasExplicitTemplateArgs()) 1493 EndLoc = getRAngleLoc(); 1494 else if (EndLoc.isInvalid()) 1495 EndLoc = getBase()->getLocEnd(); 1496 return EndLoc; 1497 } 1498 1499 bool CastExpr::CastConsistency() const { 1500 switch (getCastKind()) { 1501 case CK_DerivedToBase: 1502 case CK_UncheckedDerivedToBase: 1503 case CK_DerivedToBaseMemberPointer: 1504 case CK_BaseToDerived: 1505 case CK_BaseToDerivedMemberPointer: 1506 assert(!path_empty() && "Cast kind should have a base path!"); 1507 break; 1508 1509 case CK_CPointerToObjCPointerCast: 1510 assert(getType()->isObjCObjectPointerType()); 1511 assert(getSubExpr()->getType()->isPointerType()); 1512 goto CheckNoBasePath; 1513 1514 case CK_BlockPointerToObjCPointerCast: 1515 assert(getType()->isObjCObjectPointerType()); 1516 assert(getSubExpr()->getType()->isBlockPointerType()); 1517 goto CheckNoBasePath; 1518 1519 case CK_ReinterpretMemberPointer: 1520 assert(getType()->isMemberPointerType()); 1521 assert(getSubExpr()->getType()->isMemberPointerType()); 1522 goto CheckNoBasePath; 1523 1524 case CK_BitCast: 1525 // Arbitrary casts to C pointer types count as bitcasts. 1526 // Otherwise, we should only have block and ObjC pointer casts 1527 // here if they stay within the type kind. 1528 if (!getType()->isPointerType()) { 1529 assert(getType()->isObjCObjectPointerType() == 1530 getSubExpr()->getType()->isObjCObjectPointerType()); 1531 assert(getType()->isBlockPointerType() == 1532 getSubExpr()->getType()->isBlockPointerType()); 1533 } 1534 goto CheckNoBasePath; 1535 1536 case CK_AnyPointerToBlockPointerCast: 1537 assert(getType()->isBlockPointerType()); 1538 assert(getSubExpr()->getType()->isAnyPointerType() && 1539 !getSubExpr()->getType()->isBlockPointerType()); 1540 goto CheckNoBasePath; 1541 1542 case CK_CopyAndAutoreleaseBlockObject: 1543 assert(getType()->isBlockPointerType()); 1544 assert(getSubExpr()->getType()->isBlockPointerType()); 1545 goto CheckNoBasePath; 1546 1547 case CK_FunctionToPointerDecay: 1548 assert(getType()->isPointerType()); 1549 assert(getSubExpr()->getType()->isFunctionType()); 1550 goto CheckNoBasePath; 1551 1552 case CK_AddressSpaceConversion: 1553 assert(getType()->isPointerType()); 1554 assert(getSubExpr()->getType()->isPointerType()); 1555 assert(getType()->getPointeeType().getAddressSpace() != 1556 getSubExpr()->getType()->getPointeeType().getAddressSpace()); 1557 // These should not have an inheritance path. 1558 case CK_Dynamic: 1559 case CK_ToUnion: 1560 case CK_ArrayToPointerDecay: 1561 case CK_NullToMemberPointer: 1562 case CK_NullToPointer: 1563 case CK_ConstructorConversion: 1564 case CK_IntegralToPointer: 1565 case CK_PointerToIntegral: 1566 case CK_ToVoid: 1567 case CK_VectorSplat: 1568 case CK_IntegralCast: 1569 case CK_IntegralToFloating: 1570 case CK_FloatingToIntegral: 1571 case CK_FloatingCast: 1572 case CK_ObjCObjectLValueCast: 1573 case CK_FloatingRealToComplex: 1574 case CK_FloatingComplexToReal: 1575 case CK_FloatingComplexCast: 1576 case CK_FloatingComplexToIntegralComplex: 1577 case CK_IntegralRealToComplex: 1578 case CK_IntegralComplexToReal: 1579 case CK_IntegralComplexCast: 1580 case CK_IntegralComplexToFloatingComplex: 1581 case CK_ARCProduceObject: 1582 case CK_ARCConsumeObject: 1583 case CK_ARCReclaimReturnedObject: 1584 case CK_ARCExtendBlockObject: 1585 case CK_ZeroToOCLEvent: 1586 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1587 goto CheckNoBasePath; 1588 1589 case CK_Dependent: 1590 case CK_LValueToRValue: 1591 case CK_NoOp: 1592 case CK_AtomicToNonAtomic: 1593 case CK_NonAtomicToAtomic: 1594 case CK_PointerToBoolean: 1595 case CK_IntegralToBoolean: 1596 case CK_FloatingToBoolean: 1597 case CK_MemberPointerToBoolean: 1598 case CK_FloatingComplexToBoolean: 1599 case CK_IntegralComplexToBoolean: 1600 case CK_LValueBitCast: // -> bool& 1601 case CK_UserDefinedConversion: // operator bool() 1602 case CK_BuiltinFnToFnPtr: 1603 CheckNoBasePath: 1604 assert(path_empty() && "Cast kind should not have a base path!"); 1605 break; 1606 } 1607 return true; 1608 } 1609 1610 const char *CastExpr::getCastKindName() const { 1611 switch (getCastKind()) { 1612 case CK_Dependent: 1613 return "Dependent"; 1614 case CK_BitCast: 1615 return "BitCast"; 1616 case CK_LValueBitCast: 1617 return "LValueBitCast"; 1618 case CK_LValueToRValue: 1619 return "LValueToRValue"; 1620 case CK_NoOp: 1621 return "NoOp"; 1622 case CK_BaseToDerived: 1623 return "BaseToDerived"; 1624 case CK_DerivedToBase: 1625 return "DerivedToBase"; 1626 case CK_UncheckedDerivedToBase: 1627 return "UncheckedDerivedToBase"; 1628 case CK_Dynamic: 1629 return "Dynamic"; 1630 case CK_ToUnion: 1631 return "ToUnion"; 1632 case CK_ArrayToPointerDecay: 1633 return "ArrayToPointerDecay"; 1634 case CK_FunctionToPointerDecay: 1635 return "FunctionToPointerDecay"; 1636 case CK_NullToMemberPointer: 1637 return "NullToMemberPointer"; 1638 case CK_NullToPointer: 1639 return "NullToPointer"; 1640 case CK_BaseToDerivedMemberPointer: 1641 return "BaseToDerivedMemberPointer"; 1642 case CK_DerivedToBaseMemberPointer: 1643 return "DerivedToBaseMemberPointer"; 1644 case CK_ReinterpretMemberPointer: 1645 return "ReinterpretMemberPointer"; 1646 case CK_UserDefinedConversion: 1647 return "UserDefinedConversion"; 1648 case CK_ConstructorConversion: 1649 return "ConstructorConversion"; 1650 case CK_IntegralToPointer: 1651 return "IntegralToPointer"; 1652 case CK_PointerToIntegral: 1653 return "PointerToIntegral"; 1654 case CK_PointerToBoolean: 1655 return "PointerToBoolean"; 1656 case CK_ToVoid: 1657 return "ToVoid"; 1658 case CK_VectorSplat: 1659 return "VectorSplat"; 1660 case CK_IntegralCast: 1661 return "IntegralCast"; 1662 case CK_IntegralToBoolean: 1663 return "IntegralToBoolean"; 1664 case CK_IntegralToFloating: 1665 return "IntegralToFloating"; 1666 case CK_FloatingToIntegral: 1667 return "FloatingToIntegral"; 1668 case CK_FloatingCast: 1669 return "FloatingCast"; 1670 case CK_FloatingToBoolean: 1671 return "FloatingToBoolean"; 1672 case CK_MemberPointerToBoolean: 1673 return "MemberPointerToBoolean"; 1674 case CK_CPointerToObjCPointerCast: 1675 return "CPointerToObjCPointerCast"; 1676 case CK_BlockPointerToObjCPointerCast: 1677 return "BlockPointerToObjCPointerCast"; 1678 case CK_AnyPointerToBlockPointerCast: 1679 return "AnyPointerToBlockPointerCast"; 1680 case CK_ObjCObjectLValueCast: 1681 return "ObjCObjectLValueCast"; 1682 case CK_FloatingRealToComplex: 1683 return "FloatingRealToComplex"; 1684 case CK_FloatingComplexToReal: 1685 return "FloatingComplexToReal"; 1686 case CK_FloatingComplexToBoolean: 1687 return "FloatingComplexToBoolean"; 1688 case CK_FloatingComplexCast: 1689 return "FloatingComplexCast"; 1690 case CK_FloatingComplexToIntegralComplex: 1691 return "FloatingComplexToIntegralComplex"; 1692 case CK_IntegralRealToComplex: 1693 return "IntegralRealToComplex"; 1694 case CK_IntegralComplexToReal: 1695 return "IntegralComplexToReal"; 1696 case CK_IntegralComplexToBoolean: 1697 return "IntegralComplexToBoolean"; 1698 case CK_IntegralComplexCast: 1699 return "IntegralComplexCast"; 1700 case CK_IntegralComplexToFloatingComplex: 1701 return "IntegralComplexToFloatingComplex"; 1702 case CK_ARCConsumeObject: 1703 return "ARCConsumeObject"; 1704 case CK_ARCProduceObject: 1705 return "ARCProduceObject"; 1706 case CK_ARCReclaimReturnedObject: 1707 return "ARCReclaimReturnedObject"; 1708 case CK_ARCExtendBlockObject: 1709 return "ARCExtendBlockObject"; 1710 case CK_AtomicToNonAtomic: 1711 return "AtomicToNonAtomic"; 1712 case CK_NonAtomicToAtomic: 1713 return "NonAtomicToAtomic"; 1714 case CK_CopyAndAutoreleaseBlockObject: 1715 return "CopyAndAutoreleaseBlockObject"; 1716 case CK_BuiltinFnToFnPtr: 1717 return "BuiltinFnToFnPtr"; 1718 case CK_ZeroToOCLEvent: 1719 return "ZeroToOCLEvent"; 1720 case CK_AddressSpaceConversion: 1721 return "AddressSpaceConversion"; 1722 } 1723 1724 llvm_unreachable("Unhandled cast kind!"); 1725 } 1726 1727 Expr *CastExpr::getSubExprAsWritten() { 1728 Expr *SubExpr = nullptr; 1729 CastExpr *E = this; 1730 do { 1731 SubExpr = E->getSubExpr(); 1732 1733 // Skip through reference binding to temporary. 1734 if (MaterializeTemporaryExpr *Materialize 1735 = dyn_cast<MaterializeTemporaryExpr>(SubExpr)) 1736 SubExpr = Materialize->GetTemporaryExpr(); 1737 1738 // Skip any temporary bindings; they're implicit. 1739 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) 1740 SubExpr = Binder->getSubExpr(); 1741 1742 // Conversions by constructor and conversion functions have a 1743 // subexpression describing the call; strip it off. 1744 if (E->getCastKind() == CK_ConstructorConversion) 1745 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); 1746 else if (E->getCastKind() == CK_UserDefinedConversion) 1747 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); 1748 1749 // If the subexpression we're left with is an implicit cast, look 1750 // through that, too. 1751 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 1752 1753 return SubExpr; 1754 } 1755 1756 CXXBaseSpecifier **CastExpr::path_buffer() { 1757 switch (getStmtClass()) { 1758 #define ABSTRACT_STMT(x) 1759 #define CASTEXPR(Type, Base) \ 1760 case Stmt::Type##Class: \ 1761 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1); 1762 #define STMT(Type, Base) 1763 #include "clang/AST/StmtNodes.inc" 1764 default: 1765 llvm_unreachable("non-cast expressions not possible here"); 1766 } 1767 } 1768 1769 void CastExpr::setCastPath(const CXXCastPath &Path) { 1770 assert(Path.size() == path_size()); 1771 memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*)); 1772 } 1773 1774 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 1775 CastKind Kind, Expr *Operand, 1776 const CXXCastPath *BasePath, 1777 ExprValueKind VK) { 1778 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1779 void *Buffer = 1780 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1781 ImplicitCastExpr *E = 1782 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); 1783 if (PathSize) E->setCastPath(*BasePath); 1784 return E; 1785 } 1786 1787 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 1788 unsigned PathSize) { 1789 void *Buffer = 1790 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1791 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); 1792 } 1793 1794 1795 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 1796 ExprValueKind VK, CastKind K, Expr *Op, 1797 const CXXCastPath *BasePath, 1798 TypeSourceInfo *WrittenTy, 1799 SourceLocation L, SourceLocation R) { 1800 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1801 void *Buffer = 1802 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1803 CStyleCastExpr *E = 1804 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); 1805 if (PathSize) E->setCastPath(*BasePath); 1806 return E; 1807 } 1808 1809 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 1810 unsigned PathSize) { 1811 void *Buffer = 1812 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1813 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); 1814 } 1815 1816 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1817 /// corresponds to, e.g. "<<=". 1818 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 1819 switch (Op) { 1820 case BO_PtrMemD: return ".*"; 1821 case BO_PtrMemI: return "->*"; 1822 case BO_Mul: return "*"; 1823 case BO_Div: return "/"; 1824 case BO_Rem: return "%"; 1825 case BO_Add: return "+"; 1826 case BO_Sub: return "-"; 1827 case BO_Shl: return "<<"; 1828 case BO_Shr: return ">>"; 1829 case BO_LT: return "<"; 1830 case BO_GT: return ">"; 1831 case BO_LE: return "<="; 1832 case BO_GE: return ">="; 1833 case BO_EQ: return "=="; 1834 case BO_NE: return "!="; 1835 case BO_And: return "&"; 1836 case BO_Xor: return "^"; 1837 case BO_Or: return "|"; 1838 case BO_LAnd: return "&&"; 1839 case BO_LOr: return "||"; 1840 case BO_Assign: return "="; 1841 case BO_MulAssign: return "*="; 1842 case BO_DivAssign: return "/="; 1843 case BO_RemAssign: return "%="; 1844 case BO_AddAssign: return "+="; 1845 case BO_SubAssign: return "-="; 1846 case BO_ShlAssign: return "<<="; 1847 case BO_ShrAssign: return ">>="; 1848 case BO_AndAssign: return "&="; 1849 case BO_XorAssign: return "^="; 1850 case BO_OrAssign: return "|="; 1851 case BO_Comma: return ","; 1852 } 1853 1854 llvm_unreachable("Invalid OpCode!"); 1855 } 1856 1857 BinaryOperatorKind 1858 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 1859 switch (OO) { 1860 default: llvm_unreachable("Not an overloadable binary operator"); 1861 case OO_Plus: return BO_Add; 1862 case OO_Minus: return BO_Sub; 1863 case OO_Star: return BO_Mul; 1864 case OO_Slash: return BO_Div; 1865 case OO_Percent: return BO_Rem; 1866 case OO_Caret: return BO_Xor; 1867 case OO_Amp: return BO_And; 1868 case OO_Pipe: return BO_Or; 1869 case OO_Equal: return BO_Assign; 1870 case OO_Less: return BO_LT; 1871 case OO_Greater: return BO_GT; 1872 case OO_PlusEqual: return BO_AddAssign; 1873 case OO_MinusEqual: return BO_SubAssign; 1874 case OO_StarEqual: return BO_MulAssign; 1875 case OO_SlashEqual: return BO_DivAssign; 1876 case OO_PercentEqual: return BO_RemAssign; 1877 case OO_CaretEqual: return BO_XorAssign; 1878 case OO_AmpEqual: return BO_AndAssign; 1879 case OO_PipeEqual: return BO_OrAssign; 1880 case OO_LessLess: return BO_Shl; 1881 case OO_GreaterGreater: return BO_Shr; 1882 case OO_LessLessEqual: return BO_ShlAssign; 1883 case OO_GreaterGreaterEqual: return BO_ShrAssign; 1884 case OO_EqualEqual: return BO_EQ; 1885 case OO_ExclaimEqual: return BO_NE; 1886 case OO_LessEqual: return BO_LE; 1887 case OO_GreaterEqual: return BO_GE; 1888 case OO_AmpAmp: return BO_LAnd; 1889 case OO_PipePipe: return BO_LOr; 1890 case OO_Comma: return BO_Comma; 1891 case OO_ArrowStar: return BO_PtrMemI; 1892 } 1893 } 1894 1895 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 1896 static const OverloadedOperatorKind OverOps[] = { 1897 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 1898 OO_Star, OO_Slash, OO_Percent, 1899 OO_Plus, OO_Minus, 1900 OO_LessLess, OO_GreaterGreater, 1901 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 1902 OO_EqualEqual, OO_ExclaimEqual, 1903 OO_Amp, 1904 OO_Caret, 1905 OO_Pipe, 1906 OO_AmpAmp, 1907 OO_PipePipe, 1908 OO_Equal, OO_StarEqual, 1909 OO_SlashEqual, OO_PercentEqual, 1910 OO_PlusEqual, OO_MinusEqual, 1911 OO_LessLessEqual, OO_GreaterGreaterEqual, 1912 OO_AmpEqual, OO_CaretEqual, 1913 OO_PipeEqual, 1914 OO_Comma 1915 }; 1916 return OverOps[Opc]; 1917 } 1918 1919 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 1920 ArrayRef<Expr*> initExprs, SourceLocation rbraceloc) 1921 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, 1922 false, false), 1923 InitExprs(C, initExprs.size()), 1924 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true) 1925 { 1926 sawArrayRangeDesignator(false); 1927 for (unsigned I = 0; I != initExprs.size(); ++I) { 1928 if (initExprs[I]->isTypeDependent()) 1929 ExprBits.TypeDependent = true; 1930 if (initExprs[I]->isValueDependent()) 1931 ExprBits.ValueDependent = true; 1932 if (initExprs[I]->isInstantiationDependent()) 1933 ExprBits.InstantiationDependent = true; 1934 if (initExprs[I]->containsUnexpandedParameterPack()) 1935 ExprBits.ContainsUnexpandedParameterPack = true; 1936 } 1937 1938 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 1939 } 1940 1941 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 1942 if (NumInits > InitExprs.size()) 1943 InitExprs.reserve(C, NumInits); 1944 } 1945 1946 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 1947 InitExprs.resize(C, NumInits, nullptr); 1948 } 1949 1950 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 1951 if (Init >= InitExprs.size()) { 1952 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 1953 setInit(Init, expr); 1954 return nullptr; 1955 } 1956 1957 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 1958 setInit(Init, expr); 1959 return Result; 1960 } 1961 1962 void InitListExpr::setArrayFiller(Expr *filler) { 1963 assert(!hasArrayFiller() && "Filler already set!"); 1964 ArrayFillerOrUnionFieldInit = filler; 1965 // Fill out any "holes" in the array due to designated initializers. 1966 Expr **inits = getInits(); 1967 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 1968 if (inits[i] == nullptr) 1969 inits[i] = filler; 1970 } 1971 1972 bool InitListExpr::isStringLiteralInit() const { 1973 if (getNumInits() != 1) 1974 return false; 1975 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 1976 if (!AT || !AT->getElementType()->isIntegerType()) 1977 return false; 1978 // It is possible for getInit() to return null. 1979 const Expr *Init = getInit(0); 1980 if (!Init) 1981 return false; 1982 Init = Init->IgnoreParens(); 1983 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 1984 } 1985 1986 SourceLocation InitListExpr::getLocStart() const { 1987 if (InitListExpr *SyntacticForm = getSyntacticForm()) 1988 return SyntacticForm->getLocStart(); 1989 SourceLocation Beg = LBraceLoc; 1990 if (Beg.isInvalid()) { 1991 // Find the first non-null initializer. 1992 for (InitExprsTy::const_iterator I = InitExprs.begin(), 1993 E = InitExprs.end(); 1994 I != E; ++I) { 1995 if (Stmt *S = *I) { 1996 Beg = S->getLocStart(); 1997 break; 1998 } 1999 } 2000 } 2001 return Beg; 2002 } 2003 2004 SourceLocation InitListExpr::getLocEnd() const { 2005 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2006 return SyntacticForm->getLocEnd(); 2007 SourceLocation End = RBraceLoc; 2008 if (End.isInvalid()) { 2009 // Find the first non-null initializer from the end. 2010 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), 2011 E = InitExprs.rend(); 2012 I != E; ++I) { 2013 if (Stmt *S = *I) { 2014 End = S->getLocEnd(); 2015 break; 2016 } 2017 } 2018 } 2019 return End; 2020 } 2021 2022 /// getFunctionType - Return the underlying function type for this block. 2023 /// 2024 const FunctionProtoType *BlockExpr::getFunctionType() const { 2025 // The block pointer is never sugared, but the function type might be. 2026 return cast<BlockPointerType>(getType()) 2027 ->getPointeeType()->castAs<FunctionProtoType>(); 2028 } 2029 2030 SourceLocation BlockExpr::getCaretLocation() const { 2031 return TheBlock->getCaretLocation(); 2032 } 2033 const Stmt *BlockExpr::getBody() const { 2034 return TheBlock->getBody(); 2035 } 2036 Stmt *BlockExpr::getBody() { 2037 return TheBlock->getBody(); 2038 } 2039 2040 2041 //===----------------------------------------------------------------------===// 2042 // Generic Expression Routines 2043 //===----------------------------------------------------------------------===// 2044 2045 /// isUnusedResultAWarning - Return true if this immediate expression should 2046 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2047 /// with location to warn on and the source range[s] to report with the 2048 /// warning. 2049 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2050 SourceRange &R1, SourceRange &R2, 2051 ASTContext &Ctx) const { 2052 // Don't warn if the expr is type dependent. The type could end up 2053 // instantiating to void. 2054 if (isTypeDependent()) 2055 return false; 2056 2057 switch (getStmtClass()) { 2058 default: 2059 if (getType()->isVoidType()) 2060 return false; 2061 WarnE = this; 2062 Loc = getExprLoc(); 2063 R1 = getSourceRange(); 2064 return true; 2065 case ParenExprClass: 2066 return cast<ParenExpr>(this)->getSubExpr()-> 2067 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2068 case GenericSelectionExprClass: 2069 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2070 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2071 case ChooseExprClass: 2072 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2073 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2074 case UnaryOperatorClass: { 2075 const UnaryOperator *UO = cast<UnaryOperator>(this); 2076 2077 switch (UO->getOpcode()) { 2078 case UO_Plus: 2079 case UO_Minus: 2080 case UO_AddrOf: 2081 case UO_Not: 2082 case UO_LNot: 2083 case UO_Deref: 2084 break; 2085 case UO_Coawait: 2086 // This is just the 'operator co_await' call inside the guts of a 2087 // dependent co_await call. 2088 case UO_PostInc: 2089 case UO_PostDec: 2090 case UO_PreInc: 2091 case UO_PreDec: // ++/-- 2092 return false; // Not a warning. 2093 case UO_Real: 2094 case UO_Imag: 2095 // accessing a piece of a volatile complex is a side-effect. 2096 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2097 .isVolatileQualified()) 2098 return false; 2099 break; 2100 case UO_Extension: 2101 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2102 } 2103 WarnE = this; 2104 Loc = UO->getOperatorLoc(); 2105 R1 = UO->getSubExpr()->getSourceRange(); 2106 return true; 2107 } 2108 case BinaryOperatorClass: { 2109 const BinaryOperator *BO = cast<BinaryOperator>(this); 2110 switch (BO->getOpcode()) { 2111 default: 2112 break; 2113 // Consider the RHS of comma for side effects. LHS was checked by 2114 // Sema::CheckCommaOperands. 2115 case BO_Comma: 2116 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2117 // lvalue-ness) of an assignment written in a macro. 2118 if (IntegerLiteral *IE = 2119 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2120 if (IE->getValue() == 0) 2121 return false; 2122 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2123 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2124 case BO_LAnd: 2125 case BO_LOr: 2126 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2127 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2128 return false; 2129 break; 2130 } 2131 if (BO->isAssignmentOp()) 2132 return false; 2133 WarnE = this; 2134 Loc = BO->getOperatorLoc(); 2135 R1 = BO->getLHS()->getSourceRange(); 2136 R2 = BO->getRHS()->getSourceRange(); 2137 return true; 2138 } 2139 case CompoundAssignOperatorClass: 2140 case VAArgExprClass: 2141 case AtomicExprClass: 2142 return false; 2143 2144 case ConditionalOperatorClass: { 2145 // If only one of the LHS or RHS is a warning, the operator might 2146 // be being used for control flow. Only warn if both the LHS and 2147 // RHS are warnings. 2148 const ConditionalOperator *Exp = cast<ConditionalOperator>(this); 2149 if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2150 return false; 2151 if (!Exp->getLHS()) 2152 return true; 2153 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2154 } 2155 2156 case MemberExprClass: 2157 WarnE = this; 2158 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2159 R1 = SourceRange(Loc, Loc); 2160 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2161 return true; 2162 2163 case ArraySubscriptExprClass: 2164 WarnE = this; 2165 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2166 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2167 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2168 return true; 2169 2170 case CXXOperatorCallExprClass: { 2171 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2172 // overloads as there is no reasonable way to define these such that they 2173 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2174 // warning: operators == and != are commonly typo'ed, and so warning on them 2175 // provides additional value as well. If this list is updated, 2176 // DiagnoseUnusedComparison should be as well. 2177 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2178 switch (Op->getOperator()) { 2179 default: 2180 break; 2181 case OO_EqualEqual: 2182 case OO_ExclaimEqual: 2183 case OO_Less: 2184 case OO_Greater: 2185 case OO_GreaterEqual: 2186 case OO_LessEqual: 2187 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2188 Op->getCallReturnType(Ctx)->isVoidType()) 2189 break; 2190 WarnE = this; 2191 Loc = Op->getOperatorLoc(); 2192 R1 = Op->getSourceRange(); 2193 return true; 2194 } 2195 2196 // Fallthrough for generic call handling. 2197 } 2198 case CallExprClass: 2199 case CXXMemberCallExprClass: 2200 case UserDefinedLiteralClass: { 2201 // If this is a direct call, get the callee. 2202 const CallExpr *CE = cast<CallExpr>(this); 2203 if (const Decl *FD = CE->getCalleeDecl()) { 2204 const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD); 2205 bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr() 2206 : FD->hasAttr<WarnUnusedResultAttr>(); 2207 2208 // If the callee has attribute pure, const, or warn_unused_result, warn 2209 // about it. void foo() { strlen("bar"); } should warn. 2210 // 2211 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2212 // updated to match for QoI. 2213 if (HasWarnUnusedResultAttr || 2214 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2215 WarnE = this; 2216 Loc = CE->getCallee()->getLocStart(); 2217 R1 = CE->getCallee()->getSourceRange(); 2218 2219 if (unsigned NumArgs = CE->getNumArgs()) 2220 R2 = SourceRange(CE->getArg(0)->getLocStart(), 2221 CE->getArg(NumArgs-1)->getLocEnd()); 2222 return true; 2223 } 2224 } 2225 return false; 2226 } 2227 2228 // If we don't know precisely what we're looking at, let's not warn. 2229 case UnresolvedLookupExprClass: 2230 case CXXUnresolvedConstructExprClass: 2231 return false; 2232 2233 case CXXTemporaryObjectExprClass: 2234 case CXXConstructExprClass: { 2235 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2236 if (Type->hasAttr<WarnUnusedAttr>()) { 2237 WarnE = this; 2238 Loc = getLocStart(); 2239 R1 = getSourceRange(); 2240 return true; 2241 } 2242 } 2243 return false; 2244 } 2245 2246 case ObjCMessageExprClass: { 2247 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2248 if (Ctx.getLangOpts().ObjCAutoRefCount && 2249 ME->isInstanceMessage() && 2250 !ME->getType()->isVoidType() && 2251 ME->getMethodFamily() == OMF_init) { 2252 WarnE = this; 2253 Loc = getExprLoc(); 2254 R1 = ME->getSourceRange(); 2255 return true; 2256 } 2257 2258 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2259 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2260 WarnE = this; 2261 Loc = getExprLoc(); 2262 return true; 2263 } 2264 2265 return false; 2266 } 2267 2268 case ObjCPropertyRefExprClass: 2269 WarnE = this; 2270 Loc = getExprLoc(); 2271 R1 = getSourceRange(); 2272 return true; 2273 2274 case PseudoObjectExprClass: { 2275 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 2276 2277 // Only complain about things that have the form of a getter. 2278 if (isa<UnaryOperator>(PO->getSyntacticForm()) || 2279 isa<BinaryOperator>(PO->getSyntacticForm())) 2280 return false; 2281 2282 WarnE = this; 2283 Loc = getExprLoc(); 2284 R1 = getSourceRange(); 2285 return true; 2286 } 2287 2288 case StmtExprClass: { 2289 // Statement exprs don't logically have side effects themselves, but are 2290 // sometimes used in macros in ways that give them a type that is unused. 2291 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2292 // however, if the result of the stmt expr is dead, we don't want to emit a 2293 // warning. 2294 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2295 if (!CS->body_empty()) { 2296 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2297 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2298 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2299 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2300 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2301 } 2302 2303 if (getType()->isVoidType()) 2304 return false; 2305 WarnE = this; 2306 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2307 R1 = getSourceRange(); 2308 return true; 2309 } 2310 case CXXFunctionalCastExprClass: 2311 case CStyleCastExprClass: { 2312 // Ignore an explicit cast to void unless the operand is a non-trivial 2313 // volatile lvalue. 2314 const CastExpr *CE = cast<CastExpr>(this); 2315 if (CE->getCastKind() == CK_ToVoid) { 2316 if (CE->getSubExpr()->isGLValue() && 2317 CE->getSubExpr()->getType().isVolatileQualified()) { 2318 const DeclRefExpr *DRE = 2319 dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens()); 2320 if (!(DRE && isa<VarDecl>(DRE->getDecl()) && 2321 cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) { 2322 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, 2323 R1, R2, Ctx); 2324 } 2325 } 2326 return false; 2327 } 2328 2329 // If this is a cast to a constructor conversion, check the operand. 2330 // Otherwise, the result of the cast is unused. 2331 if (CE->getCastKind() == CK_ConstructorConversion) 2332 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2333 2334 WarnE = this; 2335 if (const CXXFunctionalCastExpr *CXXCE = 2336 dyn_cast<CXXFunctionalCastExpr>(this)) { 2337 Loc = CXXCE->getLocStart(); 2338 R1 = CXXCE->getSubExpr()->getSourceRange(); 2339 } else { 2340 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2341 Loc = CStyleCE->getLParenLoc(); 2342 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2343 } 2344 return true; 2345 } 2346 case ImplicitCastExprClass: { 2347 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2348 2349 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2350 if (ICE->getCastKind() == CK_LValueToRValue && 2351 ICE->getSubExpr()->getType().isVolatileQualified()) 2352 return false; 2353 2354 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2355 } 2356 case CXXDefaultArgExprClass: 2357 return (cast<CXXDefaultArgExpr>(this) 2358 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2359 case CXXDefaultInitExprClass: 2360 return (cast<CXXDefaultInitExpr>(this) 2361 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2362 2363 case CXXNewExprClass: 2364 // FIXME: In theory, there might be new expressions that don't have side 2365 // effects (e.g. a placement new with an uninitialized POD). 2366 case CXXDeleteExprClass: 2367 return false; 2368 case CXXBindTemporaryExprClass: 2369 return (cast<CXXBindTemporaryExpr>(this) 2370 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2371 case ExprWithCleanupsClass: 2372 return (cast<ExprWithCleanups>(this) 2373 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2374 } 2375 } 2376 2377 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2378 /// returns true, if it is; false otherwise. 2379 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2380 const Expr *E = IgnoreParens(); 2381 switch (E->getStmtClass()) { 2382 default: 2383 return false; 2384 case ObjCIvarRefExprClass: 2385 return true; 2386 case Expr::UnaryOperatorClass: 2387 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2388 case ImplicitCastExprClass: 2389 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2390 case MaterializeTemporaryExprClass: 2391 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() 2392 ->isOBJCGCCandidate(Ctx); 2393 case CStyleCastExprClass: 2394 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2395 case DeclRefExprClass: { 2396 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2397 2398 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2399 if (VD->hasGlobalStorage()) 2400 return true; 2401 QualType T = VD->getType(); 2402 // dereferencing to a pointer is always a gc'able candidate, 2403 // unless it is __weak. 2404 return T->isPointerType() && 2405 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2406 } 2407 return false; 2408 } 2409 case MemberExprClass: { 2410 const MemberExpr *M = cast<MemberExpr>(E); 2411 return M->getBase()->isOBJCGCCandidate(Ctx); 2412 } 2413 case ArraySubscriptExprClass: 2414 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2415 } 2416 } 2417 2418 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2419 if (isTypeDependent()) 2420 return false; 2421 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2422 } 2423 2424 QualType Expr::findBoundMemberType(const Expr *expr) { 2425 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2426 2427 // Bound member expressions are always one of these possibilities: 2428 // x->m x.m x->*y x.*y 2429 // (possibly parenthesized) 2430 2431 expr = expr->IgnoreParens(); 2432 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 2433 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 2434 return mem->getMemberDecl()->getType(); 2435 } 2436 2437 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 2438 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 2439 ->getPointeeType(); 2440 assert(type->isFunctionType()); 2441 return type; 2442 } 2443 2444 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 2445 return QualType(); 2446 } 2447 2448 Expr* Expr::IgnoreParens() { 2449 Expr* E = this; 2450 while (true) { 2451 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { 2452 E = P->getSubExpr(); 2453 continue; 2454 } 2455 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2456 if (P->getOpcode() == UO_Extension) { 2457 E = P->getSubExpr(); 2458 continue; 2459 } 2460 } 2461 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2462 if (!P->isResultDependent()) { 2463 E = P->getResultExpr(); 2464 continue; 2465 } 2466 } 2467 if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) { 2468 if (!P->isConditionDependent()) { 2469 E = P->getChosenSubExpr(); 2470 continue; 2471 } 2472 } 2473 return E; 2474 } 2475 } 2476 2477 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr 2478 /// or CastExprs or ImplicitCastExprs, returning their operand. 2479 Expr *Expr::IgnoreParenCasts() { 2480 Expr *E = this; 2481 while (true) { 2482 E = E->IgnoreParens(); 2483 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2484 E = P->getSubExpr(); 2485 continue; 2486 } 2487 if (MaterializeTemporaryExpr *Materialize 2488 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2489 E = Materialize->GetTemporaryExpr(); 2490 continue; 2491 } 2492 if (SubstNonTypeTemplateParmExpr *NTTP 2493 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2494 E = NTTP->getReplacement(); 2495 continue; 2496 } 2497 return E; 2498 } 2499 } 2500 2501 Expr *Expr::IgnoreCasts() { 2502 Expr *E = this; 2503 while (true) { 2504 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2505 E = P->getSubExpr(); 2506 continue; 2507 } 2508 if (MaterializeTemporaryExpr *Materialize 2509 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2510 E = Materialize->GetTemporaryExpr(); 2511 continue; 2512 } 2513 if (SubstNonTypeTemplateParmExpr *NTTP 2514 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2515 E = NTTP->getReplacement(); 2516 continue; 2517 } 2518 return E; 2519 } 2520 } 2521 2522 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue 2523 /// casts. This is intended purely as a temporary workaround for code 2524 /// that hasn't yet been rewritten to do the right thing about those 2525 /// casts, and may disappear along with the last internal use. 2526 Expr *Expr::IgnoreParenLValueCasts() { 2527 Expr *E = this; 2528 while (true) { 2529 E = E->IgnoreParens(); 2530 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2531 if (P->getCastKind() == CK_LValueToRValue) { 2532 E = P->getSubExpr(); 2533 continue; 2534 } 2535 } else if (MaterializeTemporaryExpr *Materialize 2536 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2537 E = Materialize->GetTemporaryExpr(); 2538 continue; 2539 } else if (SubstNonTypeTemplateParmExpr *NTTP 2540 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2541 E = NTTP->getReplacement(); 2542 continue; 2543 } 2544 break; 2545 } 2546 return E; 2547 } 2548 2549 Expr *Expr::ignoreParenBaseCasts() { 2550 Expr *E = this; 2551 while (true) { 2552 E = E->IgnoreParens(); 2553 if (CastExpr *CE = dyn_cast<CastExpr>(E)) { 2554 if (CE->getCastKind() == CK_DerivedToBase || 2555 CE->getCastKind() == CK_UncheckedDerivedToBase || 2556 CE->getCastKind() == CK_NoOp) { 2557 E = CE->getSubExpr(); 2558 continue; 2559 } 2560 } 2561 2562 return E; 2563 } 2564 } 2565 2566 Expr *Expr::IgnoreParenImpCasts() { 2567 Expr *E = this; 2568 while (true) { 2569 E = E->IgnoreParens(); 2570 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) { 2571 E = P->getSubExpr(); 2572 continue; 2573 } 2574 if (MaterializeTemporaryExpr *Materialize 2575 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2576 E = Materialize->GetTemporaryExpr(); 2577 continue; 2578 } 2579 if (SubstNonTypeTemplateParmExpr *NTTP 2580 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2581 E = NTTP->getReplacement(); 2582 continue; 2583 } 2584 return E; 2585 } 2586 } 2587 2588 Expr *Expr::IgnoreConversionOperator() { 2589 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2590 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2591 return MCE->getImplicitObjectArgument(); 2592 } 2593 return this; 2594 } 2595 2596 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the 2597 /// value (including ptr->int casts of the same size). Strip off any 2598 /// ParenExpr or CastExprs, returning their operand. 2599 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { 2600 Expr *E = this; 2601 while (true) { 2602 E = E->IgnoreParens(); 2603 2604 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2605 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2606 // ptr<->int casts of the same width. We also ignore all identity casts. 2607 Expr *SE = P->getSubExpr(); 2608 2609 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { 2610 E = SE; 2611 continue; 2612 } 2613 2614 if ((E->getType()->isPointerType() || 2615 E->getType()->isIntegralType(Ctx)) && 2616 (SE->getType()->isPointerType() || 2617 SE->getType()->isIntegralType(Ctx)) && 2618 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { 2619 E = SE; 2620 continue; 2621 } 2622 } 2623 2624 if (SubstNonTypeTemplateParmExpr *NTTP 2625 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2626 E = NTTP->getReplacement(); 2627 continue; 2628 } 2629 2630 return E; 2631 } 2632 } 2633 2634 bool Expr::isDefaultArgument() const { 2635 const Expr *E = this; 2636 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2637 E = M->GetTemporaryExpr(); 2638 2639 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 2640 E = ICE->getSubExprAsWritten(); 2641 2642 return isa<CXXDefaultArgExpr>(E); 2643 } 2644 2645 /// \brief Skip over any no-op casts and any temporary-binding 2646 /// expressions. 2647 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 2648 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2649 E = M->GetTemporaryExpr(); 2650 2651 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2652 if (ICE->getCastKind() == CK_NoOp) 2653 E = ICE->getSubExpr(); 2654 else 2655 break; 2656 } 2657 2658 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 2659 E = BE->getSubExpr(); 2660 2661 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2662 if (ICE->getCastKind() == CK_NoOp) 2663 E = ICE->getSubExpr(); 2664 else 2665 break; 2666 } 2667 2668 return E->IgnoreParens(); 2669 } 2670 2671 /// isTemporaryObject - Determines if this expression produces a 2672 /// temporary of the given class type. 2673 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 2674 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 2675 return false; 2676 2677 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 2678 2679 // Temporaries are by definition pr-values of class type. 2680 if (!E->Classify(C).isPRValue()) { 2681 // In this context, property reference is a message call and is pr-value. 2682 if (!isa<ObjCPropertyRefExpr>(E)) 2683 return false; 2684 } 2685 2686 // Black-list a few cases which yield pr-values of class type that don't 2687 // refer to temporaries of that type: 2688 2689 // - implicit derived-to-base conversions 2690 if (isa<ImplicitCastExpr>(E)) { 2691 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 2692 case CK_DerivedToBase: 2693 case CK_UncheckedDerivedToBase: 2694 return false; 2695 default: 2696 break; 2697 } 2698 } 2699 2700 // - member expressions (all) 2701 if (isa<MemberExpr>(E)) 2702 return false; 2703 2704 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 2705 if (BO->isPtrMemOp()) 2706 return false; 2707 2708 // - opaque values (all) 2709 if (isa<OpaqueValueExpr>(E)) 2710 return false; 2711 2712 return true; 2713 } 2714 2715 bool Expr::isImplicitCXXThis() const { 2716 const Expr *E = this; 2717 2718 // Strip away parentheses and casts we don't care about. 2719 while (true) { 2720 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 2721 E = Paren->getSubExpr(); 2722 continue; 2723 } 2724 2725 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2726 if (ICE->getCastKind() == CK_NoOp || 2727 ICE->getCastKind() == CK_LValueToRValue || 2728 ICE->getCastKind() == CK_DerivedToBase || 2729 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 2730 E = ICE->getSubExpr(); 2731 continue; 2732 } 2733 } 2734 2735 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 2736 if (UnOp->getOpcode() == UO_Extension) { 2737 E = UnOp->getSubExpr(); 2738 continue; 2739 } 2740 } 2741 2742 if (const MaterializeTemporaryExpr *M 2743 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2744 E = M->GetTemporaryExpr(); 2745 continue; 2746 } 2747 2748 break; 2749 } 2750 2751 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 2752 return This->isImplicit(); 2753 2754 return false; 2755 } 2756 2757 /// hasAnyTypeDependentArguments - Determines if any of the expressions 2758 /// in Exprs is type-dependent. 2759 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 2760 for (unsigned I = 0; I < Exprs.size(); ++I) 2761 if (Exprs[I]->isTypeDependent()) 2762 return true; 2763 2764 return false; 2765 } 2766 2767 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 2768 const Expr **Culprit) const { 2769 // This function is attempting whether an expression is an initializer 2770 // which can be evaluated at compile-time. It very closely parallels 2771 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 2772 // will lead to unexpected results. Like ConstExprEmitter, it falls back 2773 // to isEvaluatable most of the time. 2774 // 2775 // If we ever capture reference-binding directly in the AST, we can 2776 // kill the second parameter. 2777 2778 if (IsForRef) { 2779 EvalResult Result; 2780 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 2781 return true; 2782 if (Culprit) 2783 *Culprit = this; 2784 return false; 2785 } 2786 2787 switch (getStmtClass()) { 2788 default: break; 2789 case StringLiteralClass: 2790 case ObjCEncodeExprClass: 2791 return true; 2792 case CXXTemporaryObjectExprClass: 2793 case CXXConstructExprClass: { 2794 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 2795 2796 if (CE->getConstructor()->isTrivial() && 2797 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 2798 // Trivial default constructor 2799 if (!CE->getNumArgs()) return true; 2800 2801 // Trivial copy constructor 2802 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 2803 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 2804 } 2805 2806 break; 2807 } 2808 case CompoundLiteralExprClass: { 2809 // This handles gcc's extension that allows global initializers like 2810 // "struct x {int x;} x = (struct x) {};". 2811 // FIXME: This accepts other cases it shouldn't! 2812 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 2813 return Exp->isConstantInitializer(Ctx, false, Culprit); 2814 } 2815 case DesignatedInitUpdateExprClass: { 2816 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 2817 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 2818 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 2819 } 2820 case InitListExprClass: { 2821 const InitListExpr *ILE = cast<InitListExpr>(this); 2822 if (ILE->getType()->isArrayType()) { 2823 unsigned numInits = ILE->getNumInits(); 2824 for (unsigned i = 0; i < numInits; i++) { 2825 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 2826 return false; 2827 } 2828 return true; 2829 } 2830 2831 if (ILE->getType()->isRecordType()) { 2832 unsigned ElementNo = 0; 2833 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 2834 for (const auto *Field : RD->fields()) { 2835 // If this is a union, skip all the fields that aren't being initialized. 2836 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 2837 continue; 2838 2839 // Don't emit anonymous bitfields, they just affect layout. 2840 if (Field->isUnnamedBitfield()) 2841 continue; 2842 2843 if (ElementNo < ILE->getNumInits()) { 2844 const Expr *Elt = ILE->getInit(ElementNo++); 2845 if (Field->isBitField()) { 2846 // Bitfields have to evaluate to an integer. 2847 llvm::APSInt ResultTmp; 2848 if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) { 2849 if (Culprit) 2850 *Culprit = Elt; 2851 return false; 2852 } 2853 } else { 2854 bool RefType = Field->getType()->isReferenceType(); 2855 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 2856 return false; 2857 } 2858 } 2859 } 2860 return true; 2861 } 2862 2863 break; 2864 } 2865 case ImplicitValueInitExprClass: 2866 case NoInitExprClass: 2867 return true; 2868 case ParenExprClass: 2869 return cast<ParenExpr>(this)->getSubExpr() 2870 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2871 case GenericSelectionExprClass: 2872 return cast<GenericSelectionExpr>(this)->getResultExpr() 2873 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2874 case ChooseExprClass: 2875 if (cast<ChooseExpr>(this)->isConditionDependent()) { 2876 if (Culprit) 2877 *Culprit = this; 2878 return false; 2879 } 2880 return cast<ChooseExpr>(this)->getChosenSubExpr() 2881 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2882 case UnaryOperatorClass: { 2883 const UnaryOperator* Exp = cast<UnaryOperator>(this); 2884 if (Exp->getOpcode() == UO_Extension) 2885 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 2886 break; 2887 } 2888 case CXXFunctionalCastExprClass: 2889 case CXXStaticCastExprClass: 2890 case ImplicitCastExprClass: 2891 case CStyleCastExprClass: 2892 case ObjCBridgedCastExprClass: 2893 case CXXDynamicCastExprClass: 2894 case CXXReinterpretCastExprClass: 2895 case CXXConstCastExprClass: { 2896 const CastExpr *CE = cast<CastExpr>(this); 2897 2898 // Handle misc casts we want to ignore. 2899 if (CE->getCastKind() == CK_NoOp || 2900 CE->getCastKind() == CK_LValueToRValue || 2901 CE->getCastKind() == CK_ToUnion || 2902 CE->getCastKind() == CK_ConstructorConversion || 2903 CE->getCastKind() == CK_NonAtomicToAtomic || 2904 CE->getCastKind() == CK_AtomicToNonAtomic) 2905 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 2906 2907 break; 2908 } 2909 case MaterializeTemporaryExprClass: 2910 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() 2911 ->isConstantInitializer(Ctx, false, Culprit); 2912 2913 case SubstNonTypeTemplateParmExprClass: 2914 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 2915 ->isConstantInitializer(Ctx, false, Culprit); 2916 case CXXDefaultArgExprClass: 2917 return cast<CXXDefaultArgExpr>(this)->getExpr() 2918 ->isConstantInitializer(Ctx, false, Culprit); 2919 case CXXDefaultInitExprClass: 2920 return cast<CXXDefaultInitExpr>(this)->getExpr() 2921 ->isConstantInitializer(Ctx, false, Culprit); 2922 } 2923 // Allow certain forms of UB in constant initializers: signed integer 2924 // overflow and floating-point division by zero. We'll give a warning on 2925 // these, but they're common enough that we have to accept them. 2926 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 2927 return true; 2928 if (Culprit) 2929 *Culprit = this; 2930 return false; 2931 } 2932 2933 namespace { 2934 /// \brief Look for any side effects within a Stmt. 2935 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 2936 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 2937 const bool IncludePossibleEffects; 2938 bool HasSideEffects; 2939 2940 public: 2941 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 2942 : Inherited(Context), 2943 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 2944 2945 bool hasSideEffects() const { return HasSideEffects; } 2946 2947 void VisitExpr(const Expr *E) { 2948 if (!HasSideEffects && 2949 E->HasSideEffects(Context, IncludePossibleEffects)) 2950 HasSideEffects = true; 2951 } 2952 }; 2953 } 2954 2955 bool Expr::HasSideEffects(const ASTContext &Ctx, 2956 bool IncludePossibleEffects) const { 2957 // In circumstances where we care about definite side effects instead of 2958 // potential side effects, we want to ignore expressions that are part of a 2959 // macro expansion as a potential side effect. 2960 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 2961 return false; 2962 2963 if (isInstantiationDependent()) 2964 return IncludePossibleEffects; 2965 2966 switch (getStmtClass()) { 2967 case NoStmtClass: 2968 #define ABSTRACT_STMT(Type) 2969 #define STMT(Type, Base) case Type##Class: 2970 #define EXPR(Type, Base) 2971 #include "clang/AST/StmtNodes.inc" 2972 llvm_unreachable("unexpected Expr kind"); 2973 2974 case DependentScopeDeclRefExprClass: 2975 case CXXUnresolvedConstructExprClass: 2976 case CXXDependentScopeMemberExprClass: 2977 case UnresolvedLookupExprClass: 2978 case UnresolvedMemberExprClass: 2979 case PackExpansionExprClass: 2980 case SubstNonTypeTemplateParmPackExprClass: 2981 case FunctionParmPackExprClass: 2982 case TypoExprClass: 2983 case CXXFoldExprClass: 2984 llvm_unreachable("shouldn't see dependent / unresolved nodes here"); 2985 2986 case DeclRefExprClass: 2987 case ObjCIvarRefExprClass: 2988 case PredefinedExprClass: 2989 case IntegerLiteralClass: 2990 case FloatingLiteralClass: 2991 case ImaginaryLiteralClass: 2992 case StringLiteralClass: 2993 case CharacterLiteralClass: 2994 case OffsetOfExprClass: 2995 case ImplicitValueInitExprClass: 2996 case UnaryExprOrTypeTraitExprClass: 2997 case AddrLabelExprClass: 2998 case GNUNullExprClass: 2999 case NoInitExprClass: 3000 case CXXBoolLiteralExprClass: 3001 case CXXNullPtrLiteralExprClass: 3002 case CXXThisExprClass: 3003 case CXXScalarValueInitExprClass: 3004 case TypeTraitExprClass: 3005 case ArrayTypeTraitExprClass: 3006 case ExpressionTraitExprClass: 3007 case CXXNoexceptExprClass: 3008 case SizeOfPackExprClass: 3009 case ObjCStringLiteralClass: 3010 case ObjCEncodeExprClass: 3011 case ObjCBoolLiteralExprClass: 3012 case CXXUuidofExprClass: 3013 case OpaqueValueExprClass: 3014 // These never have a side-effect. 3015 return false; 3016 3017 case CallExprClass: 3018 case CXXOperatorCallExprClass: 3019 case CXXMemberCallExprClass: 3020 case CUDAKernelCallExprClass: 3021 case UserDefinedLiteralClass: { 3022 // We don't know a call definitely has side effects, except for calls 3023 // to pure/const functions that definitely don't. 3024 // If the call itself is considered side-effect free, check the operands. 3025 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3026 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3027 if (IsPure || !IncludePossibleEffects) 3028 break; 3029 return true; 3030 } 3031 3032 case BlockExprClass: 3033 case CXXBindTemporaryExprClass: 3034 if (!IncludePossibleEffects) 3035 break; 3036 return true; 3037 3038 case MSPropertyRefExprClass: 3039 case MSPropertySubscriptExprClass: 3040 case CompoundAssignOperatorClass: 3041 case VAArgExprClass: 3042 case AtomicExprClass: 3043 case CXXThrowExprClass: 3044 case CXXNewExprClass: 3045 case CXXDeleteExprClass: 3046 case ExprWithCleanupsClass: 3047 case CoawaitExprClass: 3048 case CoyieldExprClass: 3049 // These always have a side-effect. 3050 return true; 3051 3052 case StmtExprClass: { 3053 // StmtExprs have a side-effect if any substatement does. 3054 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3055 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3056 return Finder.hasSideEffects(); 3057 } 3058 3059 case ParenExprClass: 3060 case ArraySubscriptExprClass: 3061 case OMPArraySectionExprClass: 3062 case MemberExprClass: 3063 case ConditionalOperatorClass: 3064 case BinaryConditionalOperatorClass: 3065 case CompoundLiteralExprClass: 3066 case ExtVectorElementExprClass: 3067 case DesignatedInitExprClass: 3068 case DesignatedInitUpdateExprClass: 3069 case ParenListExprClass: 3070 case CXXPseudoDestructorExprClass: 3071 case CXXStdInitializerListExprClass: 3072 case SubstNonTypeTemplateParmExprClass: 3073 case MaterializeTemporaryExprClass: 3074 case ShuffleVectorExprClass: 3075 case ConvertVectorExprClass: 3076 case AsTypeExprClass: 3077 // These have a side-effect if any subexpression does. 3078 break; 3079 3080 case UnaryOperatorClass: 3081 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3082 return true; 3083 break; 3084 3085 case BinaryOperatorClass: 3086 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3087 return true; 3088 break; 3089 3090 case InitListExprClass: 3091 // FIXME: The children for an InitListExpr doesn't include the array filler. 3092 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3093 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3094 return true; 3095 break; 3096 3097 case GenericSelectionExprClass: 3098 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3099 HasSideEffects(Ctx, IncludePossibleEffects); 3100 3101 case ChooseExprClass: 3102 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3103 Ctx, IncludePossibleEffects); 3104 3105 case CXXDefaultArgExprClass: 3106 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3107 Ctx, IncludePossibleEffects); 3108 3109 case CXXDefaultInitExprClass: { 3110 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3111 if (const Expr *E = FD->getInClassInitializer()) 3112 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3113 // If we've not yet parsed the initializer, assume it has side-effects. 3114 return true; 3115 } 3116 3117 case CXXDynamicCastExprClass: { 3118 // A dynamic_cast expression has side-effects if it can throw. 3119 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3120 if (DCE->getTypeAsWritten()->isReferenceType() && 3121 DCE->getCastKind() == CK_Dynamic) 3122 return true; 3123 } // Fall through. 3124 case ImplicitCastExprClass: 3125 case CStyleCastExprClass: 3126 case CXXStaticCastExprClass: 3127 case CXXReinterpretCastExprClass: 3128 case CXXConstCastExprClass: 3129 case CXXFunctionalCastExprClass: { 3130 // While volatile reads are side-effecting in both C and C++, we treat them 3131 // as having possible (not definite) side-effects. This allows idiomatic 3132 // code to behave without warning, such as sizeof(*v) for a volatile- 3133 // qualified pointer. 3134 if (!IncludePossibleEffects) 3135 break; 3136 3137 const CastExpr *CE = cast<CastExpr>(this); 3138 if (CE->getCastKind() == CK_LValueToRValue && 3139 CE->getSubExpr()->getType().isVolatileQualified()) 3140 return true; 3141 break; 3142 } 3143 3144 case CXXTypeidExprClass: 3145 // typeid might throw if its subexpression is potentially-evaluated, so has 3146 // side-effects in that case whether or not its subexpression does. 3147 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3148 3149 case CXXConstructExprClass: 3150 case CXXTemporaryObjectExprClass: { 3151 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3152 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3153 return true; 3154 // A trivial constructor does not add any side-effects of its own. Just look 3155 // at its arguments. 3156 break; 3157 } 3158 3159 case LambdaExprClass: { 3160 const LambdaExpr *LE = cast<LambdaExpr>(this); 3161 for (LambdaExpr::capture_iterator I = LE->capture_begin(), 3162 E = LE->capture_end(); I != E; ++I) 3163 if (I->getCaptureKind() == LCK_ByCopy) 3164 // FIXME: Only has a side-effect if the variable is volatile or if 3165 // the copy would invoke a non-trivial copy constructor. 3166 return true; 3167 return false; 3168 } 3169 3170 case PseudoObjectExprClass: { 3171 // Only look for side-effects in the semantic form, and look past 3172 // OpaqueValueExpr bindings in that form. 3173 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3174 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3175 E = PO->semantics_end(); 3176 I != E; ++I) { 3177 const Expr *Subexpr = *I; 3178 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3179 Subexpr = OVE->getSourceExpr(); 3180 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3181 return true; 3182 } 3183 return false; 3184 } 3185 3186 case ObjCBoxedExprClass: 3187 case ObjCArrayLiteralClass: 3188 case ObjCDictionaryLiteralClass: 3189 case ObjCSelectorExprClass: 3190 case ObjCProtocolExprClass: 3191 case ObjCIsaExprClass: 3192 case ObjCIndirectCopyRestoreExprClass: 3193 case ObjCSubscriptRefExprClass: 3194 case ObjCBridgedCastExprClass: 3195 case ObjCMessageExprClass: 3196 case ObjCPropertyRefExprClass: 3197 // FIXME: Classify these cases better. 3198 if (IncludePossibleEffects) 3199 return true; 3200 break; 3201 } 3202 3203 // Recurse to children. 3204 for (const Stmt *SubStmt : children()) 3205 if (SubStmt && 3206 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3207 return true; 3208 3209 return false; 3210 } 3211 3212 namespace { 3213 /// \brief Look for a call to a non-trivial function within an expression. 3214 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3215 { 3216 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3217 3218 bool NonTrivial; 3219 3220 public: 3221 explicit NonTrivialCallFinder(const ASTContext &Context) 3222 : Inherited(Context), NonTrivial(false) { } 3223 3224 bool hasNonTrivialCall() const { return NonTrivial; } 3225 3226 void VisitCallExpr(const CallExpr *E) { 3227 if (const CXXMethodDecl *Method 3228 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3229 if (Method->isTrivial()) { 3230 // Recurse to children of the call. 3231 Inherited::VisitStmt(E); 3232 return; 3233 } 3234 } 3235 3236 NonTrivial = true; 3237 } 3238 3239 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3240 if (E->getConstructor()->isTrivial()) { 3241 // Recurse to children of the call. 3242 Inherited::VisitStmt(E); 3243 return; 3244 } 3245 3246 NonTrivial = true; 3247 } 3248 3249 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3250 if (E->getTemporary()->getDestructor()->isTrivial()) { 3251 Inherited::VisitStmt(E); 3252 return; 3253 } 3254 3255 NonTrivial = true; 3256 } 3257 }; 3258 } 3259 3260 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3261 NonTrivialCallFinder Finder(Ctx); 3262 Finder.Visit(this); 3263 return Finder.hasNonTrivialCall(); 3264 } 3265 3266 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3267 /// pointer constant or not, as well as the specific kind of constant detected. 3268 /// Null pointer constants can be integer constant expressions with the 3269 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3270 /// (a GNU extension). 3271 Expr::NullPointerConstantKind 3272 Expr::isNullPointerConstant(ASTContext &Ctx, 3273 NullPointerConstantValueDependence NPC) const { 3274 if (isValueDependent() && 3275 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3276 switch (NPC) { 3277 case NPC_NeverValueDependent: 3278 llvm_unreachable("Unexpected value dependent expression!"); 3279 case NPC_ValueDependentIsNull: 3280 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3281 return NPCK_ZeroExpression; 3282 else 3283 return NPCK_NotNull; 3284 3285 case NPC_ValueDependentIsNotNull: 3286 return NPCK_NotNull; 3287 } 3288 } 3289 3290 // Strip off a cast to void*, if it exists. Except in C++. 3291 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3292 if (!Ctx.getLangOpts().CPlusPlus) { 3293 // Check that it is a cast to void*. 3294 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3295 QualType Pointee = PT->getPointeeType(); 3296 Qualifiers Q = Pointee.getQualifiers(); 3297 // In OpenCL v2.0 generic address space acts as a placeholder 3298 // and should be ignored. 3299 bool IsASValid = true; 3300 if (Ctx.getLangOpts().OpenCLVersion >= 200) { 3301 if (Pointee.getAddressSpace() == LangAS::opencl_generic) 3302 Q.removeAddressSpace(); 3303 else 3304 IsASValid = false; 3305 } 3306 3307 if (IsASValid && !Q.hasQualifiers() && 3308 Pointee->isVoidType() && // to void* 3309 CE->getSubExpr()->getType()->isIntegerType()) // from int. 3310 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3311 } 3312 } 3313 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3314 // Ignore the ImplicitCastExpr type entirely. 3315 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3316 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3317 // Accept ((void*)0) as a null pointer constant, as many other 3318 // implementations do. 3319 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3320 } else if (const GenericSelectionExpr *GE = 3321 dyn_cast<GenericSelectionExpr>(this)) { 3322 if (GE->isResultDependent()) 3323 return NPCK_NotNull; 3324 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3325 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3326 if (CE->isConditionDependent()) 3327 return NPCK_NotNull; 3328 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3329 } else if (const CXXDefaultArgExpr *DefaultArg 3330 = dyn_cast<CXXDefaultArgExpr>(this)) { 3331 // See through default argument expressions. 3332 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3333 } else if (const CXXDefaultInitExpr *DefaultInit 3334 = dyn_cast<CXXDefaultInitExpr>(this)) { 3335 // See through default initializer expressions. 3336 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3337 } else if (isa<GNUNullExpr>(this)) { 3338 // The GNU __null extension is always a null pointer constant. 3339 return NPCK_GNUNull; 3340 } else if (const MaterializeTemporaryExpr *M 3341 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3342 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); 3343 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3344 if (const Expr *Source = OVE->getSourceExpr()) 3345 return Source->isNullPointerConstant(Ctx, NPC); 3346 } 3347 3348 // C++11 nullptr_t is always a null pointer constant. 3349 if (getType()->isNullPtrType()) 3350 return NPCK_CXX11_nullptr; 3351 3352 if (const RecordType *UT = getType()->getAsUnionType()) 3353 if (!Ctx.getLangOpts().CPlusPlus11 && 3354 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3355 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3356 const Expr *InitExpr = CLE->getInitializer(); 3357 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3358 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3359 } 3360 // This expression must be an integer type. 3361 if (!getType()->isIntegerType() || 3362 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3363 return NPCK_NotNull; 3364 3365 if (Ctx.getLangOpts().CPlusPlus11) { 3366 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3367 // value zero or a prvalue of type std::nullptr_t. 3368 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3369 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3370 if (Lit && !Lit->getValue()) 3371 return NPCK_ZeroLiteral; 3372 else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3373 return NPCK_NotNull; 3374 } else { 3375 // If we have an integer constant expression, we need to *evaluate* it and 3376 // test for the value 0. 3377 if (!isIntegerConstantExpr(Ctx)) 3378 return NPCK_NotNull; 3379 } 3380 3381 if (EvaluateKnownConstInt(Ctx) != 0) 3382 return NPCK_NotNull; 3383 3384 if (isa<IntegerLiteral>(this)) 3385 return NPCK_ZeroLiteral; 3386 return NPCK_ZeroExpression; 3387 } 3388 3389 /// \brief If this expression is an l-value for an Objective C 3390 /// property, find the underlying property reference expression. 3391 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3392 const Expr *E = this; 3393 while (true) { 3394 assert((E->getValueKind() == VK_LValue && 3395 E->getObjectKind() == OK_ObjCProperty) && 3396 "expression is not a property reference"); 3397 E = E->IgnoreParenCasts(); 3398 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3399 if (BO->getOpcode() == BO_Comma) { 3400 E = BO->getRHS(); 3401 continue; 3402 } 3403 } 3404 3405 break; 3406 } 3407 3408 return cast<ObjCPropertyRefExpr>(E); 3409 } 3410 3411 bool Expr::isObjCSelfExpr() const { 3412 const Expr *E = IgnoreParenImpCasts(); 3413 3414 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 3415 if (!DRE) 3416 return false; 3417 3418 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 3419 if (!Param) 3420 return false; 3421 3422 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 3423 if (!M) 3424 return false; 3425 3426 return M->getSelfDecl() == Param; 3427 } 3428 3429 FieldDecl *Expr::getSourceBitField() { 3430 Expr *E = this->IgnoreParens(); 3431 3432 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3433 if (ICE->getCastKind() == CK_LValueToRValue || 3434 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) 3435 E = ICE->getSubExpr()->IgnoreParens(); 3436 else 3437 break; 3438 } 3439 3440 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 3441 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 3442 if (Field->isBitField()) 3443 return Field; 3444 3445 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) 3446 if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl())) 3447 if (Ivar->isBitField()) 3448 return Ivar; 3449 3450 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) 3451 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 3452 if (Field->isBitField()) 3453 return Field; 3454 3455 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 3456 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 3457 return BinOp->getLHS()->getSourceBitField(); 3458 3459 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 3460 return BinOp->getRHS()->getSourceBitField(); 3461 } 3462 3463 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 3464 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 3465 return UnOp->getSubExpr()->getSourceBitField(); 3466 3467 return nullptr; 3468 } 3469 3470 bool Expr::refersToVectorElement() const { 3471 const Expr *E = this->IgnoreParens(); 3472 3473 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3474 if (ICE->getValueKind() != VK_RValue && 3475 ICE->getCastKind() == CK_NoOp) 3476 E = ICE->getSubExpr()->IgnoreParens(); 3477 else 3478 break; 3479 } 3480 3481 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 3482 return ASE->getBase()->getType()->isVectorType(); 3483 3484 if (isa<ExtVectorElementExpr>(E)) 3485 return true; 3486 3487 return false; 3488 } 3489 3490 bool Expr::refersToGlobalRegisterVar() const { 3491 const Expr *E = this->IgnoreParenImpCasts(); 3492 3493 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 3494 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 3495 if (VD->getStorageClass() == SC_Register && 3496 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 3497 return true; 3498 3499 return false; 3500 } 3501 3502 /// isArrow - Return true if the base expression is a pointer to vector, 3503 /// return false if the base expression is a vector. 3504 bool ExtVectorElementExpr::isArrow() const { 3505 return getBase()->getType()->isPointerType(); 3506 } 3507 3508 unsigned ExtVectorElementExpr::getNumElements() const { 3509 if (const VectorType *VT = getType()->getAs<VectorType>()) 3510 return VT->getNumElements(); 3511 return 1; 3512 } 3513 3514 /// containsDuplicateElements - Return true if any element access is repeated. 3515 bool ExtVectorElementExpr::containsDuplicateElements() const { 3516 // FIXME: Refactor this code to an accessor on the AST node which returns the 3517 // "type" of component access, and share with code below and in Sema. 3518 StringRef Comp = Accessor->getName(); 3519 3520 // Halving swizzles do not contain duplicate elements. 3521 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 3522 return false; 3523 3524 // Advance past s-char prefix on hex swizzles. 3525 if (Comp[0] == 's' || Comp[0] == 'S') 3526 Comp = Comp.substr(1); 3527 3528 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 3529 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) 3530 return true; 3531 3532 return false; 3533 } 3534 3535 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 3536 void ExtVectorElementExpr::getEncodedElementAccess( 3537 SmallVectorImpl<uint32_t> &Elts) const { 3538 StringRef Comp = Accessor->getName(); 3539 if (Comp[0] == 's' || Comp[0] == 'S') 3540 Comp = Comp.substr(1); 3541 3542 bool isHi = Comp == "hi"; 3543 bool isLo = Comp == "lo"; 3544 bool isEven = Comp == "even"; 3545 bool isOdd = Comp == "odd"; 3546 3547 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 3548 uint64_t Index; 3549 3550 if (isHi) 3551 Index = e + i; 3552 else if (isLo) 3553 Index = i; 3554 else if (isEven) 3555 Index = 2 * i; 3556 else if (isOdd) 3557 Index = 2 * i + 1; 3558 else 3559 Index = ExtVectorType::getAccessorIdx(Comp[i]); 3560 3561 Elts.push_back(Index); 3562 } 3563 } 3564 3565 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, 3566 QualType Type, SourceLocation BLoc, 3567 SourceLocation RP) 3568 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, 3569 Type->isDependentType(), Type->isDependentType(), 3570 Type->isInstantiationDependentType(), 3571 Type->containsUnexpandedParameterPack()), 3572 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) 3573 { 3574 SubExprs = new (C) Stmt*[args.size()]; 3575 for (unsigned i = 0; i != args.size(); i++) { 3576 if (args[i]->isTypeDependent()) 3577 ExprBits.TypeDependent = true; 3578 if (args[i]->isValueDependent()) 3579 ExprBits.ValueDependent = true; 3580 if (args[i]->isInstantiationDependent()) 3581 ExprBits.InstantiationDependent = true; 3582 if (args[i]->containsUnexpandedParameterPack()) 3583 ExprBits.ContainsUnexpandedParameterPack = true; 3584 3585 SubExprs[i] = args[i]; 3586 } 3587 } 3588 3589 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 3590 if (SubExprs) C.Deallocate(SubExprs); 3591 3592 this->NumExprs = Exprs.size(); 3593 SubExprs = new (C) Stmt*[NumExprs]; 3594 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 3595 } 3596 3597 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context, 3598 SourceLocation GenericLoc, Expr *ControllingExpr, 3599 ArrayRef<TypeSourceInfo*> AssocTypes, 3600 ArrayRef<Expr*> AssocExprs, 3601 SourceLocation DefaultLoc, 3602 SourceLocation RParenLoc, 3603 bool ContainsUnexpandedParameterPack, 3604 unsigned ResultIndex) 3605 : Expr(GenericSelectionExprClass, 3606 AssocExprs[ResultIndex]->getType(), 3607 AssocExprs[ResultIndex]->getValueKind(), 3608 AssocExprs[ResultIndex]->getObjectKind(), 3609 AssocExprs[ResultIndex]->isTypeDependent(), 3610 AssocExprs[ResultIndex]->isValueDependent(), 3611 AssocExprs[ResultIndex]->isInstantiationDependent(), 3612 ContainsUnexpandedParameterPack), 3613 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]), 3614 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]), 3615 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 3616 GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 3617 SubExprs[CONTROLLING] = ControllingExpr; 3618 assert(AssocTypes.size() == AssocExprs.size()); 3619 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes); 3620 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR); 3621 } 3622 3623 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context, 3624 SourceLocation GenericLoc, Expr *ControllingExpr, 3625 ArrayRef<TypeSourceInfo*> AssocTypes, 3626 ArrayRef<Expr*> AssocExprs, 3627 SourceLocation DefaultLoc, 3628 SourceLocation RParenLoc, 3629 bool ContainsUnexpandedParameterPack) 3630 : Expr(GenericSelectionExprClass, 3631 Context.DependentTy, 3632 VK_RValue, 3633 OK_Ordinary, 3634 /*isTypeDependent=*/true, 3635 /*isValueDependent=*/true, 3636 /*isInstantiationDependent=*/true, 3637 ContainsUnexpandedParameterPack), 3638 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]), 3639 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]), 3640 NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc), 3641 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 3642 SubExprs[CONTROLLING] = ControllingExpr; 3643 assert(AssocTypes.size() == AssocExprs.size()); 3644 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes); 3645 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR); 3646 } 3647 3648 //===----------------------------------------------------------------------===// 3649 // DesignatedInitExpr 3650 //===----------------------------------------------------------------------===// 3651 3652 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 3653 assert(Kind == FieldDesignator && "Only valid on a field designator"); 3654 if (Field.NameOrField & 0x01) 3655 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); 3656 else 3657 return getField()->getIdentifier(); 3658 } 3659 3660 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 3661 unsigned NumDesignators, 3662 const Designator *Designators, 3663 SourceLocation EqualOrColonLoc, 3664 bool GNUSyntax, 3665 ArrayRef<Expr*> IndexExprs, 3666 Expr *Init) 3667 : Expr(DesignatedInitExprClass, Ty, 3668 Init->getValueKind(), Init->getObjectKind(), 3669 Init->isTypeDependent(), Init->isValueDependent(), 3670 Init->isInstantiationDependent(), 3671 Init->containsUnexpandedParameterPack()), 3672 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 3673 NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) { 3674 this->Designators = new (C) Designator[NumDesignators]; 3675 3676 // Record the initializer itself. 3677 child_iterator Child = child_begin(); 3678 *Child++ = Init; 3679 3680 // Copy the designators and their subexpressions, computing 3681 // value-dependence along the way. 3682 unsigned IndexIdx = 0; 3683 for (unsigned I = 0; I != NumDesignators; ++I) { 3684 this->Designators[I] = Designators[I]; 3685 3686 if (this->Designators[I].isArrayDesignator()) { 3687 // Compute type- and value-dependence. 3688 Expr *Index = IndexExprs[IndexIdx]; 3689 if (Index->isTypeDependent() || Index->isValueDependent()) 3690 ExprBits.TypeDependent = ExprBits.ValueDependent = true; 3691 if (Index->isInstantiationDependent()) 3692 ExprBits.InstantiationDependent = true; 3693 // Propagate unexpanded parameter packs. 3694 if (Index->containsUnexpandedParameterPack()) 3695 ExprBits.ContainsUnexpandedParameterPack = true; 3696 3697 // Copy the index expressions into permanent storage. 3698 *Child++ = IndexExprs[IndexIdx++]; 3699 } else if (this->Designators[I].isArrayRangeDesignator()) { 3700 // Compute type- and value-dependence. 3701 Expr *Start = IndexExprs[IndexIdx]; 3702 Expr *End = IndexExprs[IndexIdx + 1]; 3703 if (Start->isTypeDependent() || Start->isValueDependent() || 3704 End->isTypeDependent() || End->isValueDependent()) { 3705 ExprBits.TypeDependent = ExprBits.ValueDependent = true; 3706 ExprBits.InstantiationDependent = true; 3707 } else if (Start->isInstantiationDependent() || 3708 End->isInstantiationDependent()) { 3709 ExprBits.InstantiationDependent = true; 3710 } 3711 3712 // Propagate unexpanded parameter packs. 3713 if (Start->containsUnexpandedParameterPack() || 3714 End->containsUnexpandedParameterPack()) 3715 ExprBits.ContainsUnexpandedParameterPack = true; 3716 3717 // Copy the start/end expressions into permanent storage. 3718 *Child++ = IndexExprs[IndexIdx++]; 3719 *Child++ = IndexExprs[IndexIdx++]; 3720 } 3721 } 3722 3723 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 3724 } 3725 3726 DesignatedInitExpr * 3727 DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators, 3728 unsigned NumDesignators, 3729 ArrayRef<Expr*> IndexExprs, 3730 SourceLocation ColonOrEqualLoc, 3731 bool UsesColonSyntax, Expr *Init) { 3732 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 3733 sizeof(Stmt *) * (IndexExprs.size() + 1), 3734 llvm::alignOf<DesignatedInitExpr>()); 3735 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators, 3736 ColonOrEqualLoc, UsesColonSyntax, 3737 IndexExprs, Init); 3738 } 3739 3740 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 3741 unsigned NumIndexExprs) { 3742 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 3743 sizeof(Stmt *) * (NumIndexExprs + 1), 8); 3744 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 3745 } 3746 3747 void DesignatedInitExpr::setDesignators(const ASTContext &C, 3748 const Designator *Desigs, 3749 unsigned NumDesigs) { 3750 Designators = new (C) Designator[NumDesigs]; 3751 NumDesignators = NumDesigs; 3752 for (unsigned I = 0; I != NumDesigs; ++I) 3753 Designators[I] = Desigs[I]; 3754 } 3755 3756 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 3757 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 3758 if (size() == 1) 3759 return DIE->getDesignator(0)->getSourceRange(); 3760 return SourceRange(DIE->getDesignator(0)->getLocStart(), 3761 DIE->getDesignator(size()-1)->getLocEnd()); 3762 } 3763 3764 SourceLocation DesignatedInitExpr::getLocStart() const { 3765 SourceLocation StartLoc; 3766 Designator &First = 3767 *const_cast<DesignatedInitExpr*>(this)->designators_begin(); 3768 if (First.isFieldDesignator()) { 3769 if (GNUSyntax) 3770 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); 3771 else 3772 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); 3773 } else 3774 StartLoc = 3775 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); 3776 return StartLoc; 3777 } 3778 3779 SourceLocation DesignatedInitExpr::getLocEnd() const { 3780 return getInit()->getLocEnd(); 3781 } 3782 3783 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 3784 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 3785 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1); 3786 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 3787 } 3788 3789 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 3790 assert(D.Kind == Designator::ArrayRangeDesignator && 3791 "Requires array range designator"); 3792 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1); 3793 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 3794 } 3795 3796 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 3797 assert(D.Kind == Designator::ArrayRangeDesignator && 3798 "Requires array range designator"); 3799 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1); 3800 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); 3801 } 3802 3803 /// \brief Replaces the designator at index @p Idx with the series 3804 /// of designators in [First, Last). 3805 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 3806 const Designator *First, 3807 const Designator *Last) { 3808 unsigned NumNewDesignators = Last - First; 3809 if (NumNewDesignators == 0) { 3810 std::copy_backward(Designators + Idx + 1, 3811 Designators + NumDesignators, 3812 Designators + Idx); 3813 --NumNewDesignators; 3814 return; 3815 } else if (NumNewDesignators == 1) { 3816 Designators[Idx] = *First; 3817 return; 3818 } 3819 3820 Designator *NewDesignators 3821 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 3822 std::copy(Designators, Designators + Idx, NewDesignators); 3823 std::copy(First, Last, NewDesignators + Idx); 3824 std::copy(Designators + Idx + 1, Designators + NumDesignators, 3825 NewDesignators + Idx + NumNewDesignators); 3826 Designators = NewDesignators; 3827 NumDesignators = NumDesignators - 1 + NumNewDesignators; 3828 } 3829 3830 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 3831 SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc) 3832 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue, 3833 OK_Ordinary, false, false, false, false) { 3834 BaseAndUpdaterExprs[0] = baseExpr; 3835 3836 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc); 3837 ILE->setType(baseExpr->getType()); 3838 BaseAndUpdaterExprs[1] = ILE; 3839 } 3840 3841 SourceLocation DesignatedInitUpdateExpr::getLocStart() const { 3842 return getBase()->getLocStart(); 3843 } 3844 3845 SourceLocation DesignatedInitUpdateExpr::getLocEnd() const { 3846 return getBase()->getLocEnd(); 3847 } 3848 3849 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc, 3850 ArrayRef<Expr*> exprs, 3851 SourceLocation rparenloc) 3852 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, 3853 false, false, false, false), 3854 NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) { 3855 Exprs = new (C) Stmt*[exprs.size()]; 3856 for (unsigned i = 0; i != exprs.size(); ++i) { 3857 if (exprs[i]->isTypeDependent()) 3858 ExprBits.TypeDependent = true; 3859 if (exprs[i]->isValueDependent()) 3860 ExprBits.ValueDependent = true; 3861 if (exprs[i]->isInstantiationDependent()) 3862 ExprBits.InstantiationDependent = true; 3863 if (exprs[i]->containsUnexpandedParameterPack()) 3864 ExprBits.ContainsUnexpandedParameterPack = true; 3865 3866 Exprs[i] = exprs[i]; 3867 } 3868 } 3869 3870 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 3871 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 3872 e = ewc->getSubExpr(); 3873 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 3874 e = m->GetTemporaryExpr(); 3875 e = cast<CXXConstructExpr>(e)->getArg(0); 3876 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 3877 e = ice->getSubExpr(); 3878 return cast<OpaqueValueExpr>(e); 3879 } 3880 3881 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 3882 EmptyShell sh, 3883 unsigned numSemanticExprs) { 3884 void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) + 3885 (1 + numSemanticExprs) * sizeof(Expr*), 3886 llvm::alignOf<PseudoObjectExpr>()); 3887 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 3888 } 3889 3890 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 3891 : Expr(PseudoObjectExprClass, shell) { 3892 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 3893 } 3894 3895 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 3896 ArrayRef<Expr*> semantics, 3897 unsigned resultIndex) { 3898 assert(syntax && "no syntactic expression!"); 3899 assert(semantics.size() && "no semantic expressions!"); 3900 3901 QualType type; 3902 ExprValueKind VK; 3903 if (resultIndex == NoResult) { 3904 type = C.VoidTy; 3905 VK = VK_RValue; 3906 } else { 3907 assert(resultIndex < semantics.size()); 3908 type = semantics[resultIndex]->getType(); 3909 VK = semantics[resultIndex]->getValueKind(); 3910 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 3911 } 3912 3913 void *buffer = C.Allocate(sizeof(PseudoObjectExpr) + 3914 (1 + semantics.size()) * sizeof(Expr*), 3915 llvm::alignOf<PseudoObjectExpr>()); 3916 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 3917 resultIndex); 3918 } 3919 3920 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 3921 Expr *syntax, ArrayRef<Expr*> semantics, 3922 unsigned resultIndex) 3923 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary, 3924 /*filled in at end of ctor*/ false, false, false, false) { 3925 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 3926 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 3927 3928 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 3929 Expr *E = (i == 0 ? syntax : semantics[i-1]); 3930 getSubExprsBuffer()[i] = E; 3931 3932 if (E->isTypeDependent()) 3933 ExprBits.TypeDependent = true; 3934 if (E->isValueDependent()) 3935 ExprBits.ValueDependent = true; 3936 if (E->isInstantiationDependent()) 3937 ExprBits.InstantiationDependent = true; 3938 if (E->containsUnexpandedParameterPack()) 3939 ExprBits.ContainsUnexpandedParameterPack = true; 3940 3941 if (isa<OpaqueValueExpr>(E)) 3942 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 3943 "opaque-value semantic expressions for pseudo-object " 3944 "operations must have sources"); 3945 } 3946 } 3947 3948 //===----------------------------------------------------------------------===// 3949 // Child Iterators for iterating over subexpressions/substatements 3950 //===----------------------------------------------------------------------===// 3951 3952 // UnaryExprOrTypeTraitExpr 3953 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 3954 // If this is of a type and the type is a VLA type (and not a typedef), the 3955 // size expression of the VLA needs to be treated as an executable expression. 3956 // Why isn't this weirdness documented better in StmtIterator? 3957 if (isArgumentType()) { 3958 if (const VariableArrayType* T = dyn_cast<VariableArrayType>( 3959 getArgumentType().getTypePtr())) 3960 return child_range(child_iterator(T), child_iterator()); 3961 return child_range(child_iterator(), child_iterator()); 3962 } 3963 return child_range(&Argument.Ex, &Argument.Ex + 1); 3964 } 3965 3966 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, 3967 QualType t, AtomicOp op, SourceLocation RP) 3968 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, 3969 false, false, false, false), 3970 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) 3971 { 3972 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 3973 for (unsigned i = 0; i != args.size(); i++) { 3974 if (args[i]->isTypeDependent()) 3975 ExprBits.TypeDependent = true; 3976 if (args[i]->isValueDependent()) 3977 ExprBits.ValueDependent = true; 3978 if (args[i]->isInstantiationDependent()) 3979 ExprBits.InstantiationDependent = true; 3980 if (args[i]->containsUnexpandedParameterPack()) 3981 ExprBits.ContainsUnexpandedParameterPack = true; 3982 3983 SubExprs[i] = args[i]; 3984 } 3985 } 3986 3987 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 3988 switch (Op) { 3989 case AO__c11_atomic_init: 3990 case AO__c11_atomic_load: 3991 case AO__atomic_load_n: 3992 return 2; 3993 3994 case AO__c11_atomic_store: 3995 case AO__c11_atomic_exchange: 3996 case AO__atomic_load: 3997 case AO__atomic_store: 3998 case AO__atomic_store_n: 3999 case AO__atomic_exchange_n: 4000 case AO__c11_atomic_fetch_add: 4001 case AO__c11_atomic_fetch_sub: 4002 case AO__c11_atomic_fetch_and: 4003 case AO__c11_atomic_fetch_or: 4004 case AO__c11_atomic_fetch_xor: 4005 case AO__atomic_fetch_add: 4006 case AO__atomic_fetch_sub: 4007 case AO__atomic_fetch_and: 4008 case AO__atomic_fetch_or: 4009 case AO__atomic_fetch_xor: 4010 case AO__atomic_fetch_nand: 4011 case AO__atomic_add_fetch: 4012 case AO__atomic_sub_fetch: 4013 case AO__atomic_and_fetch: 4014 case AO__atomic_or_fetch: 4015 case AO__atomic_xor_fetch: 4016 case AO__atomic_nand_fetch: 4017 return 3; 4018 4019 case AO__atomic_exchange: 4020 return 4; 4021 4022 case AO__c11_atomic_compare_exchange_strong: 4023 case AO__c11_atomic_compare_exchange_weak: 4024 return 5; 4025 4026 case AO__atomic_compare_exchange: 4027 case AO__atomic_compare_exchange_n: 4028 return 6; 4029 } 4030 llvm_unreachable("unknown atomic op"); 4031 } 4032 4033 QualType OMPArraySectionExpr::getBaseOriginalType(Expr *Base) { 4034 unsigned ArraySectionCount = 0; 4035 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 4036 Base = OASE->getBase(); 4037 ++ArraySectionCount; 4038 } 4039 while (auto *ASE = dyn_cast<ArraySubscriptExpr>(Base->IgnoreParens())) { 4040 Base = ASE->getBase(); 4041 ++ArraySectionCount; 4042 } 4043 auto OriginalTy = Base->getType(); 4044 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 4045 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 4046 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 4047 4048 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 4049 if (OriginalTy->isAnyPointerType()) 4050 OriginalTy = OriginalTy->getPointeeType(); 4051 else { 4052 assert (OriginalTy->isArrayType()); 4053 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 4054 } 4055 } 4056 return OriginalTy; 4057 } 4058 4059