Home | History | Annotate | Download | only in AST
      1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Expr class and subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/APValue.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/Attr.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/EvaluatedExprVisitor.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/Mangle.h"
     24 #include "clang/AST/RecordLayout.h"
     25 #include "clang/AST/StmtVisitor.h"
     26 #include "clang/Basic/Builtins.h"
     27 #include "clang/Basic/CharInfo.h"
     28 #include "clang/Basic/SourceManager.h"
     29 #include "clang/Basic/TargetInfo.h"
     30 #include "clang/Lex/Lexer.h"
     31 #include "clang/Lex/LiteralSupport.h"
     32 #include "clang/Sema/SemaDiagnostic.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include <algorithm>
     36 #include <cstring>
     37 using namespace clang;
     38 
     39 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
     40   const Expr *E = ignoreParenBaseCasts();
     41 
     42   QualType DerivedType = E->getType();
     43   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
     44     DerivedType = PTy->getPointeeType();
     45 
     46   if (DerivedType->isDependentType())
     47     return nullptr;
     48 
     49   const RecordType *Ty = DerivedType->castAs<RecordType>();
     50   Decl *D = Ty->getDecl();
     51   return cast<CXXRecordDecl>(D);
     52 }
     53 
     54 const Expr *Expr::skipRValueSubobjectAdjustments(
     55     SmallVectorImpl<const Expr *> &CommaLHSs,
     56     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
     57   const Expr *E = this;
     58   while (true) {
     59     E = E->IgnoreParens();
     60 
     61     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
     62       if ((CE->getCastKind() == CK_DerivedToBase ||
     63            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
     64           E->getType()->isRecordType()) {
     65         E = CE->getSubExpr();
     66         CXXRecordDecl *Derived
     67           = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
     68         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
     69         continue;
     70       }
     71 
     72       if (CE->getCastKind() == CK_NoOp) {
     73         E = CE->getSubExpr();
     74         continue;
     75       }
     76     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
     77       if (!ME->isArrow()) {
     78         assert(ME->getBase()->getType()->isRecordType());
     79         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
     80           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
     81             E = ME->getBase();
     82             Adjustments.push_back(SubobjectAdjustment(Field));
     83             continue;
     84           }
     85         }
     86       }
     87     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
     88       if (BO->isPtrMemOp()) {
     89         assert(BO->getRHS()->isRValue());
     90         E = BO->getLHS();
     91         const MemberPointerType *MPT =
     92           BO->getRHS()->getType()->getAs<MemberPointerType>();
     93         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
     94         continue;
     95       } else if (BO->getOpcode() == BO_Comma) {
     96         CommaLHSs.push_back(BO->getLHS());
     97         E = BO->getRHS();
     98         continue;
     99       }
    100     }
    101 
    102     // Nothing changed.
    103     break;
    104   }
    105   return E;
    106 }
    107 
    108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
    109 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
    110 /// but also int expressions which are produced by things like comparisons in
    111 /// C.
    112 bool Expr::isKnownToHaveBooleanValue() const {
    113   const Expr *E = IgnoreParens();
    114 
    115   // If this value has _Bool type, it is obvious 0/1.
    116   if (E->getType()->isBooleanType()) return true;
    117   // If this is a non-scalar-integer type, we don't care enough to try.
    118   if (!E->getType()->isIntegralOrEnumerationType()) return false;
    119 
    120   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
    121     switch (UO->getOpcode()) {
    122     case UO_Plus:
    123       return UO->getSubExpr()->isKnownToHaveBooleanValue();
    124     case UO_LNot:
    125       return true;
    126     default:
    127       return false;
    128     }
    129   }
    130 
    131   // Only look through implicit casts.  If the user writes
    132   // '(int) (a && b)' treat it as an arbitrary int.
    133   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
    134     return CE->getSubExpr()->isKnownToHaveBooleanValue();
    135 
    136   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
    137     switch (BO->getOpcode()) {
    138     default: return false;
    139     case BO_LT:   // Relational operators.
    140     case BO_GT:
    141     case BO_LE:
    142     case BO_GE:
    143     case BO_EQ:   // Equality operators.
    144     case BO_NE:
    145     case BO_LAnd: // AND operator.
    146     case BO_LOr:  // Logical OR operator.
    147       return true;
    148 
    149     case BO_And:  // Bitwise AND operator.
    150     case BO_Xor:  // Bitwise XOR operator.
    151     case BO_Or:   // Bitwise OR operator.
    152       // Handle things like (x==2)|(y==12).
    153       return BO->getLHS()->isKnownToHaveBooleanValue() &&
    154              BO->getRHS()->isKnownToHaveBooleanValue();
    155 
    156     case BO_Comma:
    157     case BO_Assign:
    158       return BO->getRHS()->isKnownToHaveBooleanValue();
    159     }
    160   }
    161 
    162   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
    163     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
    164            CO->getFalseExpr()->isKnownToHaveBooleanValue();
    165 
    166   return false;
    167 }
    168 
    169 // Amusing macro metaprogramming hack: check whether a class provides
    170 // a more specific implementation of getExprLoc().
    171 //
    172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
    173 namespace {
    174   /// This implementation is used when a class provides a custom
    175   /// implementation of getExprLoc.
    176   template <class E, class T>
    177   SourceLocation getExprLocImpl(const Expr *expr,
    178                                 SourceLocation (T::*v)() const) {
    179     return static_cast<const E*>(expr)->getExprLoc();
    180   }
    181 
    182   /// This implementation is used when a class doesn't provide
    183   /// a custom implementation of getExprLoc.  Overload resolution
    184   /// should pick it over the implementation above because it's
    185   /// more specialized according to function template partial ordering.
    186   template <class E>
    187   SourceLocation getExprLocImpl(const Expr *expr,
    188                                 SourceLocation (Expr::*v)() const) {
    189     return static_cast<const E*>(expr)->getLocStart();
    190   }
    191 }
    192 
    193 SourceLocation Expr::getExprLoc() const {
    194   switch (getStmtClass()) {
    195   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
    196 #define ABSTRACT_STMT(type)
    197 #define STMT(type, base) \
    198   case Stmt::type##Class: break;
    199 #define EXPR(type, base) \
    200   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
    201 #include "clang/AST/StmtNodes.inc"
    202   }
    203   llvm_unreachable("unknown expression kind");
    204 }
    205 
    206 //===----------------------------------------------------------------------===//
    207 // Primary Expressions.
    208 //===----------------------------------------------------------------------===//
    209 
    210 /// \brief Compute the type-, value-, and instantiation-dependence of a
    211 /// declaration reference
    212 /// based on the declaration being referenced.
    213 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
    214                                      QualType T, bool &TypeDependent,
    215                                      bool &ValueDependent,
    216                                      bool &InstantiationDependent) {
    217   TypeDependent = false;
    218   ValueDependent = false;
    219   InstantiationDependent = false;
    220 
    221   // (TD) C++ [temp.dep.expr]p3:
    222   //   An id-expression is type-dependent if it contains:
    223   //
    224   // and
    225   //
    226   // (VD) C++ [temp.dep.constexpr]p2:
    227   //  An identifier is value-dependent if it is:
    228 
    229   //  (TD)  - an identifier that was declared with dependent type
    230   //  (VD)  - a name declared with a dependent type,
    231   if (T->isDependentType()) {
    232     TypeDependent = true;
    233     ValueDependent = true;
    234     InstantiationDependent = true;
    235     return;
    236   } else if (T->isInstantiationDependentType()) {
    237     InstantiationDependent = true;
    238   }
    239 
    240   //  (TD)  - a conversion-function-id that specifies a dependent type
    241   if (D->getDeclName().getNameKind()
    242                                 == DeclarationName::CXXConversionFunctionName) {
    243     QualType T = D->getDeclName().getCXXNameType();
    244     if (T->isDependentType()) {
    245       TypeDependent = true;
    246       ValueDependent = true;
    247       InstantiationDependent = true;
    248       return;
    249     }
    250 
    251     if (T->isInstantiationDependentType())
    252       InstantiationDependent = true;
    253   }
    254 
    255   //  (VD)  - the name of a non-type template parameter,
    256   if (isa<NonTypeTemplateParmDecl>(D)) {
    257     ValueDependent = true;
    258     InstantiationDependent = true;
    259     return;
    260   }
    261 
    262   //  (VD) - a constant with integral or enumeration type and is
    263   //         initialized with an expression that is value-dependent.
    264   //  (VD) - a constant with literal type and is initialized with an
    265   //         expression that is value-dependent [C++11].
    266   //  (VD) - FIXME: Missing from the standard:
    267   //       -  an entity with reference type and is initialized with an
    268   //          expression that is value-dependent [C++11]
    269   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
    270     if ((Ctx.getLangOpts().CPlusPlus11 ?
    271            Var->getType()->isLiteralType(Ctx) :
    272            Var->getType()->isIntegralOrEnumerationType()) &&
    273         (Var->getType().isConstQualified() ||
    274          Var->getType()->isReferenceType())) {
    275       if (const Expr *Init = Var->getAnyInitializer())
    276         if (Init->isValueDependent()) {
    277           ValueDependent = true;
    278           InstantiationDependent = true;
    279         }
    280     }
    281 
    282     // (VD) - FIXME: Missing from the standard:
    283     //      -  a member function or a static data member of the current
    284     //         instantiation
    285     if (Var->isStaticDataMember() &&
    286         Var->getDeclContext()->isDependentContext()) {
    287       ValueDependent = true;
    288       InstantiationDependent = true;
    289       TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
    290       if (TInfo->getType()->isIncompleteArrayType())
    291         TypeDependent = true;
    292     }
    293 
    294     return;
    295   }
    296 
    297   // (VD) - FIXME: Missing from the standard:
    298   //      -  a member function or a static data member of the current
    299   //         instantiation
    300   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
    301     ValueDependent = true;
    302     InstantiationDependent = true;
    303   }
    304 }
    305 
    306 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
    307   bool TypeDependent = false;
    308   bool ValueDependent = false;
    309   bool InstantiationDependent = false;
    310   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
    311                            ValueDependent, InstantiationDependent);
    312 
    313   ExprBits.TypeDependent |= TypeDependent;
    314   ExprBits.ValueDependent |= ValueDependent;
    315   ExprBits.InstantiationDependent |= InstantiationDependent;
    316 
    317   // Is the declaration a parameter pack?
    318   if (getDecl()->isParameterPack())
    319     ExprBits.ContainsUnexpandedParameterPack = true;
    320 }
    321 
    322 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
    323                          NestedNameSpecifierLoc QualifierLoc,
    324                          SourceLocation TemplateKWLoc,
    325                          ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
    326                          const DeclarationNameInfo &NameInfo,
    327                          NamedDecl *FoundD,
    328                          const TemplateArgumentListInfo *TemplateArgs,
    329                          QualType T, ExprValueKind VK)
    330   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
    331     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
    332   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
    333   if (QualifierLoc) {
    334     getInternalQualifierLoc() = QualifierLoc;
    335     auto *NNS = QualifierLoc.getNestedNameSpecifier();
    336     if (NNS->isInstantiationDependent())
    337       ExprBits.InstantiationDependent = true;
    338     if (NNS->containsUnexpandedParameterPack())
    339       ExprBits.ContainsUnexpandedParameterPack = true;
    340   }
    341   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
    342   if (FoundD)
    343     getInternalFoundDecl() = FoundD;
    344   DeclRefExprBits.HasTemplateKWAndArgsInfo
    345     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
    346   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
    347       RefersToEnclosingVariableOrCapture;
    348   if (TemplateArgs) {
    349     bool Dependent = false;
    350     bool InstantiationDependent = false;
    351     bool ContainsUnexpandedParameterPack = false;
    352     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
    353                                                Dependent,
    354                                                InstantiationDependent,
    355                                                ContainsUnexpandedParameterPack);
    356     assert(!Dependent && "built a DeclRefExpr with dependent template args");
    357     ExprBits.InstantiationDependent |= InstantiationDependent;
    358     ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
    359   } else if (TemplateKWLoc.isValid()) {
    360     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
    361   }
    362   DeclRefExprBits.HadMultipleCandidates = 0;
    363 
    364   computeDependence(Ctx);
    365 }
    366 
    367 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
    368                                  NestedNameSpecifierLoc QualifierLoc,
    369                                  SourceLocation TemplateKWLoc,
    370                                  ValueDecl *D,
    371                                  bool RefersToEnclosingVariableOrCapture,
    372                                  SourceLocation NameLoc,
    373                                  QualType T,
    374                                  ExprValueKind VK,
    375                                  NamedDecl *FoundD,
    376                                  const TemplateArgumentListInfo *TemplateArgs) {
    377   return Create(Context, QualifierLoc, TemplateKWLoc, D,
    378                 RefersToEnclosingVariableOrCapture,
    379                 DeclarationNameInfo(D->getDeclName(), NameLoc),
    380                 T, VK, FoundD, TemplateArgs);
    381 }
    382 
    383 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
    384                                  NestedNameSpecifierLoc QualifierLoc,
    385                                  SourceLocation TemplateKWLoc,
    386                                  ValueDecl *D,
    387                                  bool RefersToEnclosingVariableOrCapture,
    388                                  const DeclarationNameInfo &NameInfo,
    389                                  QualType T,
    390                                  ExprValueKind VK,
    391                                  NamedDecl *FoundD,
    392                                  const TemplateArgumentListInfo *TemplateArgs) {
    393   // Filter out cases where the found Decl is the same as the value refenenced.
    394   if (D == FoundD)
    395     FoundD = nullptr;
    396 
    397   std::size_t Size = sizeof(DeclRefExpr);
    398   if (QualifierLoc)
    399     Size += sizeof(NestedNameSpecifierLoc);
    400   if (FoundD)
    401     Size += sizeof(NamedDecl *);
    402   if (TemplateArgs) {
    403     Size = llvm::RoundUpToAlignment(Size,
    404                                     llvm::alignOf<ASTTemplateKWAndArgsInfo>());
    405     Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
    406   } else if (TemplateKWLoc.isValid()) {
    407     Size = llvm::RoundUpToAlignment(Size,
    408                                     llvm::alignOf<ASTTemplateKWAndArgsInfo>());
    409     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
    410   }
    411 
    412   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
    413   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
    414                                RefersToEnclosingVariableOrCapture,
    415                                NameInfo, FoundD, TemplateArgs, T, VK);
    416 }
    417 
    418 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
    419                                       bool HasQualifier,
    420                                       bool HasFoundDecl,
    421                                       bool HasTemplateKWAndArgsInfo,
    422                                       unsigned NumTemplateArgs) {
    423   std::size_t Size = sizeof(DeclRefExpr);
    424   if (HasQualifier)
    425     Size += sizeof(NestedNameSpecifierLoc);
    426   if (HasFoundDecl)
    427     Size += sizeof(NamedDecl *);
    428   if (HasTemplateKWAndArgsInfo) {
    429     Size = llvm::RoundUpToAlignment(Size,
    430                                     llvm::alignOf<ASTTemplateKWAndArgsInfo>());
    431     Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
    432   }
    433 
    434   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
    435   return new (Mem) DeclRefExpr(EmptyShell());
    436 }
    437 
    438 SourceLocation DeclRefExpr::getLocStart() const {
    439   if (hasQualifier())
    440     return getQualifierLoc().getBeginLoc();
    441   return getNameInfo().getLocStart();
    442 }
    443 SourceLocation DeclRefExpr::getLocEnd() const {
    444   if (hasExplicitTemplateArgs())
    445     return getRAngleLoc();
    446   return getNameInfo().getLocEnd();
    447 }
    448 
    449 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
    450                                StringLiteral *SL)
    451     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
    452            FNTy->isDependentType(), FNTy->isDependentType(),
    453            FNTy->isInstantiationDependentType(),
    454            /*ContainsUnexpandedParameterPack=*/false),
    455       Loc(L), Type(IT), FnName(SL) {}
    456 
    457 StringLiteral *PredefinedExpr::getFunctionName() {
    458   return cast_or_null<StringLiteral>(FnName);
    459 }
    460 
    461 StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) {
    462   switch (IT) {
    463   case Func:
    464     return "__func__";
    465   case Function:
    466     return "__FUNCTION__";
    467   case FuncDName:
    468     return "__FUNCDNAME__";
    469   case LFunction:
    470     return "L__FUNCTION__";
    471   case PrettyFunction:
    472     return "__PRETTY_FUNCTION__";
    473   case FuncSig:
    474     return "__FUNCSIG__";
    475   case PrettyFunctionNoVirtual:
    476     break;
    477   }
    478   llvm_unreachable("Unknown ident type for PredefinedExpr");
    479 }
    480 
    481 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
    482 // expr" policy instead.
    483 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
    484   ASTContext &Context = CurrentDecl->getASTContext();
    485 
    486   if (IT == PredefinedExpr::FuncDName) {
    487     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
    488       std::unique_ptr<MangleContext> MC;
    489       MC.reset(Context.createMangleContext());
    490 
    491       if (MC->shouldMangleDeclName(ND)) {
    492         SmallString<256> Buffer;
    493         llvm::raw_svector_ostream Out(Buffer);
    494         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
    495           MC->mangleCXXCtor(CD, Ctor_Base, Out);
    496         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
    497           MC->mangleCXXDtor(DD, Dtor_Base, Out);
    498         else
    499           MC->mangleName(ND, Out);
    500 
    501         if (!Buffer.empty() && Buffer.front() == '\01')
    502           return Buffer.substr(1);
    503         return Buffer.str();
    504       } else
    505         return ND->getIdentifier()->getName();
    506     }
    507     return "";
    508   }
    509   if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) {
    510     std::unique_ptr<MangleContext> MC;
    511     MC.reset(Context.createMangleContext());
    512     SmallString<256> Buffer;
    513     llvm::raw_svector_ostream Out(Buffer);
    514     auto DC = CurrentDecl->getDeclContext();
    515     if (DC->isFileContext())
    516       MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out);
    517     else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
    518       MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out);
    519     else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
    520       MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out);
    521     else
    522       MC->mangleBlock(DC, BD, Out);
    523     return Out.str();
    524   }
    525   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
    526     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
    527       return FD->getNameAsString();
    528 
    529     SmallString<256> Name;
    530     llvm::raw_svector_ostream Out(Name);
    531 
    532     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    533       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
    534         Out << "virtual ";
    535       if (MD->isStatic())
    536         Out << "static ";
    537     }
    538 
    539     PrintingPolicy Policy(Context.getLangOpts());
    540     std::string Proto;
    541     llvm::raw_string_ostream POut(Proto);
    542 
    543     const FunctionDecl *Decl = FD;
    544     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
    545       Decl = Pattern;
    546     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
    547     const FunctionProtoType *FT = nullptr;
    548     if (FD->hasWrittenPrototype())
    549       FT = dyn_cast<FunctionProtoType>(AFT);
    550 
    551     if (IT == FuncSig) {
    552       switch (FT->getCallConv()) {
    553       case CC_C: POut << "__cdecl "; break;
    554       case CC_X86StdCall: POut << "__stdcall "; break;
    555       case CC_X86FastCall: POut << "__fastcall "; break;
    556       case CC_X86ThisCall: POut << "__thiscall "; break;
    557       case CC_X86VectorCall: POut << "__vectorcall "; break;
    558       // Only bother printing the conventions that MSVC knows about.
    559       default: break;
    560       }
    561     }
    562 
    563     FD->printQualifiedName(POut, Policy);
    564 
    565     POut << "(";
    566     if (FT) {
    567       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
    568         if (i) POut << ", ";
    569         POut << Decl->getParamDecl(i)->getType().stream(Policy);
    570       }
    571 
    572       if (FT->isVariadic()) {
    573         if (FD->getNumParams()) POut << ", ";
    574         POut << "...";
    575       }
    576     }
    577     POut << ")";
    578 
    579     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    580       const FunctionType *FT = MD->getType()->castAs<FunctionType>();
    581       if (FT->isConst())
    582         POut << " const";
    583       if (FT->isVolatile())
    584         POut << " volatile";
    585       RefQualifierKind Ref = MD->getRefQualifier();
    586       if (Ref == RQ_LValue)
    587         POut << " &";
    588       else if (Ref == RQ_RValue)
    589         POut << " &&";
    590     }
    591 
    592     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
    593     SpecsTy Specs;
    594     const DeclContext *Ctx = FD->getDeclContext();
    595     while (Ctx && isa<NamedDecl>(Ctx)) {
    596       const ClassTemplateSpecializationDecl *Spec
    597                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
    598       if (Spec && !Spec->isExplicitSpecialization())
    599         Specs.push_back(Spec);
    600       Ctx = Ctx->getParent();
    601     }
    602 
    603     std::string TemplateParams;
    604     llvm::raw_string_ostream TOut(TemplateParams);
    605     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
    606          I != E; ++I) {
    607       const TemplateParameterList *Params
    608                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
    609       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
    610       assert(Params->size() == Args.size());
    611       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
    612         StringRef Param = Params->getParam(i)->getName();
    613         if (Param.empty()) continue;
    614         TOut << Param << " = ";
    615         Args.get(i).print(Policy, TOut);
    616         TOut << ", ";
    617       }
    618     }
    619 
    620     FunctionTemplateSpecializationInfo *FSI
    621                                           = FD->getTemplateSpecializationInfo();
    622     if (FSI && !FSI->isExplicitSpecialization()) {
    623       const TemplateParameterList* Params
    624                                   = FSI->getTemplate()->getTemplateParameters();
    625       const TemplateArgumentList* Args = FSI->TemplateArguments;
    626       assert(Params->size() == Args->size());
    627       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
    628         StringRef Param = Params->getParam(i)->getName();
    629         if (Param.empty()) continue;
    630         TOut << Param << " = ";
    631         Args->get(i).print(Policy, TOut);
    632         TOut << ", ";
    633       }
    634     }
    635 
    636     TOut.flush();
    637     if (!TemplateParams.empty()) {
    638       // remove the trailing comma and space
    639       TemplateParams.resize(TemplateParams.size() - 2);
    640       POut << " [" << TemplateParams << "]";
    641     }
    642 
    643     POut.flush();
    644 
    645     // Print "auto" for all deduced return types. This includes C++1y return
    646     // type deduction and lambdas. For trailing return types resolve the
    647     // decltype expression. Otherwise print the real type when this is
    648     // not a constructor or destructor.
    649     if (isa<CXXMethodDecl>(FD) &&
    650          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
    651       Proto = "auto " + Proto;
    652     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
    653       FT->getReturnType()
    654           ->getAs<DecltypeType>()
    655           ->getUnderlyingType()
    656           .getAsStringInternal(Proto, Policy);
    657     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
    658       AFT->getReturnType().getAsStringInternal(Proto, Policy);
    659 
    660     Out << Proto;
    661 
    662     return Name.str().str();
    663   }
    664   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
    665     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
    666       // Skip to its enclosing function or method, but not its enclosing
    667       // CapturedDecl.
    668       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
    669         const Decl *D = Decl::castFromDeclContext(DC);
    670         return ComputeName(IT, D);
    671       }
    672     llvm_unreachable("CapturedDecl not inside a function or method");
    673   }
    674   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
    675     SmallString<256> Name;
    676     llvm::raw_svector_ostream Out(Name);
    677     Out << (MD->isInstanceMethod() ? '-' : '+');
    678     Out << '[';
    679 
    680     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
    681     // a null check to avoid a crash.
    682     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
    683       Out << *ID;
    684 
    685     if (const ObjCCategoryImplDecl *CID =
    686         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
    687       Out << '(' << *CID << ')';
    688 
    689     Out <<  ' ';
    690     MD->getSelector().print(Out);
    691     Out <<  ']';
    692 
    693     return Name.str().str();
    694   }
    695   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
    696     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
    697     return "top level";
    698   }
    699   return "";
    700 }
    701 
    702 void APNumericStorage::setIntValue(const ASTContext &C,
    703                                    const llvm::APInt &Val) {
    704   if (hasAllocation())
    705     C.Deallocate(pVal);
    706 
    707   BitWidth = Val.getBitWidth();
    708   unsigned NumWords = Val.getNumWords();
    709   const uint64_t* Words = Val.getRawData();
    710   if (NumWords > 1) {
    711     pVal = new (C) uint64_t[NumWords];
    712     std::copy(Words, Words + NumWords, pVal);
    713   } else if (NumWords == 1)
    714     VAL = Words[0];
    715   else
    716     VAL = 0;
    717 }
    718 
    719 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
    720                                QualType type, SourceLocation l)
    721   : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
    722          false, false),
    723     Loc(l) {
    724   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
    725   assert(V.getBitWidth() == C.getIntWidth(type) &&
    726          "Integer type is not the correct size for constant.");
    727   setValue(C, V);
    728 }
    729 
    730 IntegerLiteral *
    731 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
    732                        QualType type, SourceLocation l) {
    733   return new (C) IntegerLiteral(C, V, type, l);
    734 }
    735 
    736 IntegerLiteral *
    737 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
    738   return new (C) IntegerLiteral(Empty);
    739 }
    740 
    741 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
    742                                  bool isexact, QualType Type, SourceLocation L)
    743   : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
    744          false, false), Loc(L) {
    745   setSemantics(V.getSemantics());
    746   FloatingLiteralBits.IsExact = isexact;
    747   setValue(C, V);
    748 }
    749 
    750 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
    751   : Expr(FloatingLiteralClass, Empty) {
    752   setRawSemantics(IEEEhalf);
    753   FloatingLiteralBits.IsExact = false;
    754 }
    755 
    756 FloatingLiteral *
    757 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
    758                         bool isexact, QualType Type, SourceLocation L) {
    759   return new (C) FloatingLiteral(C, V, isexact, Type, L);
    760 }
    761 
    762 FloatingLiteral *
    763 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
    764   return new (C) FloatingLiteral(C, Empty);
    765 }
    766 
    767 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
    768   switch(FloatingLiteralBits.Semantics) {
    769   case IEEEhalf:
    770     return llvm::APFloat::IEEEhalf;
    771   case IEEEsingle:
    772     return llvm::APFloat::IEEEsingle;
    773   case IEEEdouble:
    774     return llvm::APFloat::IEEEdouble;
    775   case x87DoubleExtended:
    776     return llvm::APFloat::x87DoubleExtended;
    777   case IEEEquad:
    778     return llvm::APFloat::IEEEquad;
    779   case PPCDoubleDouble:
    780     return llvm::APFloat::PPCDoubleDouble;
    781   }
    782   llvm_unreachable("Unrecognised floating semantics");
    783 }
    784 
    785 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
    786   if (&Sem == &llvm::APFloat::IEEEhalf)
    787     FloatingLiteralBits.Semantics = IEEEhalf;
    788   else if (&Sem == &llvm::APFloat::IEEEsingle)
    789     FloatingLiteralBits.Semantics = IEEEsingle;
    790   else if (&Sem == &llvm::APFloat::IEEEdouble)
    791     FloatingLiteralBits.Semantics = IEEEdouble;
    792   else if (&Sem == &llvm::APFloat::x87DoubleExtended)
    793     FloatingLiteralBits.Semantics = x87DoubleExtended;
    794   else if (&Sem == &llvm::APFloat::IEEEquad)
    795     FloatingLiteralBits.Semantics = IEEEquad;
    796   else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
    797     FloatingLiteralBits.Semantics = PPCDoubleDouble;
    798   else
    799     llvm_unreachable("Unknown floating semantics");
    800 }
    801 
    802 /// getValueAsApproximateDouble - This returns the value as an inaccurate
    803 /// double.  Note that this may cause loss of precision, but is useful for
    804 /// debugging dumps, etc.
    805 double FloatingLiteral::getValueAsApproximateDouble() const {
    806   llvm::APFloat V = getValue();
    807   bool ignored;
    808   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
    809             &ignored);
    810   return V.convertToDouble();
    811 }
    812 
    813 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
    814   int CharByteWidth = 0;
    815   switch(k) {
    816     case Ascii:
    817     case UTF8:
    818       CharByteWidth = target.getCharWidth();
    819       break;
    820     case Wide:
    821       CharByteWidth = target.getWCharWidth();
    822       break;
    823     case UTF16:
    824       CharByteWidth = target.getChar16Width();
    825       break;
    826     case UTF32:
    827       CharByteWidth = target.getChar32Width();
    828       break;
    829   }
    830   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
    831   CharByteWidth /= 8;
    832   assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
    833          && "character byte widths supported are 1, 2, and 4 only");
    834   return CharByteWidth;
    835 }
    836 
    837 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
    838                                      StringKind Kind, bool Pascal, QualType Ty,
    839                                      const SourceLocation *Loc,
    840                                      unsigned NumStrs) {
    841   assert(C.getAsConstantArrayType(Ty) &&
    842          "StringLiteral must be of constant array type!");
    843 
    844   // Allocate enough space for the StringLiteral plus an array of locations for
    845   // any concatenated string tokens.
    846   void *Mem = C.Allocate(sizeof(StringLiteral)+
    847                          sizeof(SourceLocation)*(NumStrs-1),
    848                          llvm::alignOf<StringLiteral>());
    849   StringLiteral *SL = new (Mem) StringLiteral(Ty);
    850 
    851   // OPTIMIZE: could allocate this appended to the StringLiteral.
    852   SL->setString(C,Str,Kind,Pascal);
    853 
    854   SL->TokLocs[0] = Loc[0];
    855   SL->NumConcatenated = NumStrs;
    856 
    857   if (NumStrs != 1)
    858     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
    859   return SL;
    860 }
    861 
    862 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
    863                                           unsigned NumStrs) {
    864   void *Mem = C.Allocate(sizeof(StringLiteral)+
    865                          sizeof(SourceLocation)*(NumStrs-1),
    866                          llvm::alignOf<StringLiteral>());
    867   StringLiteral *SL = new (Mem) StringLiteral(QualType());
    868   SL->CharByteWidth = 0;
    869   SL->Length = 0;
    870   SL->NumConcatenated = NumStrs;
    871   return SL;
    872 }
    873 
    874 void StringLiteral::outputString(raw_ostream &OS) const {
    875   switch (getKind()) {
    876   case Ascii: break; // no prefix.
    877   case Wide:  OS << 'L'; break;
    878   case UTF8:  OS << "u8"; break;
    879   case UTF16: OS << 'u'; break;
    880   case UTF32: OS << 'U'; break;
    881   }
    882   OS << '"';
    883   static const char Hex[] = "0123456789ABCDEF";
    884 
    885   unsigned LastSlashX = getLength();
    886   for (unsigned I = 0, N = getLength(); I != N; ++I) {
    887     switch (uint32_t Char = getCodeUnit(I)) {
    888     default:
    889       // FIXME: Convert UTF-8 back to codepoints before rendering.
    890 
    891       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
    892       // Leave invalid surrogates alone; we'll use \x for those.
    893       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
    894           Char <= 0xdbff) {
    895         uint32_t Trail = getCodeUnit(I + 1);
    896         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
    897           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
    898           ++I;
    899         }
    900       }
    901 
    902       if (Char > 0xff) {
    903         // If this is a wide string, output characters over 0xff using \x
    904         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
    905         // codepoint: use \x escapes for invalid codepoints.
    906         if (getKind() == Wide ||
    907             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
    908           // FIXME: Is this the best way to print wchar_t?
    909           OS << "\\x";
    910           int Shift = 28;
    911           while ((Char >> Shift) == 0)
    912             Shift -= 4;
    913           for (/**/; Shift >= 0; Shift -= 4)
    914             OS << Hex[(Char >> Shift) & 15];
    915           LastSlashX = I;
    916           break;
    917         }
    918 
    919         if (Char > 0xffff)
    920           OS << "\\U00"
    921              << Hex[(Char >> 20) & 15]
    922              << Hex[(Char >> 16) & 15];
    923         else
    924           OS << "\\u";
    925         OS << Hex[(Char >> 12) & 15]
    926            << Hex[(Char >>  8) & 15]
    927            << Hex[(Char >>  4) & 15]
    928            << Hex[(Char >>  0) & 15];
    929         break;
    930       }
    931 
    932       // If we used \x... for the previous character, and this character is a
    933       // hexadecimal digit, prevent it being slurped as part of the \x.
    934       if (LastSlashX + 1 == I) {
    935         switch (Char) {
    936           case '0': case '1': case '2': case '3': case '4':
    937           case '5': case '6': case '7': case '8': case '9':
    938           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
    939           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
    940             OS << "\"\"";
    941         }
    942       }
    943 
    944       assert(Char <= 0xff &&
    945              "Characters above 0xff should already have been handled.");
    946 
    947       if (isPrintable(Char))
    948         OS << (char)Char;
    949       else  // Output anything hard as an octal escape.
    950         OS << '\\'
    951            << (char)('0' + ((Char >> 6) & 7))
    952            << (char)('0' + ((Char >> 3) & 7))
    953            << (char)('0' + ((Char >> 0) & 7));
    954       break;
    955     // Handle some common non-printable cases to make dumps prettier.
    956     case '\\': OS << "\\\\"; break;
    957     case '"': OS << "\\\""; break;
    958     case '\n': OS << "\\n"; break;
    959     case '\t': OS << "\\t"; break;
    960     case '\a': OS << "\\a"; break;
    961     case '\b': OS << "\\b"; break;
    962     }
    963   }
    964   OS << '"';
    965 }
    966 
    967 void StringLiteral::setString(const ASTContext &C, StringRef Str,
    968                               StringKind Kind, bool IsPascal) {
    969   //FIXME: we assume that the string data comes from a target that uses the same
    970   // code unit size and endianess for the type of string.
    971   this->Kind = Kind;
    972   this->IsPascal = IsPascal;
    973 
    974   CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
    975   assert((Str.size()%CharByteWidth == 0)
    976          && "size of data must be multiple of CharByteWidth");
    977   Length = Str.size()/CharByteWidth;
    978 
    979   switch(CharByteWidth) {
    980     case 1: {
    981       char *AStrData = new (C) char[Length];
    982       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
    983       StrData.asChar = AStrData;
    984       break;
    985     }
    986     case 2: {
    987       uint16_t *AStrData = new (C) uint16_t[Length];
    988       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
    989       StrData.asUInt16 = AStrData;
    990       break;
    991     }
    992     case 4: {
    993       uint32_t *AStrData = new (C) uint32_t[Length];
    994       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
    995       StrData.asUInt32 = AStrData;
    996       break;
    997     }
    998     default:
    999       assert(false && "unsupported CharByteWidth");
   1000   }
   1001 }
   1002 
   1003 /// getLocationOfByte - Return a source location that points to the specified
   1004 /// byte of this string literal.
   1005 ///
   1006 /// Strings are amazingly complex.  They can be formed from multiple tokens and
   1007 /// can have escape sequences in them in addition to the usual trigraph and
   1008 /// escaped newline business.  This routine handles this complexity.
   1009 ///
   1010 /// The *StartToken sets the first token to be searched in this function and
   1011 /// the *StartTokenByteOffset is the byte offset of the first token. Before
   1012 /// returning, it updates the *StartToken to the TokNo of the token being found
   1013 /// and sets *StartTokenByteOffset to the byte offset of the token in the
   1014 /// string.
   1015 /// Using these two parameters can reduce the time complexity from O(n^2) to
   1016 /// O(n) if one wants to get the location of byte for all the tokens in a
   1017 /// string.
   1018 ///
   1019 SourceLocation
   1020 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
   1021                                  const LangOptions &Features,
   1022                                  const TargetInfo &Target, unsigned *StartToken,
   1023                                  unsigned *StartTokenByteOffset) const {
   1024   assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
   1025          "Only narrow string literals are currently supported");
   1026 
   1027   // Loop over all of the tokens in this string until we find the one that
   1028   // contains the byte we're looking for.
   1029   unsigned TokNo = 0;
   1030   unsigned StringOffset = 0;
   1031   if (StartToken)
   1032     TokNo = *StartToken;
   1033   if (StartTokenByteOffset) {
   1034     StringOffset = *StartTokenByteOffset;
   1035     ByteNo -= StringOffset;
   1036   }
   1037   while (1) {
   1038     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
   1039     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
   1040 
   1041     // Get the spelling of the string so that we can get the data that makes up
   1042     // the string literal, not the identifier for the macro it is potentially
   1043     // expanded through.
   1044     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
   1045 
   1046     // Re-lex the token to get its length and original spelling.
   1047     std::pair<FileID, unsigned> LocInfo =
   1048         SM.getDecomposedLoc(StrTokSpellingLoc);
   1049     bool Invalid = false;
   1050     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
   1051     if (Invalid) {
   1052       if (StartTokenByteOffset != nullptr)
   1053         *StartTokenByteOffset = StringOffset;
   1054       if (StartToken != nullptr)
   1055         *StartToken = TokNo;
   1056       return StrTokSpellingLoc;
   1057     }
   1058 
   1059     const char *StrData = Buffer.data()+LocInfo.second;
   1060 
   1061     // Create a lexer starting at the beginning of this token.
   1062     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
   1063                    Buffer.begin(), StrData, Buffer.end());
   1064     Token TheTok;
   1065     TheLexer.LexFromRawLexer(TheTok);
   1066 
   1067     // Use the StringLiteralParser to compute the length of the string in bytes.
   1068     StringLiteralParser SLP(TheTok, SM, Features, Target);
   1069     unsigned TokNumBytes = SLP.GetStringLength();
   1070 
   1071     // If the byte is in this token, return the location of the byte.
   1072     if (ByteNo < TokNumBytes ||
   1073         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
   1074       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
   1075 
   1076       // Now that we know the offset of the token in the spelling, use the
   1077       // preprocessor to get the offset in the original source.
   1078       if (StartTokenByteOffset != nullptr)
   1079         *StartTokenByteOffset = StringOffset;
   1080       if (StartToken != nullptr)
   1081         *StartToken = TokNo;
   1082       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
   1083     }
   1084 
   1085     // Move to the next string token.
   1086     StringOffset += TokNumBytes;
   1087     ++TokNo;
   1088     ByteNo -= TokNumBytes;
   1089   }
   1090 }
   1091 
   1092 
   1093 
   1094 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
   1095 /// corresponds to, e.g. "sizeof" or "[pre]++".
   1096 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
   1097   switch (Op) {
   1098   case UO_PostInc: return "++";
   1099   case UO_PostDec: return "--";
   1100   case UO_PreInc:  return "++";
   1101   case UO_PreDec:  return "--";
   1102   case UO_AddrOf:  return "&";
   1103   case UO_Deref:   return "*";
   1104   case UO_Plus:    return "+";
   1105   case UO_Minus:   return "-";
   1106   case UO_Not:     return "~";
   1107   case UO_LNot:    return "!";
   1108   case UO_Real:    return "__real";
   1109   case UO_Imag:    return "__imag";
   1110   case UO_Extension: return "__extension__";
   1111   case UO_Coawait: return "co_await";
   1112   }
   1113   llvm_unreachable("Unknown unary operator");
   1114 }
   1115 
   1116 UnaryOperatorKind
   1117 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
   1118   switch (OO) {
   1119   default: llvm_unreachable("No unary operator for overloaded function");
   1120   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
   1121   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
   1122   case OO_Amp:        return UO_AddrOf;
   1123   case OO_Star:       return UO_Deref;
   1124   case OO_Plus:       return UO_Plus;
   1125   case OO_Minus:      return UO_Minus;
   1126   case OO_Tilde:      return UO_Not;
   1127   case OO_Exclaim:    return UO_LNot;
   1128   case OO_Coawait:    return UO_Coawait;
   1129   }
   1130 }
   1131 
   1132 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
   1133   switch (Opc) {
   1134   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
   1135   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
   1136   case UO_AddrOf: return OO_Amp;
   1137   case UO_Deref: return OO_Star;
   1138   case UO_Plus: return OO_Plus;
   1139   case UO_Minus: return OO_Minus;
   1140   case UO_Not: return OO_Tilde;
   1141   case UO_LNot: return OO_Exclaim;
   1142   case UO_Coawait: return OO_Coawait;
   1143   default: return OO_None;
   1144   }
   1145 }
   1146 
   1147 
   1148 //===----------------------------------------------------------------------===//
   1149 // Postfix Operators.
   1150 //===----------------------------------------------------------------------===//
   1151 
   1152 CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn,
   1153                    unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t,
   1154                    ExprValueKind VK, SourceLocation rparenloc)
   1155   : Expr(SC, t, VK, OK_Ordinary,
   1156          fn->isTypeDependent(),
   1157          fn->isValueDependent(),
   1158          fn->isInstantiationDependent(),
   1159          fn->containsUnexpandedParameterPack()),
   1160     NumArgs(args.size()) {
   1161 
   1162   SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
   1163   SubExprs[FN] = fn;
   1164   for (unsigned i = 0; i != args.size(); ++i) {
   1165     if (args[i]->isTypeDependent())
   1166       ExprBits.TypeDependent = true;
   1167     if (args[i]->isValueDependent())
   1168       ExprBits.ValueDependent = true;
   1169     if (args[i]->isInstantiationDependent())
   1170       ExprBits.InstantiationDependent = true;
   1171     if (args[i]->containsUnexpandedParameterPack())
   1172       ExprBits.ContainsUnexpandedParameterPack = true;
   1173 
   1174     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
   1175   }
   1176 
   1177   CallExprBits.NumPreArgs = NumPreArgs;
   1178   RParenLoc = rparenloc;
   1179 }
   1180 
   1181 CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args,
   1182                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
   1183     : CallExpr(C, CallExprClass, fn, /*NumPreArgs=*/0, args, t, VK, rparenloc) {
   1184 }
   1185 
   1186 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
   1187     : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {}
   1188 
   1189 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
   1190                    EmptyShell Empty)
   1191   : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
   1192   // FIXME: Why do we allocate this?
   1193   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
   1194   CallExprBits.NumPreArgs = NumPreArgs;
   1195 }
   1196 
   1197 Decl *CallExpr::getCalleeDecl() {
   1198   Expr *CEE = getCallee()->IgnoreParenImpCasts();
   1199 
   1200   while (SubstNonTypeTemplateParmExpr *NTTP
   1201                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
   1202     CEE = NTTP->getReplacement()->IgnoreParenCasts();
   1203   }
   1204 
   1205   // If we're calling a dereference, look at the pointer instead.
   1206   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
   1207     if (BO->isPtrMemOp())
   1208       CEE = BO->getRHS()->IgnoreParenCasts();
   1209   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
   1210     if (UO->getOpcode() == UO_Deref)
   1211       CEE = UO->getSubExpr()->IgnoreParenCasts();
   1212   }
   1213   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
   1214     return DRE->getDecl();
   1215   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
   1216     return ME->getMemberDecl();
   1217 
   1218   return nullptr;
   1219 }
   1220 
   1221 FunctionDecl *CallExpr::getDirectCallee() {
   1222   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
   1223 }
   1224 
   1225 /// setNumArgs - This changes the number of arguments present in this call.
   1226 /// Any orphaned expressions are deleted by this, and any new operands are set
   1227 /// to null.
   1228 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
   1229   // No change, just return.
   1230   if (NumArgs == getNumArgs()) return;
   1231 
   1232   // If shrinking # arguments, just delete the extras and forgot them.
   1233   if (NumArgs < getNumArgs()) {
   1234     this->NumArgs = NumArgs;
   1235     return;
   1236   }
   1237 
   1238   // Otherwise, we are growing the # arguments.  New an bigger argument array.
   1239   unsigned NumPreArgs = getNumPreArgs();
   1240   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
   1241   // Copy over args.
   1242   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
   1243     NewSubExprs[i] = SubExprs[i];
   1244   // Null out new args.
   1245   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
   1246        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
   1247     NewSubExprs[i] = nullptr;
   1248 
   1249   if (SubExprs) C.Deallocate(SubExprs);
   1250   SubExprs = NewSubExprs;
   1251   this->NumArgs = NumArgs;
   1252 }
   1253 
   1254 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
   1255 /// not, return 0.
   1256 unsigned CallExpr::getBuiltinCallee() const {
   1257   // All simple function calls (e.g. func()) are implicitly cast to pointer to
   1258   // function. As a result, we try and obtain the DeclRefExpr from the
   1259   // ImplicitCastExpr.
   1260   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
   1261   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
   1262     return 0;
   1263 
   1264   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
   1265   if (!DRE)
   1266     return 0;
   1267 
   1268   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
   1269   if (!FDecl)
   1270     return 0;
   1271 
   1272   if (!FDecl->getIdentifier())
   1273     return 0;
   1274 
   1275   return FDecl->getBuiltinID();
   1276 }
   1277 
   1278 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
   1279   if (unsigned BI = getBuiltinCallee())
   1280     return Ctx.BuiltinInfo.isUnevaluated(BI);
   1281   return false;
   1282 }
   1283 
   1284 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
   1285   const Expr *Callee = getCallee();
   1286   QualType CalleeType = Callee->getType();
   1287   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
   1288     CalleeType = FnTypePtr->getPointeeType();
   1289   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
   1290     CalleeType = BPT->getPointeeType();
   1291   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
   1292     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
   1293       return Ctx.VoidTy;
   1294 
   1295     // This should never be overloaded and so should never return null.
   1296     CalleeType = Expr::findBoundMemberType(Callee);
   1297   }
   1298 
   1299   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
   1300   return FnType->getReturnType();
   1301 }
   1302 
   1303 SourceLocation CallExpr::getLocStart() const {
   1304   if (isa<CXXOperatorCallExpr>(this))
   1305     return cast<CXXOperatorCallExpr>(this)->getLocStart();
   1306 
   1307   SourceLocation begin = getCallee()->getLocStart();
   1308   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
   1309     begin = getArg(0)->getLocStart();
   1310   return begin;
   1311 }
   1312 SourceLocation CallExpr::getLocEnd() const {
   1313   if (isa<CXXOperatorCallExpr>(this))
   1314     return cast<CXXOperatorCallExpr>(this)->getLocEnd();
   1315 
   1316   SourceLocation end = getRParenLoc();
   1317   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
   1318     end = getArg(getNumArgs() - 1)->getLocEnd();
   1319   return end;
   1320 }
   1321 
   1322 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
   1323                                    SourceLocation OperatorLoc,
   1324                                    TypeSourceInfo *tsi,
   1325                                    ArrayRef<OffsetOfNode> comps,
   1326                                    ArrayRef<Expr*> exprs,
   1327                                    SourceLocation RParenLoc) {
   1328   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
   1329                          sizeof(OffsetOfNode) * comps.size() +
   1330                          sizeof(Expr*) * exprs.size());
   1331 
   1332   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
   1333                                 RParenLoc);
   1334 }
   1335 
   1336 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
   1337                                         unsigned numComps, unsigned numExprs) {
   1338   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
   1339                          sizeof(OffsetOfNode) * numComps +
   1340                          sizeof(Expr*) * numExprs);
   1341   return new (Mem) OffsetOfExpr(numComps, numExprs);
   1342 }
   1343 
   1344 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
   1345                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
   1346                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
   1347                            SourceLocation RParenLoc)
   1348   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
   1349          /*TypeDependent=*/false,
   1350          /*ValueDependent=*/tsi->getType()->isDependentType(),
   1351          tsi->getType()->isInstantiationDependentType(),
   1352          tsi->getType()->containsUnexpandedParameterPack()),
   1353     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
   1354     NumComps(comps.size()), NumExprs(exprs.size())
   1355 {
   1356   for (unsigned i = 0; i != comps.size(); ++i) {
   1357     setComponent(i, comps[i]);
   1358   }
   1359 
   1360   for (unsigned i = 0; i != exprs.size(); ++i) {
   1361     if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
   1362       ExprBits.ValueDependent = true;
   1363     if (exprs[i]->containsUnexpandedParameterPack())
   1364       ExprBits.ContainsUnexpandedParameterPack = true;
   1365 
   1366     setIndexExpr(i, exprs[i]);
   1367   }
   1368 }
   1369 
   1370 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
   1371   assert(getKind() == Field || getKind() == Identifier);
   1372   if (getKind() == Field)
   1373     return getField()->getIdentifier();
   1374 
   1375   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
   1376 }
   1377 
   1378 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
   1379     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
   1380     SourceLocation op, SourceLocation rp)
   1381     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
   1382            false, // Never type-dependent (C++ [temp.dep.expr]p3).
   1383            // Value-dependent if the argument is type-dependent.
   1384            E->isTypeDependent(), E->isInstantiationDependent(),
   1385            E->containsUnexpandedParameterPack()),
   1386       OpLoc(op), RParenLoc(rp) {
   1387   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
   1388   UnaryExprOrTypeTraitExprBits.IsType = false;
   1389   Argument.Ex = E;
   1390 
   1391   // Check to see if we are in the situation where alignof(decl) should be
   1392   // dependent because decl's alignment is dependent.
   1393   if (ExprKind == UETT_AlignOf) {
   1394     if (!isValueDependent() || !isInstantiationDependent()) {
   1395       E = E->IgnoreParens();
   1396 
   1397       const ValueDecl *D = nullptr;
   1398       if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
   1399         D = DRE->getDecl();
   1400       else if (const auto *ME = dyn_cast<MemberExpr>(E))
   1401         D = ME->getMemberDecl();
   1402 
   1403       if (D) {
   1404         for (const auto *I : D->specific_attrs<AlignedAttr>()) {
   1405           if (I->isAlignmentDependent()) {
   1406             setValueDependent(true);
   1407             setInstantiationDependent(true);
   1408             break;
   1409           }
   1410         }
   1411       }
   1412     }
   1413   }
   1414 }
   1415 
   1416 MemberExpr *MemberExpr::Create(
   1417     const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
   1418     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
   1419     ValueDecl *memberdecl, DeclAccessPair founddecl,
   1420     DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
   1421     QualType ty, ExprValueKind vk, ExprObjectKind ok) {
   1422   std::size_t Size = sizeof(MemberExpr);
   1423 
   1424   bool hasQualOrFound = (QualifierLoc ||
   1425                          founddecl.getDecl() != memberdecl ||
   1426                          founddecl.getAccess() != memberdecl->getAccess());
   1427   if (hasQualOrFound)
   1428     Size += sizeof(MemberNameQualifier);
   1429 
   1430   if (targs)
   1431     Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
   1432   else if (TemplateKWLoc.isValid())
   1433     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
   1434 
   1435   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
   1436   MemberExpr *E = new (Mem)
   1437       MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
   1438 
   1439   if (hasQualOrFound) {
   1440     // FIXME: Wrong. We should be looking at the member declaration we found.
   1441     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
   1442       E->setValueDependent(true);
   1443       E->setTypeDependent(true);
   1444       E->setInstantiationDependent(true);
   1445     }
   1446     else if (QualifierLoc &&
   1447              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
   1448       E->setInstantiationDependent(true);
   1449 
   1450     E->HasQualifierOrFoundDecl = true;
   1451 
   1452     MemberNameQualifier *NQ = E->getMemberQualifier();
   1453     NQ->QualifierLoc = QualifierLoc;
   1454     NQ->FoundDecl = founddecl;
   1455   }
   1456 
   1457   E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
   1458 
   1459   if (targs) {
   1460     bool Dependent = false;
   1461     bool InstantiationDependent = false;
   1462     bool ContainsUnexpandedParameterPack = false;
   1463     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
   1464                                                   Dependent,
   1465                                                   InstantiationDependent,
   1466                                              ContainsUnexpandedParameterPack);
   1467     if (InstantiationDependent)
   1468       E->setInstantiationDependent(true);
   1469   } else if (TemplateKWLoc.isValid()) {
   1470     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
   1471   }
   1472 
   1473   return E;
   1474 }
   1475 
   1476 SourceLocation MemberExpr::getLocStart() const {
   1477   if (isImplicitAccess()) {
   1478     if (hasQualifier())
   1479       return getQualifierLoc().getBeginLoc();
   1480     return MemberLoc;
   1481   }
   1482 
   1483   // FIXME: We don't want this to happen. Rather, we should be able to
   1484   // detect all kinds of implicit accesses more cleanly.
   1485   SourceLocation BaseStartLoc = getBase()->getLocStart();
   1486   if (BaseStartLoc.isValid())
   1487     return BaseStartLoc;
   1488   return MemberLoc;
   1489 }
   1490 SourceLocation MemberExpr::getLocEnd() const {
   1491   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
   1492   if (hasExplicitTemplateArgs())
   1493     EndLoc = getRAngleLoc();
   1494   else if (EndLoc.isInvalid())
   1495     EndLoc = getBase()->getLocEnd();
   1496   return EndLoc;
   1497 }
   1498 
   1499 bool CastExpr::CastConsistency() const {
   1500   switch (getCastKind()) {
   1501   case CK_DerivedToBase:
   1502   case CK_UncheckedDerivedToBase:
   1503   case CK_DerivedToBaseMemberPointer:
   1504   case CK_BaseToDerived:
   1505   case CK_BaseToDerivedMemberPointer:
   1506     assert(!path_empty() && "Cast kind should have a base path!");
   1507     break;
   1508 
   1509   case CK_CPointerToObjCPointerCast:
   1510     assert(getType()->isObjCObjectPointerType());
   1511     assert(getSubExpr()->getType()->isPointerType());
   1512     goto CheckNoBasePath;
   1513 
   1514   case CK_BlockPointerToObjCPointerCast:
   1515     assert(getType()->isObjCObjectPointerType());
   1516     assert(getSubExpr()->getType()->isBlockPointerType());
   1517     goto CheckNoBasePath;
   1518 
   1519   case CK_ReinterpretMemberPointer:
   1520     assert(getType()->isMemberPointerType());
   1521     assert(getSubExpr()->getType()->isMemberPointerType());
   1522     goto CheckNoBasePath;
   1523 
   1524   case CK_BitCast:
   1525     // Arbitrary casts to C pointer types count as bitcasts.
   1526     // Otherwise, we should only have block and ObjC pointer casts
   1527     // here if they stay within the type kind.
   1528     if (!getType()->isPointerType()) {
   1529       assert(getType()->isObjCObjectPointerType() ==
   1530              getSubExpr()->getType()->isObjCObjectPointerType());
   1531       assert(getType()->isBlockPointerType() ==
   1532              getSubExpr()->getType()->isBlockPointerType());
   1533     }
   1534     goto CheckNoBasePath;
   1535 
   1536   case CK_AnyPointerToBlockPointerCast:
   1537     assert(getType()->isBlockPointerType());
   1538     assert(getSubExpr()->getType()->isAnyPointerType() &&
   1539            !getSubExpr()->getType()->isBlockPointerType());
   1540     goto CheckNoBasePath;
   1541 
   1542   case CK_CopyAndAutoreleaseBlockObject:
   1543     assert(getType()->isBlockPointerType());
   1544     assert(getSubExpr()->getType()->isBlockPointerType());
   1545     goto CheckNoBasePath;
   1546 
   1547   case CK_FunctionToPointerDecay:
   1548     assert(getType()->isPointerType());
   1549     assert(getSubExpr()->getType()->isFunctionType());
   1550     goto CheckNoBasePath;
   1551 
   1552   case CK_AddressSpaceConversion:
   1553     assert(getType()->isPointerType());
   1554     assert(getSubExpr()->getType()->isPointerType());
   1555     assert(getType()->getPointeeType().getAddressSpace() !=
   1556            getSubExpr()->getType()->getPointeeType().getAddressSpace());
   1557   // These should not have an inheritance path.
   1558   case CK_Dynamic:
   1559   case CK_ToUnion:
   1560   case CK_ArrayToPointerDecay:
   1561   case CK_NullToMemberPointer:
   1562   case CK_NullToPointer:
   1563   case CK_ConstructorConversion:
   1564   case CK_IntegralToPointer:
   1565   case CK_PointerToIntegral:
   1566   case CK_ToVoid:
   1567   case CK_VectorSplat:
   1568   case CK_IntegralCast:
   1569   case CK_IntegralToFloating:
   1570   case CK_FloatingToIntegral:
   1571   case CK_FloatingCast:
   1572   case CK_ObjCObjectLValueCast:
   1573   case CK_FloatingRealToComplex:
   1574   case CK_FloatingComplexToReal:
   1575   case CK_FloatingComplexCast:
   1576   case CK_FloatingComplexToIntegralComplex:
   1577   case CK_IntegralRealToComplex:
   1578   case CK_IntegralComplexToReal:
   1579   case CK_IntegralComplexCast:
   1580   case CK_IntegralComplexToFloatingComplex:
   1581   case CK_ARCProduceObject:
   1582   case CK_ARCConsumeObject:
   1583   case CK_ARCReclaimReturnedObject:
   1584   case CK_ARCExtendBlockObject:
   1585   case CK_ZeroToOCLEvent:
   1586     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
   1587     goto CheckNoBasePath;
   1588 
   1589   case CK_Dependent:
   1590   case CK_LValueToRValue:
   1591   case CK_NoOp:
   1592   case CK_AtomicToNonAtomic:
   1593   case CK_NonAtomicToAtomic:
   1594   case CK_PointerToBoolean:
   1595   case CK_IntegralToBoolean:
   1596   case CK_FloatingToBoolean:
   1597   case CK_MemberPointerToBoolean:
   1598   case CK_FloatingComplexToBoolean:
   1599   case CK_IntegralComplexToBoolean:
   1600   case CK_LValueBitCast:            // -> bool&
   1601   case CK_UserDefinedConversion:    // operator bool()
   1602   case CK_BuiltinFnToFnPtr:
   1603   CheckNoBasePath:
   1604     assert(path_empty() && "Cast kind should not have a base path!");
   1605     break;
   1606   }
   1607   return true;
   1608 }
   1609 
   1610 const char *CastExpr::getCastKindName() const {
   1611   switch (getCastKind()) {
   1612   case CK_Dependent:
   1613     return "Dependent";
   1614   case CK_BitCast:
   1615     return "BitCast";
   1616   case CK_LValueBitCast:
   1617     return "LValueBitCast";
   1618   case CK_LValueToRValue:
   1619     return "LValueToRValue";
   1620   case CK_NoOp:
   1621     return "NoOp";
   1622   case CK_BaseToDerived:
   1623     return "BaseToDerived";
   1624   case CK_DerivedToBase:
   1625     return "DerivedToBase";
   1626   case CK_UncheckedDerivedToBase:
   1627     return "UncheckedDerivedToBase";
   1628   case CK_Dynamic:
   1629     return "Dynamic";
   1630   case CK_ToUnion:
   1631     return "ToUnion";
   1632   case CK_ArrayToPointerDecay:
   1633     return "ArrayToPointerDecay";
   1634   case CK_FunctionToPointerDecay:
   1635     return "FunctionToPointerDecay";
   1636   case CK_NullToMemberPointer:
   1637     return "NullToMemberPointer";
   1638   case CK_NullToPointer:
   1639     return "NullToPointer";
   1640   case CK_BaseToDerivedMemberPointer:
   1641     return "BaseToDerivedMemberPointer";
   1642   case CK_DerivedToBaseMemberPointer:
   1643     return "DerivedToBaseMemberPointer";
   1644   case CK_ReinterpretMemberPointer:
   1645     return "ReinterpretMemberPointer";
   1646   case CK_UserDefinedConversion:
   1647     return "UserDefinedConversion";
   1648   case CK_ConstructorConversion:
   1649     return "ConstructorConversion";
   1650   case CK_IntegralToPointer:
   1651     return "IntegralToPointer";
   1652   case CK_PointerToIntegral:
   1653     return "PointerToIntegral";
   1654   case CK_PointerToBoolean:
   1655     return "PointerToBoolean";
   1656   case CK_ToVoid:
   1657     return "ToVoid";
   1658   case CK_VectorSplat:
   1659     return "VectorSplat";
   1660   case CK_IntegralCast:
   1661     return "IntegralCast";
   1662   case CK_IntegralToBoolean:
   1663     return "IntegralToBoolean";
   1664   case CK_IntegralToFloating:
   1665     return "IntegralToFloating";
   1666   case CK_FloatingToIntegral:
   1667     return "FloatingToIntegral";
   1668   case CK_FloatingCast:
   1669     return "FloatingCast";
   1670   case CK_FloatingToBoolean:
   1671     return "FloatingToBoolean";
   1672   case CK_MemberPointerToBoolean:
   1673     return "MemberPointerToBoolean";
   1674   case CK_CPointerToObjCPointerCast:
   1675     return "CPointerToObjCPointerCast";
   1676   case CK_BlockPointerToObjCPointerCast:
   1677     return "BlockPointerToObjCPointerCast";
   1678   case CK_AnyPointerToBlockPointerCast:
   1679     return "AnyPointerToBlockPointerCast";
   1680   case CK_ObjCObjectLValueCast:
   1681     return "ObjCObjectLValueCast";
   1682   case CK_FloatingRealToComplex:
   1683     return "FloatingRealToComplex";
   1684   case CK_FloatingComplexToReal:
   1685     return "FloatingComplexToReal";
   1686   case CK_FloatingComplexToBoolean:
   1687     return "FloatingComplexToBoolean";
   1688   case CK_FloatingComplexCast:
   1689     return "FloatingComplexCast";
   1690   case CK_FloatingComplexToIntegralComplex:
   1691     return "FloatingComplexToIntegralComplex";
   1692   case CK_IntegralRealToComplex:
   1693     return "IntegralRealToComplex";
   1694   case CK_IntegralComplexToReal:
   1695     return "IntegralComplexToReal";
   1696   case CK_IntegralComplexToBoolean:
   1697     return "IntegralComplexToBoolean";
   1698   case CK_IntegralComplexCast:
   1699     return "IntegralComplexCast";
   1700   case CK_IntegralComplexToFloatingComplex:
   1701     return "IntegralComplexToFloatingComplex";
   1702   case CK_ARCConsumeObject:
   1703     return "ARCConsumeObject";
   1704   case CK_ARCProduceObject:
   1705     return "ARCProduceObject";
   1706   case CK_ARCReclaimReturnedObject:
   1707     return "ARCReclaimReturnedObject";
   1708   case CK_ARCExtendBlockObject:
   1709     return "ARCExtendBlockObject";
   1710   case CK_AtomicToNonAtomic:
   1711     return "AtomicToNonAtomic";
   1712   case CK_NonAtomicToAtomic:
   1713     return "NonAtomicToAtomic";
   1714   case CK_CopyAndAutoreleaseBlockObject:
   1715     return "CopyAndAutoreleaseBlockObject";
   1716   case CK_BuiltinFnToFnPtr:
   1717     return "BuiltinFnToFnPtr";
   1718   case CK_ZeroToOCLEvent:
   1719     return "ZeroToOCLEvent";
   1720   case CK_AddressSpaceConversion:
   1721     return "AddressSpaceConversion";
   1722   }
   1723 
   1724   llvm_unreachable("Unhandled cast kind!");
   1725 }
   1726 
   1727 Expr *CastExpr::getSubExprAsWritten() {
   1728   Expr *SubExpr = nullptr;
   1729   CastExpr *E = this;
   1730   do {
   1731     SubExpr = E->getSubExpr();
   1732 
   1733     // Skip through reference binding to temporary.
   1734     if (MaterializeTemporaryExpr *Materialize
   1735                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
   1736       SubExpr = Materialize->GetTemporaryExpr();
   1737 
   1738     // Skip any temporary bindings; they're implicit.
   1739     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
   1740       SubExpr = Binder->getSubExpr();
   1741 
   1742     // Conversions by constructor and conversion functions have a
   1743     // subexpression describing the call; strip it off.
   1744     if (E->getCastKind() == CK_ConstructorConversion)
   1745       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
   1746     else if (E->getCastKind() == CK_UserDefinedConversion)
   1747       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
   1748 
   1749     // If the subexpression we're left with is an implicit cast, look
   1750     // through that, too.
   1751   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
   1752 
   1753   return SubExpr;
   1754 }
   1755 
   1756 CXXBaseSpecifier **CastExpr::path_buffer() {
   1757   switch (getStmtClass()) {
   1758 #define ABSTRACT_STMT(x)
   1759 #define CASTEXPR(Type, Base) \
   1760   case Stmt::Type##Class: \
   1761     return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
   1762 #define STMT(Type, Base)
   1763 #include "clang/AST/StmtNodes.inc"
   1764   default:
   1765     llvm_unreachable("non-cast expressions not possible here");
   1766   }
   1767 }
   1768 
   1769 void CastExpr::setCastPath(const CXXCastPath &Path) {
   1770   assert(Path.size() == path_size());
   1771   memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
   1772 }
   1773 
   1774 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
   1775                                            CastKind Kind, Expr *Operand,
   1776                                            const CXXCastPath *BasePath,
   1777                                            ExprValueKind VK) {
   1778   unsigned PathSize = (BasePath ? BasePath->size() : 0);
   1779   void *Buffer =
   1780     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1781   ImplicitCastExpr *E =
   1782     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
   1783   if (PathSize) E->setCastPath(*BasePath);
   1784   return E;
   1785 }
   1786 
   1787 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
   1788                                                 unsigned PathSize) {
   1789   void *Buffer =
   1790     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1791   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
   1792 }
   1793 
   1794 
   1795 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
   1796                                        ExprValueKind VK, CastKind K, Expr *Op,
   1797                                        const CXXCastPath *BasePath,
   1798                                        TypeSourceInfo *WrittenTy,
   1799                                        SourceLocation L, SourceLocation R) {
   1800   unsigned PathSize = (BasePath ? BasePath->size() : 0);
   1801   void *Buffer =
   1802     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1803   CStyleCastExpr *E =
   1804     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
   1805   if (PathSize) E->setCastPath(*BasePath);
   1806   return E;
   1807 }
   1808 
   1809 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
   1810                                             unsigned PathSize) {
   1811   void *Buffer =
   1812     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1813   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
   1814 }
   1815 
   1816 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
   1817 /// corresponds to, e.g. "<<=".
   1818 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
   1819   switch (Op) {
   1820   case BO_PtrMemD:   return ".*";
   1821   case BO_PtrMemI:   return "->*";
   1822   case BO_Mul:       return "*";
   1823   case BO_Div:       return "/";
   1824   case BO_Rem:       return "%";
   1825   case BO_Add:       return "+";
   1826   case BO_Sub:       return "-";
   1827   case BO_Shl:       return "<<";
   1828   case BO_Shr:       return ">>";
   1829   case BO_LT:        return "<";
   1830   case BO_GT:        return ">";
   1831   case BO_LE:        return "<=";
   1832   case BO_GE:        return ">=";
   1833   case BO_EQ:        return "==";
   1834   case BO_NE:        return "!=";
   1835   case BO_And:       return "&";
   1836   case BO_Xor:       return "^";
   1837   case BO_Or:        return "|";
   1838   case BO_LAnd:      return "&&";
   1839   case BO_LOr:       return "||";
   1840   case BO_Assign:    return "=";
   1841   case BO_MulAssign: return "*=";
   1842   case BO_DivAssign: return "/=";
   1843   case BO_RemAssign: return "%=";
   1844   case BO_AddAssign: return "+=";
   1845   case BO_SubAssign: return "-=";
   1846   case BO_ShlAssign: return "<<=";
   1847   case BO_ShrAssign: return ">>=";
   1848   case BO_AndAssign: return "&=";
   1849   case BO_XorAssign: return "^=";
   1850   case BO_OrAssign:  return "|=";
   1851   case BO_Comma:     return ",";
   1852   }
   1853 
   1854   llvm_unreachable("Invalid OpCode!");
   1855 }
   1856 
   1857 BinaryOperatorKind
   1858 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
   1859   switch (OO) {
   1860   default: llvm_unreachable("Not an overloadable binary operator");
   1861   case OO_Plus: return BO_Add;
   1862   case OO_Minus: return BO_Sub;
   1863   case OO_Star: return BO_Mul;
   1864   case OO_Slash: return BO_Div;
   1865   case OO_Percent: return BO_Rem;
   1866   case OO_Caret: return BO_Xor;
   1867   case OO_Amp: return BO_And;
   1868   case OO_Pipe: return BO_Or;
   1869   case OO_Equal: return BO_Assign;
   1870   case OO_Less: return BO_LT;
   1871   case OO_Greater: return BO_GT;
   1872   case OO_PlusEqual: return BO_AddAssign;
   1873   case OO_MinusEqual: return BO_SubAssign;
   1874   case OO_StarEqual: return BO_MulAssign;
   1875   case OO_SlashEqual: return BO_DivAssign;
   1876   case OO_PercentEqual: return BO_RemAssign;
   1877   case OO_CaretEqual: return BO_XorAssign;
   1878   case OO_AmpEqual: return BO_AndAssign;
   1879   case OO_PipeEqual: return BO_OrAssign;
   1880   case OO_LessLess: return BO_Shl;
   1881   case OO_GreaterGreater: return BO_Shr;
   1882   case OO_LessLessEqual: return BO_ShlAssign;
   1883   case OO_GreaterGreaterEqual: return BO_ShrAssign;
   1884   case OO_EqualEqual: return BO_EQ;
   1885   case OO_ExclaimEqual: return BO_NE;
   1886   case OO_LessEqual: return BO_LE;
   1887   case OO_GreaterEqual: return BO_GE;
   1888   case OO_AmpAmp: return BO_LAnd;
   1889   case OO_PipePipe: return BO_LOr;
   1890   case OO_Comma: return BO_Comma;
   1891   case OO_ArrowStar: return BO_PtrMemI;
   1892   }
   1893 }
   1894 
   1895 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
   1896   static const OverloadedOperatorKind OverOps[] = {
   1897     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
   1898     OO_Star, OO_Slash, OO_Percent,
   1899     OO_Plus, OO_Minus,
   1900     OO_LessLess, OO_GreaterGreater,
   1901     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
   1902     OO_EqualEqual, OO_ExclaimEqual,
   1903     OO_Amp,
   1904     OO_Caret,
   1905     OO_Pipe,
   1906     OO_AmpAmp,
   1907     OO_PipePipe,
   1908     OO_Equal, OO_StarEqual,
   1909     OO_SlashEqual, OO_PercentEqual,
   1910     OO_PlusEqual, OO_MinusEqual,
   1911     OO_LessLessEqual, OO_GreaterGreaterEqual,
   1912     OO_AmpEqual, OO_CaretEqual,
   1913     OO_PipeEqual,
   1914     OO_Comma
   1915   };
   1916   return OverOps[Opc];
   1917 }
   1918 
   1919 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
   1920                            ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
   1921   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
   1922          false, false),
   1923     InitExprs(C, initExprs.size()),
   1924     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
   1925 {
   1926   sawArrayRangeDesignator(false);
   1927   for (unsigned I = 0; I != initExprs.size(); ++I) {
   1928     if (initExprs[I]->isTypeDependent())
   1929       ExprBits.TypeDependent = true;
   1930     if (initExprs[I]->isValueDependent())
   1931       ExprBits.ValueDependent = true;
   1932     if (initExprs[I]->isInstantiationDependent())
   1933       ExprBits.InstantiationDependent = true;
   1934     if (initExprs[I]->containsUnexpandedParameterPack())
   1935       ExprBits.ContainsUnexpandedParameterPack = true;
   1936   }
   1937 
   1938   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
   1939 }
   1940 
   1941 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
   1942   if (NumInits > InitExprs.size())
   1943     InitExprs.reserve(C, NumInits);
   1944 }
   1945 
   1946 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
   1947   InitExprs.resize(C, NumInits, nullptr);
   1948 }
   1949 
   1950 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
   1951   if (Init >= InitExprs.size()) {
   1952     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
   1953     setInit(Init, expr);
   1954     return nullptr;
   1955   }
   1956 
   1957   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
   1958   setInit(Init, expr);
   1959   return Result;
   1960 }
   1961 
   1962 void InitListExpr::setArrayFiller(Expr *filler) {
   1963   assert(!hasArrayFiller() && "Filler already set!");
   1964   ArrayFillerOrUnionFieldInit = filler;
   1965   // Fill out any "holes" in the array due to designated initializers.
   1966   Expr **inits = getInits();
   1967   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
   1968     if (inits[i] == nullptr)
   1969       inits[i] = filler;
   1970 }
   1971 
   1972 bool InitListExpr::isStringLiteralInit() const {
   1973   if (getNumInits() != 1)
   1974     return false;
   1975   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
   1976   if (!AT || !AT->getElementType()->isIntegerType())
   1977     return false;
   1978   // It is possible for getInit() to return null.
   1979   const Expr *Init = getInit(0);
   1980   if (!Init)
   1981     return false;
   1982   Init = Init->IgnoreParens();
   1983   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
   1984 }
   1985 
   1986 SourceLocation InitListExpr::getLocStart() const {
   1987   if (InitListExpr *SyntacticForm = getSyntacticForm())
   1988     return SyntacticForm->getLocStart();
   1989   SourceLocation Beg = LBraceLoc;
   1990   if (Beg.isInvalid()) {
   1991     // Find the first non-null initializer.
   1992     for (InitExprsTy::const_iterator I = InitExprs.begin(),
   1993                                      E = InitExprs.end();
   1994       I != E; ++I) {
   1995       if (Stmt *S = *I) {
   1996         Beg = S->getLocStart();
   1997         break;
   1998       }
   1999     }
   2000   }
   2001   return Beg;
   2002 }
   2003 
   2004 SourceLocation InitListExpr::getLocEnd() const {
   2005   if (InitListExpr *SyntacticForm = getSyntacticForm())
   2006     return SyntacticForm->getLocEnd();
   2007   SourceLocation End = RBraceLoc;
   2008   if (End.isInvalid()) {
   2009     // Find the first non-null initializer from the end.
   2010     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
   2011          E = InitExprs.rend();
   2012          I != E; ++I) {
   2013       if (Stmt *S = *I) {
   2014         End = S->getLocEnd();
   2015         break;
   2016       }
   2017     }
   2018   }
   2019   return End;
   2020 }
   2021 
   2022 /// getFunctionType - Return the underlying function type for this block.
   2023 ///
   2024 const FunctionProtoType *BlockExpr::getFunctionType() const {
   2025   // The block pointer is never sugared, but the function type might be.
   2026   return cast<BlockPointerType>(getType())
   2027            ->getPointeeType()->castAs<FunctionProtoType>();
   2028 }
   2029 
   2030 SourceLocation BlockExpr::getCaretLocation() const {
   2031   return TheBlock->getCaretLocation();
   2032 }
   2033 const Stmt *BlockExpr::getBody() const {
   2034   return TheBlock->getBody();
   2035 }
   2036 Stmt *BlockExpr::getBody() {
   2037   return TheBlock->getBody();
   2038 }
   2039 
   2040 
   2041 //===----------------------------------------------------------------------===//
   2042 // Generic Expression Routines
   2043 //===----------------------------------------------------------------------===//
   2044 
   2045 /// isUnusedResultAWarning - Return true if this immediate expression should
   2046 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
   2047 /// with location to warn on and the source range[s] to report with the
   2048 /// warning.
   2049 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
   2050                                   SourceRange &R1, SourceRange &R2,
   2051                                   ASTContext &Ctx) const {
   2052   // Don't warn if the expr is type dependent. The type could end up
   2053   // instantiating to void.
   2054   if (isTypeDependent())
   2055     return false;
   2056 
   2057   switch (getStmtClass()) {
   2058   default:
   2059     if (getType()->isVoidType())
   2060       return false;
   2061     WarnE = this;
   2062     Loc = getExprLoc();
   2063     R1 = getSourceRange();
   2064     return true;
   2065   case ParenExprClass:
   2066     return cast<ParenExpr>(this)->getSubExpr()->
   2067       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2068   case GenericSelectionExprClass:
   2069     return cast<GenericSelectionExpr>(this)->getResultExpr()->
   2070       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2071   case ChooseExprClass:
   2072     return cast<ChooseExpr>(this)->getChosenSubExpr()->
   2073       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2074   case UnaryOperatorClass: {
   2075     const UnaryOperator *UO = cast<UnaryOperator>(this);
   2076 
   2077     switch (UO->getOpcode()) {
   2078     case UO_Plus:
   2079     case UO_Minus:
   2080     case UO_AddrOf:
   2081     case UO_Not:
   2082     case UO_LNot:
   2083     case UO_Deref:
   2084       break;
   2085     case UO_Coawait:
   2086       // This is just the 'operator co_await' call inside the guts of a
   2087       // dependent co_await call.
   2088     case UO_PostInc:
   2089     case UO_PostDec:
   2090     case UO_PreInc:
   2091     case UO_PreDec:                 // ++/--
   2092       return false;  // Not a warning.
   2093     case UO_Real:
   2094     case UO_Imag:
   2095       // accessing a piece of a volatile complex is a side-effect.
   2096       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
   2097           .isVolatileQualified())
   2098         return false;
   2099       break;
   2100     case UO_Extension:
   2101       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2102     }
   2103     WarnE = this;
   2104     Loc = UO->getOperatorLoc();
   2105     R1 = UO->getSubExpr()->getSourceRange();
   2106     return true;
   2107   }
   2108   case BinaryOperatorClass: {
   2109     const BinaryOperator *BO = cast<BinaryOperator>(this);
   2110     switch (BO->getOpcode()) {
   2111       default:
   2112         break;
   2113       // Consider the RHS of comma for side effects. LHS was checked by
   2114       // Sema::CheckCommaOperands.
   2115       case BO_Comma:
   2116         // ((foo = <blah>), 0) is an idiom for hiding the result (and
   2117         // lvalue-ness) of an assignment written in a macro.
   2118         if (IntegerLiteral *IE =
   2119               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
   2120           if (IE->getValue() == 0)
   2121             return false;
   2122         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2123       // Consider '||', '&&' to have side effects if the LHS or RHS does.
   2124       case BO_LAnd:
   2125       case BO_LOr:
   2126         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
   2127             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
   2128           return false;
   2129         break;
   2130     }
   2131     if (BO->isAssignmentOp())
   2132       return false;
   2133     WarnE = this;
   2134     Loc = BO->getOperatorLoc();
   2135     R1 = BO->getLHS()->getSourceRange();
   2136     R2 = BO->getRHS()->getSourceRange();
   2137     return true;
   2138   }
   2139   case CompoundAssignOperatorClass:
   2140   case VAArgExprClass:
   2141   case AtomicExprClass:
   2142     return false;
   2143 
   2144   case ConditionalOperatorClass: {
   2145     // If only one of the LHS or RHS is a warning, the operator might
   2146     // be being used for control flow. Only warn if both the LHS and
   2147     // RHS are warnings.
   2148     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
   2149     if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
   2150       return false;
   2151     if (!Exp->getLHS())
   2152       return true;
   2153     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2154   }
   2155 
   2156   case MemberExprClass:
   2157     WarnE = this;
   2158     Loc = cast<MemberExpr>(this)->getMemberLoc();
   2159     R1 = SourceRange(Loc, Loc);
   2160     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
   2161     return true;
   2162 
   2163   case ArraySubscriptExprClass:
   2164     WarnE = this;
   2165     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
   2166     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
   2167     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
   2168     return true;
   2169 
   2170   case CXXOperatorCallExprClass: {
   2171     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
   2172     // overloads as there is no reasonable way to define these such that they
   2173     // have non-trivial, desirable side-effects. See the -Wunused-comparison
   2174     // warning: operators == and != are commonly typo'ed, and so warning on them
   2175     // provides additional value as well. If this list is updated,
   2176     // DiagnoseUnusedComparison should be as well.
   2177     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
   2178     switch (Op->getOperator()) {
   2179     default:
   2180       break;
   2181     case OO_EqualEqual:
   2182     case OO_ExclaimEqual:
   2183     case OO_Less:
   2184     case OO_Greater:
   2185     case OO_GreaterEqual:
   2186     case OO_LessEqual:
   2187       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
   2188           Op->getCallReturnType(Ctx)->isVoidType())
   2189         break;
   2190       WarnE = this;
   2191       Loc = Op->getOperatorLoc();
   2192       R1 = Op->getSourceRange();
   2193       return true;
   2194     }
   2195 
   2196     // Fallthrough for generic call handling.
   2197   }
   2198   case CallExprClass:
   2199   case CXXMemberCallExprClass:
   2200   case UserDefinedLiteralClass: {
   2201     // If this is a direct call, get the callee.
   2202     const CallExpr *CE = cast<CallExpr>(this);
   2203     if (const Decl *FD = CE->getCalleeDecl()) {
   2204       const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
   2205       bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
   2206                                           : FD->hasAttr<WarnUnusedResultAttr>();
   2207 
   2208       // If the callee has attribute pure, const, or warn_unused_result, warn
   2209       // about it. void foo() { strlen("bar"); } should warn.
   2210       //
   2211       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
   2212       // updated to match for QoI.
   2213       if (HasWarnUnusedResultAttr ||
   2214           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
   2215         WarnE = this;
   2216         Loc = CE->getCallee()->getLocStart();
   2217         R1 = CE->getCallee()->getSourceRange();
   2218 
   2219         if (unsigned NumArgs = CE->getNumArgs())
   2220           R2 = SourceRange(CE->getArg(0)->getLocStart(),
   2221                            CE->getArg(NumArgs-1)->getLocEnd());
   2222         return true;
   2223       }
   2224     }
   2225     return false;
   2226   }
   2227 
   2228   // If we don't know precisely what we're looking at, let's not warn.
   2229   case UnresolvedLookupExprClass:
   2230   case CXXUnresolvedConstructExprClass:
   2231     return false;
   2232 
   2233   case CXXTemporaryObjectExprClass:
   2234   case CXXConstructExprClass: {
   2235     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
   2236       if (Type->hasAttr<WarnUnusedAttr>()) {
   2237         WarnE = this;
   2238         Loc = getLocStart();
   2239         R1 = getSourceRange();
   2240         return true;
   2241       }
   2242     }
   2243     return false;
   2244   }
   2245 
   2246   case ObjCMessageExprClass: {
   2247     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
   2248     if (Ctx.getLangOpts().ObjCAutoRefCount &&
   2249         ME->isInstanceMessage() &&
   2250         !ME->getType()->isVoidType() &&
   2251         ME->getMethodFamily() == OMF_init) {
   2252       WarnE = this;
   2253       Loc = getExprLoc();
   2254       R1 = ME->getSourceRange();
   2255       return true;
   2256     }
   2257 
   2258     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
   2259       if (MD->hasAttr<WarnUnusedResultAttr>()) {
   2260         WarnE = this;
   2261         Loc = getExprLoc();
   2262         return true;
   2263       }
   2264 
   2265     return false;
   2266   }
   2267 
   2268   case ObjCPropertyRefExprClass:
   2269     WarnE = this;
   2270     Loc = getExprLoc();
   2271     R1 = getSourceRange();
   2272     return true;
   2273 
   2274   case PseudoObjectExprClass: {
   2275     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
   2276 
   2277     // Only complain about things that have the form of a getter.
   2278     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
   2279         isa<BinaryOperator>(PO->getSyntacticForm()))
   2280       return false;
   2281 
   2282     WarnE = this;
   2283     Loc = getExprLoc();
   2284     R1 = getSourceRange();
   2285     return true;
   2286   }
   2287 
   2288   case StmtExprClass: {
   2289     // Statement exprs don't logically have side effects themselves, but are
   2290     // sometimes used in macros in ways that give them a type that is unused.
   2291     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
   2292     // however, if the result of the stmt expr is dead, we don't want to emit a
   2293     // warning.
   2294     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
   2295     if (!CS->body_empty()) {
   2296       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
   2297         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2298       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
   2299         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
   2300           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2301     }
   2302 
   2303     if (getType()->isVoidType())
   2304       return false;
   2305     WarnE = this;
   2306     Loc = cast<StmtExpr>(this)->getLParenLoc();
   2307     R1 = getSourceRange();
   2308     return true;
   2309   }
   2310   case CXXFunctionalCastExprClass:
   2311   case CStyleCastExprClass: {
   2312     // Ignore an explicit cast to void unless the operand is a non-trivial
   2313     // volatile lvalue.
   2314     const CastExpr *CE = cast<CastExpr>(this);
   2315     if (CE->getCastKind() == CK_ToVoid) {
   2316       if (CE->getSubExpr()->isGLValue() &&
   2317           CE->getSubExpr()->getType().isVolatileQualified()) {
   2318         const DeclRefExpr *DRE =
   2319             dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
   2320         if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
   2321               cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
   2322           return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
   2323                                                           R1, R2, Ctx);
   2324         }
   2325       }
   2326       return false;
   2327     }
   2328 
   2329     // If this is a cast to a constructor conversion, check the operand.
   2330     // Otherwise, the result of the cast is unused.
   2331     if (CE->getCastKind() == CK_ConstructorConversion)
   2332       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2333 
   2334     WarnE = this;
   2335     if (const CXXFunctionalCastExpr *CXXCE =
   2336             dyn_cast<CXXFunctionalCastExpr>(this)) {
   2337       Loc = CXXCE->getLocStart();
   2338       R1 = CXXCE->getSubExpr()->getSourceRange();
   2339     } else {
   2340       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
   2341       Loc = CStyleCE->getLParenLoc();
   2342       R1 = CStyleCE->getSubExpr()->getSourceRange();
   2343     }
   2344     return true;
   2345   }
   2346   case ImplicitCastExprClass: {
   2347     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
   2348 
   2349     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
   2350     if (ICE->getCastKind() == CK_LValueToRValue &&
   2351         ICE->getSubExpr()->getType().isVolatileQualified())
   2352       return false;
   2353 
   2354     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2355   }
   2356   case CXXDefaultArgExprClass:
   2357     return (cast<CXXDefaultArgExpr>(this)
   2358             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2359   case CXXDefaultInitExprClass:
   2360     return (cast<CXXDefaultInitExpr>(this)
   2361             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2362 
   2363   case CXXNewExprClass:
   2364     // FIXME: In theory, there might be new expressions that don't have side
   2365     // effects (e.g. a placement new with an uninitialized POD).
   2366   case CXXDeleteExprClass:
   2367     return false;
   2368   case CXXBindTemporaryExprClass:
   2369     return (cast<CXXBindTemporaryExpr>(this)
   2370             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2371   case ExprWithCleanupsClass:
   2372     return (cast<ExprWithCleanups>(this)
   2373             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2374   }
   2375 }
   2376 
   2377 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
   2378 /// returns true, if it is; false otherwise.
   2379 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
   2380   const Expr *E = IgnoreParens();
   2381   switch (E->getStmtClass()) {
   2382   default:
   2383     return false;
   2384   case ObjCIvarRefExprClass:
   2385     return true;
   2386   case Expr::UnaryOperatorClass:
   2387     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   2388   case ImplicitCastExprClass:
   2389     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   2390   case MaterializeTemporaryExprClass:
   2391     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
   2392                                                       ->isOBJCGCCandidate(Ctx);
   2393   case CStyleCastExprClass:
   2394     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   2395   case DeclRefExprClass: {
   2396     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
   2397 
   2398     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   2399       if (VD->hasGlobalStorage())
   2400         return true;
   2401       QualType T = VD->getType();
   2402       // dereferencing to a  pointer is always a gc'able candidate,
   2403       // unless it is __weak.
   2404       return T->isPointerType() &&
   2405              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
   2406     }
   2407     return false;
   2408   }
   2409   case MemberExprClass: {
   2410     const MemberExpr *M = cast<MemberExpr>(E);
   2411     return M->getBase()->isOBJCGCCandidate(Ctx);
   2412   }
   2413   case ArraySubscriptExprClass:
   2414     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
   2415   }
   2416 }
   2417 
   2418 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
   2419   if (isTypeDependent())
   2420     return false;
   2421   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
   2422 }
   2423 
   2424 QualType Expr::findBoundMemberType(const Expr *expr) {
   2425   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
   2426 
   2427   // Bound member expressions are always one of these possibilities:
   2428   //   x->m      x.m      x->*y      x.*y
   2429   // (possibly parenthesized)
   2430 
   2431   expr = expr->IgnoreParens();
   2432   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
   2433     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
   2434     return mem->getMemberDecl()->getType();
   2435   }
   2436 
   2437   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
   2438     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
   2439                       ->getPointeeType();
   2440     assert(type->isFunctionType());
   2441     return type;
   2442   }
   2443 
   2444   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
   2445   return QualType();
   2446 }
   2447 
   2448 Expr* Expr::IgnoreParens() {
   2449   Expr* E = this;
   2450   while (true) {
   2451     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
   2452       E = P->getSubExpr();
   2453       continue;
   2454     }
   2455     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2456       if (P->getOpcode() == UO_Extension) {
   2457         E = P->getSubExpr();
   2458         continue;
   2459       }
   2460     }
   2461     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2462       if (!P->isResultDependent()) {
   2463         E = P->getResultExpr();
   2464         continue;
   2465       }
   2466     }
   2467     if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
   2468       if (!P->isConditionDependent()) {
   2469         E = P->getChosenSubExpr();
   2470         continue;
   2471       }
   2472     }
   2473     return E;
   2474   }
   2475 }
   2476 
   2477 /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
   2478 /// or CastExprs or ImplicitCastExprs, returning their operand.
   2479 Expr *Expr::IgnoreParenCasts() {
   2480   Expr *E = this;
   2481   while (true) {
   2482     E = E->IgnoreParens();
   2483     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2484       E = P->getSubExpr();
   2485       continue;
   2486     }
   2487     if (MaterializeTemporaryExpr *Materialize
   2488                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2489       E = Materialize->GetTemporaryExpr();
   2490       continue;
   2491     }
   2492     if (SubstNonTypeTemplateParmExpr *NTTP
   2493                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2494       E = NTTP->getReplacement();
   2495       continue;
   2496     }
   2497     return E;
   2498   }
   2499 }
   2500 
   2501 Expr *Expr::IgnoreCasts() {
   2502   Expr *E = this;
   2503   while (true) {
   2504     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2505       E = P->getSubExpr();
   2506       continue;
   2507     }
   2508     if (MaterializeTemporaryExpr *Materialize
   2509         = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2510       E = Materialize->GetTemporaryExpr();
   2511       continue;
   2512     }
   2513     if (SubstNonTypeTemplateParmExpr *NTTP
   2514         = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2515       E = NTTP->getReplacement();
   2516       continue;
   2517     }
   2518     return E;
   2519   }
   2520 }
   2521 
   2522 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
   2523 /// casts.  This is intended purely as a temporary workaround for code
   2524 /// that hasn't yet been rewritten to do the right thing about those
   2525 /// casts, and may disappear along with the last internal use.
   2526 Expr *Expr::IgnoreParenLValueCasts() {
   2527   Expr *E = this;
   2528   while (true) {
   2529     E = E->IgnoreParens();
   2530     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2531       if (P->getCastKind() == CK_LValueToRValue) {
   2532         E = P->getSubExpr();
   2533         continue;
   2534       }
   2535     } else if (MaterializeTemporaryExpr *Materialize
   2536                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2537       E = Materialize->GetTemporaryExpr();
   2538       continue;
   2539     } else if (SubstNonTypeTemplateParmExpr *NTTP
   2540                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2541       E = NTTP->getReplacement();
   2542       continue;
   2543     }
   2544     break;
   2545   }
   2546   return E;
   2547 }
   2548 
   2549 Expr *Expr::ignoreParenBaseCasts() {
   2550   Expr *E = this;
   2551   while (true) {
   2552     E = E->IgnoreParens();
   2553     if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
   2554       if (CE->getCastKind() == CK_DerivedToBase ||
   2555           CE->getCastKind() == CK_UncheckedDerivedToBase ||
   2556           CE->getCastKind() == CK_NoOp) {
   2557         E = CE->getSubExpr();
   2558         continue;
   2559       }
   2560     }
   2561 
   2562     return E;
   2563   }
   2564 }
   2565 
   2566 Expr *Expr::IgnoreParenImpCasts() {
   2567   Expr *E = this;
   2568   while (true) {
   2569     E = E->IgnoreParens();
   2570     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
   2571       E = P->getSubExpr();
   2572       continue;
   2573     }
   2574     if (MaterializeTemporaryExpr *Materialize
   2575                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2576       E = Materialize->GetTemporaryExpr();
   2577       continue;
   2578     }
   2579     if (SubstNonTypeTemplateParmExpr *NTTP
   2580                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2581       E = NTTP->getReplacement();
   2582       continue;
   2583     }
   2584     return E;
   2585   }
   2586 }
   2587 
   2588 Expr *Expr::IgnoreConversionOperator() {
   2589   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
   2590     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
   2591       return MCE->getImplicitObjectArgument();
   2592   }
   2593   return this;
   2594 }
   2595 
   2596 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
   2597 /// value (including ptr->int casts of the same size).  Strip off any
   2598 /// ParenExpr or CastExprs, returning their operand.
   2599 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
   2600   Expr *E = this;
   2601   while (true) {
   2602     E = E->IgnoreParens();
   2603 
   2604     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2605       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
   2606       // ptr<->int casts of the same width.  We also ignore all identity casts.
   2607       Expr *SE = P->getSubExpr();
   2608 
   2609       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
   2610         E = SE;
   2611         continue;
   2612       }
   2613 
   2614       if ((E->getType()->isPointerType() ||
   2615            E->getType()->isIntegralType(Ctx)) &&
   2616           (SE->getType()->isPointerType() ||
   2617            SE->getType()->isIntegralType(Ctx)) &&
   2618           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
   2619         E = SE;
   2620         continue;
   2621       }
   2622     }
   2623 
   2624     if (SubstNonTypeTemplateParmExpr *NTTP
   2625                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2626       E = NTTP->getReplacement();
   2627       continue;
   2628     }
   2629 
   2630     return E;
   2631   }
   2632 }
   2633 
   2634 bool Expr::isDefaultArgument() const {
   2635   const Expr *E = this;
   2636   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
   2637     E = M->GetTemporaryExpr();
   2638 
   2639   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   2640     E = ICE->getSubExprAsWritten();
   2641 
   2642   return isa<CXXDefaultArgExpr>(E);
   2643 }
   2644 
   2645 /// \brief Skip over any no-op casts and any temporary-binding
   2646 /// expressions.
   2647 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
   2648   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
   2649     E = M->GetTemporaryExpr();
   2650 
   2651   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2652     if (ICE->getCastKind() == CK_NoOp)
   2653       E = ICE->getSubExpr();
   2654     else
   2655       break;
   2656   }
   2657 
   2658   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
   2659     E = BE->getSubExpr();
   2660 
   2661   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2662     if (ICE->getCastKind() == CK_NoOp)
   2663       E = ICE->getSubExpr();
   2664     else
   2665       break;
   2666   }
   2667 
   2668   return E->IgnoreParens();
   2669 }
   2670 
   2671 /// isTemporaryObject - Determines if this expression produces a
   2672 /// temporary of the given class type.
   2673 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
   2674   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
   2675     return false;
   2676 
   2677   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
   2678 
   2679   // Temporaries are by definition pr-values of class type.
   2680   if (!E->Classify(C).isPRValue()) {
   2681     // In this context, property reference is a message call and is pr-value.
   2682     if (!isa<ObjCPropertyRefExpr>(E))
   2683       return false;
   2684   }
   2685 
   2686   // Black-list a few cases which yield pr-values of class type that don't
   2687   // refer to temporaries of that type:
   2688 
   2689   // - implicit derived-to-base conversions
   2690   if (isa<ImplicitCastExpr>(E)) {
   2691     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
   2692     case CK_DerivedToBase:
   2693     case CK_UncheckedDerivedToBase:
   2694       return false;
   2695     default:
   2696       break;
   2697     }
   2698   }
   2699 
   2700   // - member expressions (all)
   2701   if (isa<MemberExpr>(E))
   2702     return false;
   2703 
   2704   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
   2705     if (BO->isPtrMemOp())
   2706       return false;
   2707 
   2708   // - opaque values (all)
   2709   if (isa<OpaqueValueExpr>(E))
   2710     return false;
   2711 
   2712   return true;
   2713 }
   2714 
   2715 bool Expr::isImplicitCXXThis() const {
   2716   const Expr *E = this;
   2717 
   2718   // Strip away parentheses and casts we don't care about.
   2719   while (true) {
   2720     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
   2721       E = Paren->getSubExpr();
   2722       continue;
   2723     }
   2724 
   2725     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2726       if (ICE->getCastKind() == CK_NoOp ||
   2727           ICE->getCastKind() == CK_LValueToRValue ||
   2728           ICE->getCastKind() == CK_DerivedToBase ||
   2729           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
   2730         E = ICE->getSubExpr();
   2731         continue;
   2732       }
   2733     }
   2734 
   2735     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
   2736       if (UnOp->getOpcode() == UO_Extension) {
   2737         E = UnOp->getSubExpr();
   2738         continue;
   2739       }
   2740     }
   2741 
   2742     if (const MaterializeTemporaryExpr *M
   2743                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2744       E = M->GetTemporaryExpr();
   2745       continue;
   2746     }
   2747 
   2748     break;
   2749   }
   2750 
   2751   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
   2752     return This->isImplicit();
   2753 
   2754   return false;
   2755 }
   2756 
   2757 /// hasAnyTypeDependentArguments - Determines if any of the expressions
   2758 /// in Exprs is type-dependent.
   2759 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
   2760   for (unsigned I = 0; I < Exprs.size(); ++I)
   2761     if (Exprs[I]->isTypeDependent())
   2762       return true;
   2763 
   2764   return false;
   2765 }
   2766 
   2767 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
   2768                                  const Expr **Culprit) const {
   2769   // This function is attempting whether an expression is an initializer
   2770   // which can be evaluated at compile-time. It very closely parallels
   2771   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
   2772   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
   2773   // to isEvaluatable most of the time.
   2774   //
   2775   // If we ever capture reference-binding directly in the AST, we can
   2776   // kill the second parameter.
   2777 
   2778   if (IsForRef) {
   2779     EvalResult Result;
   2780     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
   2781       return true;
   2782     if (Culprit)
   2783       *Culprit = this;
   2784     return false;
   2785   }
   2786 
   2787   switch (getStmtClass()) {
   2788   default: break;
   2789   case StringLiteralClass:
   2790   case ObjCEncodeExprClass:
   2791     return true;
   2792   case CXXTemporaryObjectExprClass:
   2793   case CXXConstructExprClass: {
   2794     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
   2795 
   2796     if (CE->getConstructor()->isTrivial() &&
   2797         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
   2798       // Trivial default constructor
   2799       if (!CE->getNumArgs()) return true;
   2800 
   2801       // Trivial copy constructor
   2802       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
   2803       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
   2804     }
   2805 
   2806     break;
   2807   }
   2808   case CompoundLiteralExprClass: {
   2809     // This handles gcc's extension that allows global initializers like
   2810     // "struct x {int x;} x = (struct x) {};".
   2811     // FIXME: This accepts other cases it shouldn't!
   2812     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
   2813     return Exp->isConstantInitializer(Ctx, false, Culprit);
   2814   }
   2815   case DesignatedInitUpdateExprClass: {
   2816     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
   2817     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
   2818            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
   2819   }
   2820   case InitListExprClass: {
   2821     const InitListExpr *ILE = cast<InitListExpr>(this);
   2822     if (ILE->getType()->isArrayType()) {
   2823       unsigned numInits = ILE->getNumInits();
   2824       for (unsigned i = 0; i < numInits; i++) {
   2825         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
   2826           return false;
   2827       }
   2828       return true;
   2829     }
   2830 
   2831     if (ILE->getType()->isRecordType()) {
   2832       unsigned ElementNo = 0;
   2833       RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
   2834       for (const auto *Field : RD->fields()) {
   2835         // If this is a union, skip all the fields that aren't being initialized.
   2836         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
   2837           continue;
   2838 
   2839         // Don't emit anonymous bitfields, they just affect layout.
   2840         if (Field->isUnnamedBitfield())
   2841           continue;
   2842 
   2843         if (ElementNo < ILE->getNumInits()) {
   2844           const Expr *Elt = ILE->getInit(ElementNo++);
   2845           if (Field->isBitField()) {
   2846             // Bitfields have to evaluate to an integer.
   2847             llvm::APSInt ResultTmp;
   2848             if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
   2849               if (Culprit)
   2850                 *Culprit = Elt;
   2851               return false;
   2852             }
   2853           } else {
   2854             bool RefType = Field->getType()->isReferenceType();
   2855             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
   2856               return false;
   2857           }
   2858         }
   2859       }
   2860       return true;
   2861     }
   2862 
   2863     break;
   2864   }
   2865   case ImplicitValueInitExprClass:
   2866   case NoInitExprClass:
   2867     return true;
   2868   case ParenExprClass:
   2869     return cast<ParenExpr>(this)->getSubExpr()
   2870       ->isConstantInitializer(Ctx, IsForRef, Culprit);
   2871   case GenericSelectionExprClass:
   2872     return cast<GenericSelectionExpr>(this)->getResultExpr()
   2873       ->isConstantInitializer(Ctx, IsForRef, Culprit);
   2874   case ChooseExprClass:
   2875     if (cast<ChooseExpr>(this)->isConditionDependent()) {
   2876       if (Culprit)
   2877         *Culprit = this;
   2878       return false;
   2879     }
   2880     return cast<ChooseExpr>(this)->getChosenSubExpr()
   2881       ->isConstantInitializer(Ctx, IsForRef, Culprit);
   2882   case UnaryOperatorClass: {
   2883     const UnaryOperator* Exp = cast<UnaryOperator>(this);
   2884     if (Exp->getOpcode() == UO_Extension)
   2885       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
   2886     break;
   2887   }
   2888   case CXXFunctionalCastExprClass:
   2889   case CXXStaticCastExprClass:
   2890   case ImplicitCastExprClass:
   2891   case CStyleCastExprClass:
   2892   case ObjCBridgedCastExprClass:
   2893   case CXXDynamicCastExprClass:
   2894   case CXXReinterpretCastExprClass:
   2895   case CXXConstCastExprClass: {
   2896     const CastExpr *CE = cast<CastExpr>(this);
   2897 
   2898     // Handle misc casts we want to ignore.
   2899     if (CE->getCastKind() == CK_NoOp ||
   2900         CE->getCastKind() == CK_LValueToRValue ||
   2901         CE->getCastKind() == CK_ToUnion ||
   2902         CE->getCastKind() == CK_ConstructorConversion ||
   2903         CE->getCastKind() == CK_NonAtomicToAtomic ||
   2904         CE->getCastKind() == CK_AtomicToNonAtomic)
   2905       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
   2906 
   2907     break;
   2908   }
   2909   case MaterializeTemporaryExprClass:
   2910     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
   2911       ->isConstantInitializer(Ctx, false, Culprit);
   2912 
   2913   case SubstNonTypeTemplateParmExprClass:
   2914     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
   2915       ->isConstantInitializer(Ctx, false, Culprit);
   2916   case CXXDefaultArgExprClass:
   2917     return cast<CXXDefaultArgExpr>(this)->getExpr()
   2918       ->isConstantInitializer(Ctx, false, Culprit);
   2919   case CXXDefaultInitExprClass:
   2920     return cast<CXXDefaultInitExpr>(this)->getExpr()
   2921       ->isConstantInitializer(Ctx, false, Culprit);
   2922   }
   2923   // Allow certain forms of UB in constant initializers: signed integer
   2924   // overflow and floating-point division by zero. We'll give a warning on
   2925   // these, but they're common enough that we have to accept them.
   2926   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
   2927     return true;
   2928   if (Culprit)
   2929     *Culprit = this;
   2930   return false;
   2931 }
   2932 
   2933 namespace {
   2934   /// \brief Look for any side effects within a Stmt.
   2935   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
   2936     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
   2937     const bool IncludePossibleEffects;
   2938     bool HasSideEffects;
   2939 
   2940   public:
   2941     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
   2942       : Inherited(Context),
   2943         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
   2944 
   2945     bool hasSideEffects() const { return HasSideEffects; }
   2946 
   2947     void VisitExpr(const Expr *E) {
   2948       if (!HasSideEffects &&
   2949           E->HasSideEffects(Context, IncludePossibleEffects))
   2950         HasSideEffects = true;
   2951     }
   2952   };
   2953 }
   2954 
   2955 bool Expr::HasSideEffects(const ASTContext &Ctx,
   2956                           bool IncludePossibleEffects) const {
   2957   // In circumstances where we care about definite side effects instead of
   2958   // potential side effects, we want to ignore expressions that are part of a
   2959   // macro expansion as a potential side effect.
   2960   if (!IncludePossibleEffects && getExprLoc().isMacroID())
   2961     return false;
   2962 
   2963   if (isInstantiationDependent())
   2964     return IncludePossibleEffects;
   2965 
   2966   switch (getStmtClass()) {
   2967   case NoStmtClass:
   2968   #define ABSTRACT_STMT(Type)
   2969   #define STMT(Type, Base) case Type##Class:
   2970   #define EXPR(Type, Base)
   2971   #include "clang/AST/StmtNodes.inc"
   2972     llvm_unreachable("unexpected Expr kind");
   2973 
   2974   case DependentScopeDeclRefExprClass:
   2975   case CXXUnresolvedConstructExprClass:
   2976   case CXXDependentScopeMemberExprClass:
   2977   case UnresolvedLookupExprClass:
   2978   case UnresolvedMemberExprClass:
   2979   case PackExpansionExprClass:
   2980   case SubstNonTypeTemplateParmPackExprClass:
   2981   case FunctionParmPackExprClass:
   2982   case TypoExprClass:
   2983   case CXXFoldExprClass:
   2984     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
   2985 
   2986   case DeclRefExprClass:
   2987   case ObjCIvarRefExprClass:
   2988   case PredefinedExprClass:
   2989   case IntegerLiteralClass:
   2990   case FloatingLiteralClass:
   2991   case ImaginaryLiteralClass:
   2992   case StringLiteralClass:
   2993   case CharacterLiteralClass:
   2994   case OffsetOfExprClass:
   2995   case ImplicitValueInitExprClass:
   2996   case UnaryExprOrTypeTraitExprClass:
   2997   case AddrLabelExprClass:
   2998   case GNUNullExprClass:
   2999   case NoInitExprClass:
   3000   case CXXBoolLiteralExprClass:
   3001   case CXXNullPtrLiteralExprClass:
   3002   case CXXThisExprClass:
   3003   case CXXScalarValueInitExprClass:
   3004   case TypeTraitExprClass:
   3005   case ArrayTypeTraitExprClass:
   3006   case ExpressionTraitExprClass:
   3007   case CXXNoexceptExprClass:
   3008   case SizeOfPackExprClass:
   3009   case ObjCStringLiteralClass:
   3010   case ObjCEncodeExprClass:
   3011   case ObjCBoolLiteralExprClass:
   3012   case CXXUuidofExprClass:
   3013   case OpaqueValueExprClass:
   3014     // These never have a side-effect.
   3015     return false;
   3016 
   3017   case CallExprClass:
   3018   case CXXOperatorCallExprClass:
   3019   case CXXMemberCallExprClass:
   3020   case CUDAKernelCallExprClass:
   3021   case UserDefinedLiteralClass: {
   3022     // We don't know a call definitely has side effects, except for calls
   3023     // to pure/const functions that definitely don't.
   3024     // If the call itself is considered side-effect free, check the operands.
   3025     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
   3026     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
   3027     if (IsPure || !IncludePossibleEffects)
   3028       break;
   3029     return true;
   3030   }
   3031 
   3032   case BlockExprClass:
   3033   case CXXBindTemporaryExprClass:
   3034     if (!IncludePossibleEffects)
   3035       break;
   3036     return true;
   3037 
   3038   case MSPropertyRefExprClass:
   3039   case MSPropertySubscriptExprClass:
   3040   case CompoundAssignOperatorClass:
   3041   case VAArgExprClass:
   3042   case AtomicExprClass:
   3043   case CXXThrowExprClass:
   3044   case CXXNewExprClass:
   3045   case CXXDeleteExprClass:
   3046   case ExprWithCleanupsClass:
   3047   case CoawaitExprClass:
   3048   case CoyieldExprClass:
   3049     // These always have a side-effect.
   3050     return true;
   3051 
   3052   case StmtExprClass: {
   3053     // StmtExprs have a side-effect if any substatement does.
   3054     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
   3055     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
   3056     return Finder.hasSideEffects();
   3057   }
   3058 
   3059   case ParenExprClass:
   3060   case ArraySubscriptExprClass:
   3061   case OMPArraySectionExprClass:
   3062   case MemberExprClass:
   3063   case ConditionalOperatorClass:
   3064   case BinaryConditionalOperatorClass:
   3065   case CompoundLiteralExprClass:
   3066   case ExtVectorElementExprClass:
   3067   case DesignatedInitExprClass:
   3068   case DesignatedInitUpdateExprClass:
   3069   case ParenListExprClass:
   3070   case CXXPseudoDestructorExprClass:
   3071   case CXXStdInitializerListExprClass:
   3072   case SubstNonTypeTemplateParmExprClass:
   3073   case MaterializeTemporaryExprClass:
   3074   case ShuffleVectorExprClass:
   3075   case ConvertVectorExprClass:
   3076   case AsTypeExprClass:
   3077     // These have a side-effect if any subexpression does.
   3078     break;
   3079 
   3080   case UnaryOperatorClass:
   3081     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
   3082       return true;
   3083     break;
   3084 
   3085   case BinaryOperatorClass:
   3086     if (cast<BinaryOperator>(this)->isAssignmentOp())
   3087       return true;
   3088     break;
   3089 
   3090   case InitListExprClass:
   3091     // FIXME: The children for an InitListExpr doesn't include the array filler.
   3092     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
   3093       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
   3094         return true;
   3095     break;
   3096 
   3097   case GenericSelectionExprClass:
   3098     return cast<GenericSelectionExpr>(this)->getResultExpr()->
   3099         HasSideEffects(Ctx, IncludePossibleEffects);
   3100 
   3101   case ChooseExprClass:
   3102     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
   3103         Ctx, IncludePossibleEffects);
   3104 
   3105   case CXXDefaultArgExprClass:
   3106     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
   3107         Ctx, IncludePossibleEffects);
   3108 
   3109   case CXXDefaultInitExprClass: {
   3110     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
   3111     if (const Expr *E = FD->getInClassInitializer())
   3112       return E->HasSideEffects(Ctx, IncludePossibleEffects);
   3113     // If we've not yet parsed the initializer, assume it has side-effects.
   3114     return true;
   3115   }
   3116 
   3117   case CXXDynamicCastExprClass: {
   3118     // A dynamic_cast expression has side-effects if it can throw.
   3119     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
   3120     if (DCE->getTypeAsWritten()->isReferenceType() &&
   3121         DCE->getCastKind() == CK_Dynamic)
   3122       return true;
   3123   } // Fall through.
   3124   case ImplicitCastExprClass:
   3125   case CStyleCastExprClass:
   3126   case CXXStaticCastExprClass:
   3127   case CXXReinterpretCastExprClass:
   3128   case CXXConstCastExprClass:
   3129   case CXXFunctionalCastExprClass: {
   3130     // While volatile reads are side-effecting in both C and C++, we treat them
   3131     // as having possible (not definite) side-effects. This allows idiomatic
   3132     // code to behave without warning, such as sizeof(*v) for a volatile-
   3133     // qualified pointer.
   3134     if (!IncludePossibleEffects)
   3135       break;
   3136 
   3137     const CastExpr *CE = cast<CastExpr>(this);
   3138     if (CE->getCastKind() == CK_LValueToRValue &&
   3139         CE->getSubExpr()->getType().isVolatileQualified())
   3140       return true;
   3141     break;
   3142   }
   3143 
   3144   case CXXTypeidExprClass:
   3145     // typeid might throw if its subexpression is potentially-evaluated, so has
   3146     // side-effects in that case whether or not its subexpression does.
   3147     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
   3148 
   3149   case CXXConstructExprClass:
   3150   case CXXTemporaryObjectExprClass: {
   3151     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
   3152     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
   3153       return true;
   3154     // A trivial constructor does not add any side-effects of its own. Just look
   3155     // at its arguments.
   3156     break;
   3157   }
   3158 
   3159   case LambdaExprClass: {
   3160     const LambdaExpr *LE = cast<LambdaExpr>(this);
   3161     for (LambdaExpr::capture_iterator I = LE->capture_begin(),
   3162                                       E = LE->capture_end(); I != E; ++I)
   3163       if (I->getCaptureKind() == LCK_ByCopy)
   3164         // FIXME: Only has a side-effect if the variable is volatile or if
   3165         // the copy would invoke a non-trivial copy constructor.
   3166         return true;
   3167     return false;
   3168   }
   3169 
   3170   case PseudoObjectExprClass: {
   3171     // Only look for side-effects in the semantic form, and look past
   3172     // OpaqueValueExpr bindings in that form.
   3173     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
   3174     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
   3175                                                     E = PO->semantics_end();
   3176          I != E; ++I) {
   3177       const Expr *Subexpr = *I;
   3178       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
   3179         Subexpr = OVE->getSourceExpr();
   3180       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
   3181         return true;
   3182     }
   3183     return false;
   3184   }
   3185 
   3186   case ObjCBoxedExprClass:
   3187   case ObjCArrayLiteralClass:
   3188   case ObjCDictionaryLiteralClass:
   3189   case ObjCSelectorExprClass:
   3190   case ObjCProtocolExprClass:
   3191   case ObjCIsaExprClass:
   3192   case ObjCIndirectCopyRestoreExprClass:
   3193   case ObjCSubscriptRefExprClass:
   3194   case ObjCBridgedCastExprClass:
   3195   case ObjCMessageExprClass:
   3196   case ObjCPropertyRefExprClass:
   3197   // FIXME: Classify these cases better.
   3198     if (IncludePossibleEffects)
   3199       return true;
   3200     break;
   3201   }
   3202 
   3203   // Recurse to children.
   3204   for (const Stmt *SubStmt : children())
   3205     if (SubStmt &&
   3206         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
   3207       return true;
   3208 
   3209   return false;
   3210 }
   3211 
   3212 namespace {
   3213   /// \brief Look for a call to a non-trivial function within an expression.
   3214   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
   3215   {
   3216     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
   3217 
   3218     bool NonTrivial;
   3219 
   3220   public:
   3221     explicit NonTrivialCallFinder(const ASTContext &Context)
   3222       : Inherited(Context), NonTrivial(false) { }
   3223 
   3224     bool hasNonTrivialCall() const { return NonTrivial; }
   3225 
   3226     void VisitCallExpr(const CallExpr *E) {
   3227       if (const CXXMethodDecl *Method
   3228           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
   3229         if (Method->isTrivial()) {
   3230           // Recurse to children of the call.
   3231           Inherited::VisitStmt(E);
   3232           return;
   3233         }
   3234       }
   3235 
   3236       NonTrivial = true;
   3237     }
   3238 
   3239     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
   3240       if (E->getConstructor()->isTrivial()) {
   3241         // Recurse to children of the call.
   3242         Inherited::VisitStmt(E);
   3243         return;
   3244       }
   3245 
   3246       NonTrivial = true;
   3247     }
   3248 
   3249     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
   3250       if (E->getTemporary()->getDestructor()->isTrivial()) {
   3251         Inherited::VisitStmt(E);
   3252         return;
   3253       }
   3254 
   3255       NonTrivial = true;
   3256     }
   3257   };
   3258 }
   3259 
   3260 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
   3261   NonTrivialCallFinder Finder(Ctx);
   3262   Finder.Visit(this);
   3263   return Finder.hasNonTrivialCall();
   3264 }
   3265 
   3266 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
   3267 /// pointer constant or not, as well as the specific kind of constant detected.
   3268 /// Null pointer constants can be integer constant expressions with the
   3269 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
   3270 /// (a GNU extension).
   3271 Expr::NullPointerConstantKind
   3272 Expr::isNullPointerConstant(ASTContext &Ctx,
   3273                             NullPointerConstantValueDependence NPC) const {
   3274   if (isValueDependent() &&
   3275       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
   3276     switch (NPC) {
   3277     case NPC_NeverValueDependent:
   3278       llvm_unreachable("Unexpected value dependent expression!");
   3279     case NPC_ValueDependentIsNull:
   3280       if (isTypeDependent() || getType()->isIntegralType(Ctx))
   3281         return NPCK_ZeroExpression;
   3282       else
   3283         return NPCK_NotNull;
   3284 
   3285     case NPC_ValueDependentIsNotNull:
   3286       return NPCK_NotNull;
   3287     }
   3288   }
   3289 
   3290   // Strip off a cast to void*, if it exists. Except in C++.
   3291   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
   3292     if (!Ctx.getLangOpts().CPlusPlus) {
   3293       // Check that it is a cast to void*.
   3294       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
   3295         QualType Pointee = PT->getPointeeType();
   3296         Qualifiers Q = Pointee.getQualifiers();
   3297         // In OpenCL v2.0 generic address space acts as a placeholder
   3298         // and should be ignored.
   3299         bool IsASValid = true;
   3300         if (Ctx.getLangOpts().OpenCLVersion >= 200) {
   3301           if (Pointee.getAddressSpace() == LangAS::opencl_generic)
   3302             Q.removeAddressSpace();
   3303           else
   3304             IsASValid = false;
   3305         }
   3306 
   3307         if (IsASValid && !Q.hasQualifiers() &&
   3308             Pointee->isVoidType() &&                      // to void*
   3309             CE->getSubExpr()->getType()->isIntegerType()) // from int.
   3310           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   3311       }
   3312     }
   3313   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
   3314     // Ignore the ImplicitCastExpr type entirely.
   3315     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   3316   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
   3317     // Accept ((void*)0) as a null pointer constant, as many other
   3318     // implementations do.
   3319     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   3320   } else if (const GenericSelectionExpr *GE =
   3321                dyn_cast<GenericSelectionExpr>(this)) {
   3322     if (GE->isResultDependent())
   3323       return NPCK_NotNull;
   3324     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
   3325   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
   3326     if (CE->isConditionDependent())
   3327       return NPCK_NotNull;
   3328     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
   3329   } else if (const CXXDefaultArgExpr *DefaultArg
   3330                = dyn_cast<CXXDefaultArgExpr>(this)) {
   3331     // See through default argument expressions.
   3332     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
   3333   } else if (const CXXDefaultInitExpr *DefaultInit
   3334                = dyn_cast<CXXDefaultInitExpr>(this)) {
   3335     // See through default initializer expressions.
   3336     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
   3337   } else if (isa<GNUNullExpr>(this)) {
   3338     // The GNU __null extension is always a null pointer constant.
   3339     return NPCK_GNUNull;
   3340   } else if (const MaterializeTemporaryExpr *M
   3341                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
   3342     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
   3343   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
   3344     if (const Expr *Source = OVE->getSourceExpr())
   3345       return Source->isNullPointerConstant(Ctx, NPC);
   3346   }
   3347 
   3348   // C++11 nullptr_t is always a null pointer constant.
   3349   if (getType()->isNullPtrType())
   3350     return NPCK_CXX11_nullptr;
   3351 
   3352   if (const RecordType *UT = getType()->getAsUnionType())
   3353     if (!Ctx.getLangOpts().CPlusPlus11 &&
   3354         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
   3355       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
   3356         const Expr *InitExpr = CLE->getInitializer();
   3357         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
   3358           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
   3359       }
   3360   // This expression must be an integer type.
   3361   if (!getType()->isIntegerType() ||
   3362       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
   3363     return NPCK_NotNull;
   3364 
   3365   if (Ctx.getLangOpts().CPlusPlus11) {
   3366     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
   3367     // value zero or a prvalue of type std::nullptr_t.
   3368     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
   3369     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
   3370     if (Lit && !Lit->getValue())
   3371       return NPCK_ZeroLiteral;
   3372     else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
   3373       return NPCK_NotNull;
   3374   } else {
   3375     // If we have an integer constant expression, we need to *evaluate* it and
   3376     // test for the value 0.
   3377     if (!isIntegerConstantExpr(Ctx))
   3378       return NPCK_NotNull;
   3379   }
   3380 
   3381   if (EvaluateKnownConstInt(Ctx) != 0)
   3382     return NPCK_NotNull;
   3383 
   3384   if (isa<IntegerLiteral>(this))
   3385     return NPCK_ZeroLiteral;
   3386   return NPCK_ZeroExpression;
   3387 }
   3388 
   3389 /// \brief If this expression is an l-value for an Objective C
   3390 /// property, find the underlying property reference expression.
   3391 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
   3392   const Expr *E = this;
   3393   while (true) {
   3394     assert((E->getValueKind() == VK_LValue &&
   3395             E->getObjectKind() == OK_ObjCProperty) &&
   3396            "expression is not a property reference");
   3397     E = E->IgnoreParenCasts();
   3398     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   3399       if (BO->getOpcode() == BO_Comma) {
   3400         E = BO->getRHS();
   3401         continue;
   3402       }
   3403     }
   3404 
   3405     break;
   3406   }
   3407 
   3408   return cast<ObjCPropertyRefExpr>(E);
   3409 }
   3410 
   3411 bool Expr::isObjCSelfExpr() const {
   3412   const Expr *E = IgnoreParenImpCasts();
   3413 
   3414   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   3415   if (!DRE)
   3416     return false;
   3417 
   3418   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
   3419   if (!Param)
   3420     return false;
   3421 
   3422   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
   3423   if (!M)
   3424     return false;
   3425 
   3426   return M->getSelfDecl() == Param;
   3427 }
   3428 
   3429 FieldDecl *Expr::getSourceBitField() {
   3430   Expr *E = this->IgnoreParens();
   3431 
   3432   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   3433     if (ICE->getCastKind() == CK_LValueToRValue ||
   3434         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
   3435       E = ICE->getSubExpr()->IgnoreParens();
   3436     else
   3437       break;
   3438   }
   3439 
   3440   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
   3441     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
   3442       if (Field->isBitField())
   3443         return Field;
   3444 
   3445   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
   3446     if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
   3447       if (Ivar->isBitField())
   3448         return Ivar;
   3449 
   3450   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
   3451     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
   3452       if (Field->isBitField())
   3453         return Field;
   3454 
   3455   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
   3456     if (BinOp->isAssignmentOp() && BinOp->getLHS())
   3457       return BinOp->getLHS()->getSourceBitField();
   3458 
   3459     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
   3460       return BinOp->getRHS()->getSourceBitField();
   3461   }
   3462 
   3463   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
   3464     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
   3465       return UnOp->getSubExpr()->getSourceBitField();
   3466 
   3467   return nullptr;
   3468 }
   3469 
   3470 bool Expr::refersToVectorElement() const {
   3471   const Expr *E = this->IgnoreParens();
   3472 
   3473   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   3474     if (ICE->getValueKind() != VK_RValue &&
   3475         ICE->getCastKind() == CK_NoOp)
   3476       E = ICE->getSubExpr()->IgnoreParens();
   3477     else
   3478       break;
   3479   }
   3480 
   3481   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
   3482     return ASE->getBase()->getType()->isVectorType();
   3483 
   3484   if (isa<ExtVectorElementExpr>(E))
   3485     return true;
   3486 
   3487   return false;
   3488 }
   3489 
   3490 bool Expr::refersToGlobalRegisterVar() const {
   3491   const Expr *E = this->IgnoreParenImpCasts();
   3492 
   3493   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
   3494     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
   3495       if (VD->getStorageClass() == SC_Register &&
   3496           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
   3497         return true;
   3498 
   3499   return false;
   3500 }
   3501 
   3502 /// isArrow - Return true if the base expression is a pointer to vector,
   3503 /// return false if the base expression is a vector.
   3504 bool ExtVectorElementExpr::isArrow() const {
   3505   return getBase()->getType()->isPointerType();
   3506 }
   3507 
   3508 unsigned ExtVectorElementExpr::getNumElements() const {
   3509   if (const VectorType *VT = getType()->getAs<VectorType>())
   3510     return VT->getNumElements();
   3511   return 1;
   3512 }
   3513 
   3514 /// containsDuplicateElements - Return true if any element access is repeated.
   3515 bool ExtVectorElementExpr::containsDuplicateElements() const {
   3516   // FIXME: Refactor this code to an accessor on the AST node which returns the
   3517   // "type" of component access, and share with code below and in Sema.
   3518   StringRef Comp = Accessor->getName();
   3519 
   3520   // Halving swizzles do not contain duplicate elements.
   3521   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
   3522     return false;
   3523 
   3524   // Advance past s-char prefix on hex swizzles.
   3525   if (Comp[0] == 's' || Comp[0] == 'S')
   3526     Comp = Comp.substr(1);
   3527 
   3528   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
   3529     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
   3530         return true;
   3531 
   3532   return false;
   3533 }
   3534 
   3535 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
   3536 void ExtVectorElementExpr::getEncodedElementAccess(
   3537     SmallVectorImpl<uint32_t> &Elts) const {
   3538   StringRef Comp = Accessor->getName();
   3539   if (Comp[0] == 's' || Comp[0] == 'S')
   3540     Comp = Comp.substr(1);
   3541 
   3542   bool isHi =   Comp == "hi";
   3543   bool isLo =   Comp == "lo";
   3544   bool isEven = Comp == "even";
   3545   bool isOdd  = Comp == "odd";
   3546 
   3547   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
   3548     uint64_t Index;
   3549 
   3550     if (isHi)
   3551       Index = e + i;
   3552     else if (isLo)
   3553       Index = i;
   3554     else if (isEven)
   3555       Index = 2 * i;
   3556     else if (isOdd)
   3557       Index = 2 * i + 1;
   3558     else
   3559       Index = ExtVectorType::getAccessorIdx(Comp[i]);
   3560 
   3561     Elts.push_back(Index);
   3562   }
   3563 }
   3564 
   3565 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
   3566                                      QualType Type, SourceLocation BLoc,
   3567                                      SourceLocation RP)
   3568    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
   3569           Type->isDependentType(), Type->isDependentType(),
   3570           Type->isInstantiationDependentType(),
   3571           Type->containsUnexpandedParameterPack()),
   3572      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
   3573 {
   3574   SubExprs = new (C) Stmt*[args.size()];
   3575   for (unsigned i = 0; i != args.size(); i++) {
   3576     if (args[i]->isTypeDependent())
   3577       ExprBits.TypeDependent = true;
   3578     if (args[i]->isValueDependent())
   3579       ExprBits.ValueDependent = true;
   3580     if (args[i]->isInstantiationDependent())
   3581       ExprBits.InstantiationDependent = true;
   3582     if (args[i]->containsUnexpandedParameterPack())
   3583       ExprBits.ContainsUnexpandedParameterPack = true;
   3584 
   3585     SubExprs[i] = args[i];
   3586   }
   3587 }
   3588 
   3589 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
   3590   if (SubExprs) C.Deallocate(SubExprs);
   3591 
   3592   this->NumExprs = Exprs.size();
   3593   SubExprs = new (C) Stmt*[NumExprs];
   3594   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
   3595 }
   3596 
   3597 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
   3598                                SourceLocation GenericLoc, Expr *ControllingExpr,
   3599                                ArrayRef<TypeSourceInfo*> AssocTypes,
   3600                                ArrayRef<Expr*> AssocExprs,
   3601                                SourceLocation DefaultLoc,
   3602                                SourceLocation RParenLoc,
   3603                                bool ContainsUnexpandedParameterPack,
   3604                                unsigned ResultIndex)
   3605   : Expr(GenericSelectionExprClass,
   3606          AssocExprs[ResultIndex]->getType(),
   3607          AssocExprs[ResultIndex]->getValueKind(),
   3608          AssocExprs[ResultIndex]->getObjectKind(),
   3609          AssocExprs[ResultIndex]->isTypeDependent(),
   3610          AssocExprs[ResultIndex]->isValueDependent(),
   3611          AssocExprs[ResultIndex]->isInstantiationDependent(),
   3612          ContainsUnexpandedParameterPack),
   3613     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
   3614     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
   3615     NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
   3616     GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
   3617   SubExprs[CONTROLLING] = ControllingExpr;
   3618   assert(AssocTypes.size() == AssocExprs.size());
   3619   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
   3620   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
   3621 }
   3622 
   3623 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
   3624                                SourceLocation GenericLoc, Expr *ControllingExpr,
   3625                                ArrayRef<TypeSourceInfo*> AssocTypes,
   3626                                ArrayRef<Expr*> AssocExprs,
   3627                                SourceLocation DefaultLoc,
   3628                                SourceLocation RParenLoc,
   3629                                bool ContainsUnexpandedParameterPack)
   3630   : Expr(GenericSelectionExprClass,
   3631          Context.DependentTy,
   3632          VK_RValue,
   3633          OK_Ordinary,
   3634          /*isTypeDependent=*/true,
   3635          /*isValueDependent=*/true,
   3636          /*isInstantiationDependent=*/true,
   3637          ContainsUnexpandedParameterPack),
   3638     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
   3639     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
   3640     NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
   3641     DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
   3642   SubExprs[CONTROLLING] = ControllingExpr;
   3643   assert(AssocTypes.size() == AssocExprs.size());
   3644   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
   3645   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
   3646 }
   3647 
   3648 //===----------------------------------------------------------------------===//
   3649 //  DesignatedInitExpr
   3650 //===----------------------------------------------------------------------===//
   3651 
   3652 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
   3653   assert(Kind == FieldDesignator && "Only valid on a field designator");
   3654   if (Field.NameOrField & 0x01)
   3655     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
   3656   else
   3657     return getField()->getIdentifier();
   3658 }
   3659 
   3660 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
   3661                                        unsigned NumDesignators,
   3662                                        const Designator *Designators,
   3663                                        SourceLocation EqualOrColonLoc,
   3664                                        bool GNUSyntax,
   3665                                        ArrayRef<Expr*> IndexExprs,
   3666                                        Expr *Init)
   3667   : Expr(DesignatedInitExprClass, Ty,
   3668          Init->getValueKind(), Init->getObjectKind(),
   3669          Init->isTypeDependent(), Init->isValueDependent(),
   3670          Init->isInstantiationDependent(),
   3671          Init->containsUnexpandedParameterPack()),
   3672     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
   3673     NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
   3674   this->Designators = new (C) Designator[NumDesignators];
   3675 
   3676   // Record the initializer itself.
   3677   child_iterator Child = child_begin();
   3678   *Child++ = Init;
   3679 
   3680   // Copy the designators and their subexpressions, computing
   3681   // value-dependence along the way.
   3682   unsigned IndexIdx = 0;
   3683   for (unsigned I = 0; I != NumDesignators; ++I) {
   3684     this->Designators[I] = Designators[I];
   3685 
   3686     if (this->Designators[I].isArrayDesignator()) {
   3687       // Compute type- and value-dependence.
   3688       Expr *Index = IndexExprs[IndexIdx];
   3689       if (Index->isTypeDependent() || Index->isValueDependent())
   3690         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
   3691       if (Index->isInstantiationDependent())
   3692         ExprBits.InstantiationDependent = true;
   3693       // Propagate unexpanded parameter packs.
   3694       if (Index->containsUnexpandedParameterPack())
   3695         ExprBits.ContainsUnexpandedParameterPack = true;
   3696 
   3697       // Copy the index expressions into permanent storage.
   3698       *Child++ = IndexExprs[IndexIdx++];
   3699     } else if (this->Designators[I].isArrayRangeDesignator()) {
   3700       // Compute type- and value-dependence.
   3701       Expr *Start = IndexExprs[IndexIdx];
   3702       Expr *End = IndexExprs[IndexIdx + 1];
   3703       if (Start->isTypeDependent() || Start->isValueDependent() ||
   3704           End->isTypeDependent() || End->isValueDependent()) {
   3705         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
   3706         ExprBits.InstantiationDependent = true;
   3707       } else if (Start->isInstantiationDependent() ||
   3708                  End->isInstantiationDependent()) {
   3709         ExprBits.InstantiationDependent = true;
   3710       }
   3711 
   3712       // Propagate unexpanded parameter packs.
   3713       if (Start->containsUnexpandedParameterPack() ||
   3714           End->containsUnexpandedParameterPack())
   3715         ExprBits.ContainsUnexpandedParameterPack = true;
   3716 
   3717       // Copy the start/end expressions into permanent storage.
   3718       *Child++ = IndexExprs[IndexIdx++];
   3719       *Child++ = IndexExprs[IndexIdx++];
   3720     }
   3721   }
   3722 
   3723   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
   3724 }
   3725 
   3726 DesignatedInitExpr *
   3727 DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators,
   3728                            unsigned NumDesignators,
   3729                            ArrayRef<Expr*> IndexExprs,
   3730                            SourceLocation ColonOrEqualLoc,
   3731                            bool UsesColonSyntax, Expr *Init) {
   3732   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
   3733                              sizeof(Stmt *) * (IndexExprs.size() + 1),
   3734                          llvm::alignOf<DesignatedInitExpr>());
   3735   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
   3736                                       ColonOrEqualLoc, UsesColonSyntax,
   3737                                       IndexExprs, Init);
   3738 }
   3739 
   3740 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
   3741                                                     unsigned NumIndexExprs) {
   3742   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
   3743                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
   3744   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
   3745 }
   3746 
   3747 void DesignatedInitExpr::setDesignators(const ASTContext &C,
   3748                                         const Designator *Desigs,
   3749                                         unsigned NumDesigs) {
   3750   Designators = new (C) Designator[NumDesigs];
   3751   NumDesignators = NumDesigs;
   3752   for (unsigned I = 0; I != NumDesigs; ++I)
   3753     Designators[I] = Desigs[I];
   3754 }
   3755 
   3756 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
   3757   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
   3758   if (size() == 1)
   3759     return DIE->getDesignator(0)->getSourceRange();
   3760   return SourceRange(DIE->getDesignator(0)->getLocStart(),
   3761                      DIE->getDesignator(size()-1)->getLocEnd());
   3762 }
   3763 
   3764 SourceLocation DesignatedInitExpr::getLocStart() const {
   3765   SourceLocation StartLoc;
   3766   Designator &First =
   3767     *const_cast<DesignatedInitExpr*>(this)->designators_begin();
   3768   if (First.isFieldDesignator()) {
   3769     if (GNUSyntax)
   3770       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
   3771     else
   3772       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
   3773   } else
   3774     StartLoc =
   3775       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
   3776   return StartLoc;
   3777 }
   3778 
   3779 SourceLocation DesignatedInitExpr::getLocEnd() const {
   3780   return getInit()->getLocEnd();
   3781 }
   3782 
   3783 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
   3784   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
   3785   Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
   3786   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
   3787 }
   3788 
   3789 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
   3790   assert(D.Kind == Designator::ArrayRangeDesignator &&
   3791          "Requires array range designator");
   3792   Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
   3793   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
   3794 }
   3795 
   3796 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
   3797   assert(D.Kind == Designator::ArrayRangeDesignator &&
   3798          "Requires array range designator");
   3799   Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
   3800   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
   3801 }
   3802 
   3803 /// \brief Replaces the designator at index @p Idx with the series
   3804 /// of designators in [First, Last).
   3805 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
   3806                                           const Designator *First,
   3807                                           const Designator *Last) {
   3808   unsigned NumNewDesignators = Last - First;
   3809   if (NumNewDesignators == 0) {
   3810     std::copy_backward(Designators + Idx + 1,
   3811                        Designators + NumDesignators,
   3812                        Designators + Idx);
   3813     --NumNewDesignators;
   3814     return;
   3815   } else if (NumNewDesignators == 1) {
   3816     Designators[Idx] = *First;
   3817     return;
   3818   }
   3819 
   3820   Designator *NewDesignators
   3821     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
   3822   std::copy(Designators, Designators + Idx, NewDesignators);
   3823   std::copy(First, Last, NewDesignators + Idx);
   3824   std::copy(Designators + Idx + 1, Designators + NumDesignators,
   3825             NewDesignators + Idx + NumNewDesignators);
   3826   Designators = NewDesignators;
   3827   NumDesignators = NumDesignators - 1 + NumNewDesignators;
   3828 }
   3829 
   3830 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
   3831     SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
   3832   : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
   3833          OK_Ordinary, false, false, false, false) {
   3834   BaseAndUpdaterExprs[0] = baseExpr;
   3835 
   3836   InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
   3837   ILE->setType(baseExpr->getType());
   3838   BaseAndUpdaterExprs[1] = ILE;
   3839 }
   3840 
   3841 SourceLocation DesignatedInitUpdateExpr::getLocStart() const {
   3842   return getBase()->getLocStart();
   3843 }
   3844 
   3845 SourceLocation DesignatedInitUpdateExpr::getLocEnd() const {
   3846   return getBase()->getLocEnd();
   3847 }
   3848 
   3849 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
   3850                              ArrayRef<Expr*> exprs,
   3851                              SourceLocation rparenloc)
   3852   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
   3853          false, false, false, false),
   3854     NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
   3855   Exprs = new (C) Stmt*[exprs.size()];
   3856   for (unsigned i = 0; i != exprs.size(); ++i) {
   3857     if (exprs[i]->isTypeDependent())
   3858       ExprBits.TypeDependent = true;
   3859     if (exprs[i]->isValueDependent())
   3860       ExprBits.ValueDependent = true;
   3861     if (exprs[i]->isInstantiationDependent())
   3862       ExprBits.InstantiationDependent = true;
   3863     if (exprs[i]->containsUnexpandedParameterPack())
   3864       ExprBits.ContainsUnexpandedParameterPack = true;
   3865 
   3866     Exprs[i] = exprs[i];
   3867   }
   3868 }
   3869 
   3870 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
   3871   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
   3872     e = ewc->getSubExpr();
   3873   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
   3874     e = m->GetTemporaryExpr();
   3875   e = cast<CXXConstructExpr>(e)->getArg(0);
   3876   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
   3877     e = ice->getSubExpr();
   3878   return cast<OpaqueValueExpr>(e);
   3879 }
   3880 
   3881 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
   3882                                            EmptyShell sh,
   3883                                            unsigned numSemanticExprs) {
   3884   void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
   3885                                     (1 + numSemanticExprs) * sizeof(Expr*),
   3886                                   llvm::alignOf<PseudoObjectExpr>());
   3887   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
   3888 }
   3889 
   3890 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
   3891   : Expr(PseudoObjectExprClass, shell) {
   3892   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
   3893 }
   3894 
   3895 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
   3896                                            ArrayRef<Expr*> semantics,
   3897                                            unsigned resultIndex) {
   3898   assert(syntax && "no syntactic expression!");
   3899   assert(semantics.size() && "no semantic expressions!");
   3900 
   3901   QualType type;
   3902   ExprValueKind VK;
   3903   if (resultIndex == NoResult) {
   3904     type = C.VoidTy;
   3905     VK = VK_RValue;
   3906   } else {
   3907     assert(resultIndex < semantics.size());
   3908     type = semantics[resultIndex]->getType();
   3909     VK = semantics[resultIndex]->getValueKind();
   3910     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
   3911   }
   3912 
   3913   void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
   3914                               (1 + semantics.size()) * sizeof(Expr*),
   3915                             llvm::alignOf<PseudoObjectExpr>());
   3916   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
   3917                                       resultIndex);
   3918 }
   3919 
   3920 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
   3921                                    Expr *syntax, ArrayRef<Expr*> semantics,
   3922                                    unsigned resultIndex)
   3923   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
   3924          /*filled in at end of ctor*/ false, false, false, false) {
   3925   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
   3926   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
   3927 
   3928   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
   3929     Expr *E = (i == 0 ? syntax : semantics[i-1]);
   3930     getSubExprsBuffer()[i] = E;
   3931 
   3932     if (E->isTypeDependent())
   3933       ExprBits.TypeDependent = true;
   3934     if (E->isValueDependent())
   3935       ExprBits.ValueDependent = true;
   3936     if (E->isInstantiationDependent())
   3937       ExprBits.InstantiationDependent = true;
   3938     if (E->containsUnexpandedParameterPack())
   3939       ExprBits.ContainsUnexpandedParameterPack = true;
   3940 
   3941     if (isa<OpaqueValueExpr>(E))
   3942       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
   3943              "opaque-value semantic expressions for pseudo-object "
   3944              "operations must have sources");
   3945   }
   3946 }
   3947 
   3948 //===----------------------------------------------------------------------===//
   3949 //  Child Iterators for iterating over subexpressions/substatements
   3950 //===----------------------------------------------------------------------===//
   3951 
   3952 // UnaryExprOrTypeTraitExpr
   3953 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
   3954   // If this is of a type and the type is a VLA type (and not a typedef), the
   3955   // size expression of the VLA needs to be treated as an executable expression.
   3956   // Why isn't this weirdness documented better in StmtIterator?
   3957   if (isArgumentType()) {
   3958     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
   3959                                    getArgumentType().getTypePtr()))
   3960       return child_range(child_iterator(T), child_iterator());
   3961     return child_range(child_iterator(), child_iterator());
   3962   }
   3963   return child_range(&Argument.Ex, &Argument.Ex + 1);
   3964 }
   3965 
   3966 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
   3967                        QualType t, AtomicOp op, SourceLocation RP)
   3968   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
   3969          false, false, false, false),
   3970     NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
   3971 {
   3972   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
   3973   for (unsigned i = 0; i != args.size(); i++) {
   3974     if (args[i]->isTypeDependent())
   3975       ExprBits.TypeDependent = true;
   3976     if (args[i]->isValueDependent())
   3977       ExprBits.ValueDependent = true;
   3978     if (args[i]->isInstantiationDependent())
   3979       ExprBits.InstantiationDependent = true;
   3980     if (args[i]->containsUnexpandedParameterPack())
   3981       ExprBits.ContainsUnexpandedParameterPack = true;
   3982 
   3983     SubExprs[i] = args[i];
   3984   }
   3985 }
   3986 
   3987 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
   3988   switch (Op) {
   3989   case AO__c11_atomic_init:
   3990   case AO__c11_atomic_load:
   3991   case AO__atomic_load_n:
   3992     return 2;
   3993 
   3994   case AO__c11_atomic_store:
   3995   case AO__c11_atomic_exchange:
   3996   case AO__atomic_load:
   3997   case AO__atomic_store:
   3998   case AO__atomic_store_n:
   3999   case AO__atomic_exchange_n:
   4000   case AO__c11_atomic_fetch_add:
   4001   case AO__c11_atomic_fetch_sub:
   4002   case AO__c11_atomic_fetch_and:
   4003   case AO__c11_atomic_fetch_or:
   4004   case AO__c11_atomic_fetch_xor:
   4005   case AO__atomic_fetch_add:
   4006   case AO__atomic_fetch_sub:
   4007   case AO__atomic_fetch_and:
   4008   case AO__atomic_fetch_or:
   4009   case AO__atomic_fetch_xor:
   4010   case AO__atomic_fetch_nand:
   4011   case AO__atomic_add_fetch:
   4012   case AO__atomic_sub_fetch:
   4013   case AO__atomic_and_fetch:
   4014   case AO__atomic_or_fetch:
   4015   case AO__atomic_xor_fetch:
   4016   case AO__atomic_nand_fetch:
   4017     return 3;
   4018 
   4019   case AO__atomic_exchange:
   4020     return 4;
   4021 
   4022   case AO__c11_atomic_compare_exchange_strong:
   4023   case AO__c11_atomic_compare_exchange_weak:
   4024     return 5;
   4025 
   4026   case AO__atomic_compare_exchange:
   4027   case AO__atomic_compare_exchange_n:
   4028     return 6;
   4029   }
   4030   llvm_unreachable("unknown atomic op");
   4031 }
   4032 
   4033 QualType OMPArraySectionExpr::getBaseOriginalType(Expr *Base) {
   4034   unsigned ArraySectionCount = 0;
   4035   while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
   4036     Base = OASE->getBase();
   4037     ++ArraySectionCount;
   4038   }
   4039   while (auto *ASE = dyn_cast<ArraySubscriptExpr>(Base->IgnoreParens())) {
   4040     Base = ASE->getBase();
   4041     ++ArraySectionCount;
   4042   }
   4043   auto OriginalTy = Base->getType();
   4044   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
   4045     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
   4046       OriginalTy = PVD->getOriginalType().getNonReferenceType();
   4047 
   4048   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
   4049     if (OriginalTy->isAnyPointerType())
   4050       OriginalTy = OriginalTy->getPointeeType();
   4051     else {
   4052       assert (OriginalTy->isArrayType());
   4053       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
   4054     }
   4055   }
   4056   return OriginalTy;
   4057 }
   4058 
   4059