Home | History | Annotate | Download | only in Analysis
      1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines vectorizer utilities.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/ADT/EquivalenceClasses.h"
     15 #include "llvm/Analysis/DemandedBits.h"
     16 #include "llvm/Analysis/LoopInfo.h"
     17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     18 #include "llvm/Analysis/ScalarEvolution.h"
     19 #include "llvm/Analysis/TargetTransformInfo.h"
     20 #include "llvm/Analysis/VectorUtils.h"
     21 #include "llvm/IR/GetElementPtrTypeIterator.h"
     22 #include "llvm/IR/PatternMatch.h"
     23 #include "llvm/IR/Value.h"
     24 #include "llvm/IR/Constants.h"
     25 
     26 using namespace llvm;
     27 using namespace llvm::PatternMatch;
     28 
     29 /// \brief Identify if the intrinsic is trivially vectorizable.
     30 /// This method returns true if the intrinsic's argument types are all
     31 /// scalars for the scalar form of the intrinsic and all vectors for
     32 /// the vector form of the intrinsic.
     33 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
     34   switch (ID) {
     35   case Intrinsic::sqrt:
     36   case Intrinsic::sin:
     37   case Intrinsic::cos:
     38   case Intrinsic::exp:
     39   case Intrinsic::exp2:
     40   case Intrinsic::log:
     41   case Intrinsic::log10:
     42   case Intrinsic::log2:
     43   case Intrinsic::fabs:
     44   case Intrinsic::minnum:
     45   case Intrinsic::maxnum:
     46   case Intrinsic::copysign:
     47   case Intrinsic::floor:
     48   case Intrinsic::ceil:
     49   case Intrinsic::trunc:
     50   case Intrinsic::rint:
     51   case Intrinsic::nearbyint:
     52   case Intrinsic::round:
     53   case Intrinsic::bswap:
     54   case Intrinsic::ctpop:
     55   case Intrinsic::pow:
     56   case Intrinsic::fma:
     57   case Intrinsic::fmuladd:
     58   case Intrinsic::ctlz:
     59   case Intrinsic::cttz:
     60   case Intrinsic::powi:
     61     return true;
     62   default:
     63     return false;
     64   }
     65 }
     66 
     67 /// \brief Identifies if the intrinsic has a scalar operand. It check for
     68 /// ctlz,cttz and powi special intrinsics whose argument is scalar.
     69 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
     70                                         unsigned ScalarOpdIdx) {
     71   switch (ID) {
     72   case Intrinsic::ctlz:
     73   case Intrinsic::cttz:
     74   case Intrinsic::powi:
     75     return (ScalarOpdIdx == 1);
     76   default:
     77     return false;
     78   }
     79 }
     80 
     81 /// \brief Check call has a unary float signature
     82 /// It checks following:
     83 /// a) call should have a single argument
     84 /// b) argument type should be floating point type
     85 /// c) call instruction type and argument type should be same
     86 /// d) call should only reads memory.
     87 /// If all these condition is met then return ValidIntrinsicID
     88 /// else return not_intrinsic.
     89 Intrinsic::ID
     90 llvm::checkUnaryFloatSignature(const CallInst &I,
     91                                Intrinsic::ID ValidIntrinsicID) {
     92   if (I.getNumArgOperands() != 1 ||
     93       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
     94       I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory())
     95     return Intrinsic::not_intrinsic;
     96 
     97   return ValidIntrinsicID;
     98 }
     99 
    100 /// \brief Check call has a binary float signature
    101 /// It checks following:
    102 /// a) call should have 2 arguments.
    103 /// b) arguments type should be floating point type
    104 /// c) call instruction type and arguments type should be same
    105 /// d) call should only reads memory.
    106 /// If all these condition is met then return ValidIntrinsicID
    107 /// else return not_intrinsic.
    108 Intrinsic::ID
    109 llvm::checkBinaryFloatSignature(const CallInst &I,
    110                                 Intrinsic::ID ValidIntrinsicID) {
    111   if (I.getNumArgOperands() != 2 ||
    112       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
    113       !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
    114       I.getType() != I.getArgOperand(0)->getType() ||
    115       I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory())
    116     return Intrinsic::not_intrinsic;
    117 
    118   return ValidIntrinsicID;
    119 }
    120 
    121 /// \brief Returns intrinsic ID for call.
    122 /// For the input call instruction it finds mapping intrinsic and returns
    123 /// its ID, in case it does not found it return not_intrinsic.
    124 Intrinsic::ID llvm::getIntrinsicIDForCall(CallInst *CI,
    125                                           const TargetLibraryInfo *TLI) {
    126   // If we have an intrinsic call, check if it is trivially vectorizable.
    127   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
    128     Intrinsic::ID ID = II->getIntrinsicID();
    129     if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
    130         ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
    131       return ID;
    132     return Intrinsic::not_intrinsic;
    133   }
    134 
    135   if (!TLI)
    136     return Intrinsic::not_intrinsic;
    137 
    138   LibFunc::Func Func;
    139   Function *F = CI->getCalledFunction();
    140   // We're going to make assumptions on the semantics of the functions, check
    141   // that the target knows that it's available in this environment and it does
    142   // not have local linkage.
    143   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
    144     return Intrinsic::not_intrinsic;
    145 
    146   // Otherwise check if we have a call to a function that can be turned into a
    147   // vector intrinsic.
    148   switch (Func) {
    149   default:
    150     break;
    151   case LibFunc::sin:
    152   case LibFunc::sinf:
    153   case LibFunc::sinl:
    154     return checkUnaryFloatSignature(*CI, Intrinsic::sin);
    155   case LibFunc::cos:
    156   case LibFunc::cosf:
    157   case LibFunc::cosl:
    158     return checkUnaryFloatSignature(*CI, Intrinsic::cos);
    159   case LibFunc::exp:
    160   case LibFunc::expf:
    161   case LibFunc::expl:
    162     return checkUnaryFloatSignature(*CI, Intrinsic::exp);
    163   case LibFunc::exp2:
    164   case LibFunc::exp2f:
    165   case LibFunc::exp2l:
    166     return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
    167   case LibFunc::log:
    168   case LibFunc::logf:
    169   case LibFunc::logl:
    170     return checkUnaryFloatSignature(*CI, Intrinsic::log);
    171   case LibFunc::log10:
    172   case LibFunc::log10f:
    173   case LibFunc::log10l:
    174     return checkUnaryFloatSignature(*CI, Intrinsic::log10);
    175   case LibFunc::log2:
    176   case LibFunc::log2f:
    177   case LibFunc::log2l:
    178     return checkUnaryFloatSignature(*CI, Intrinsic::log2);
    179   case LibFunc::fabs:
    180   case LibFunc::fabsf:
    181   case LibFunc::fabsl:
    182     return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
    183   case LibFunc::fmin:
    184   case LibFunc::fminf:
    185   case LibFunc::fminl:
    186     return checkBinaryFloatSignature(*CI, Intrinsic::minnum);
    187   case LibFunc::fmax:
    188   case LibFunc::fmaxf:
    189   case LibFunc::fmaxl:
    190     return checkBinaryFloatSignature(*CI, Intrinsic::maxnum);
    191   case LibFunc::copysign:
    192   case LibFunc::copysignf:
    193   case LibFunc::copysignl:
    194     return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
    195   case LibFunc::floor:
    196   case LibFunc::floorf:
    197   case LibFunc::floorl:
    198     return checkUnaryFloatSignature(*CI, Intrinsic::floor);
    199   case LibFunc::ceil:
    200   case LibFunc::ceilf:
    201   case LibFunc::ceill:
    202     return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
    203   case LibFunc::trunc:
    204   case LibFunc::truncf:
    205   case LibFunc::truncl:
    206     return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
    207   case LibFunc::rint:
    208   case LibFunc::rintf:
    209   case LibFunc::rintl:
    210     return checkUnaryFloatSignature(*CI, Intrinsic::rint);
    211   case LibFunc::nearbyint:
    212   case LibFunc::nearbyintf:
    213   case LibFunc::nearbyintl:
    214     return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
    215   case LibFunc::round:
    216   case LibFunc::roundf:
    217   case LibFunc::roundl:
    218     return checkUnaryFloatSignature(*CI, Intrinsic::round);
    219   case LibFunc::pow:
    220   case LibFunc::powf:
    221   case LibFunc::powl:
    222     return checkBinaryFloatSignature(*CI, Intrinsic::pow);
    223   }
    224 
    225   return Intrinsic::not_intrinsic;
    226 }
    227 
    228 /// \brief Find the operand of the GEP that should be checked for consecutive
    229 /// stores. This ignores trailing indices that have no effect on the final
    230 /// pointer.
    231 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
    232   const DataLayout &DL = Gep->getModule()->getDataLayout();
    233   unsigned LastOperand = Gep->getNumOperands() - 1;
    234   unsigned GEPAllocSize = DL.getTypeAllocSize(
    235       cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
    236 
    237   // Walk backwards and try to peel off zeros.
    238   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
    239     // Find the type we're currently indexing into.
    240     gep_type_iterator GEPTI = gep_type_begin(Gep);
    241     std::advance(GEPTI, LastOperand - 1);
    242 
    243     // If it's a type with the same allocation size as the result of the GEP we
    244     // can peel off the zero index.
    245     if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
    246       break;
    247     --LastOperand;
    248   }
    249 
    250   return LastOperand;
    251 }
    252 
    253 /// \brief If the argument is a GEP, then returns the operand identified by
    254 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
    255 /// operand, it returns that instead.
    256 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
    257   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
    258   if (!GEP)
    259     return Ptr;
    260 
    261   unsigned InductionOperand = getGEPInductionOperand(GEP);
    262 
    263   // Check that all of the gep indices are uniform except for our induction
    264   // operand.
    265   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
    266     if (i != InductionOperand &&
    267         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
    268       return Ptr;
    269   return GEP->getOperand(InductionOperand);
    270 }
    271 
    272 /// \brief If a value has only one user that is a CastInst, return it.
    273 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
    274   Value *UniqueCast = nullptr;
    275   for (User *U : Ptr->users()) {
    276     CastInst *CI = dyn_cast<CastInst>(U);
    277     if (CI && CI->getType() == Ty) {
    278       if (!UniqueCast)
    279         UniqueCast = CI;
    280       else
    281         return nullptr;
    282     }
    283   }
    284   return UniqueCast;
    285 }
    286 
    287 /// \brief Get the stride of a pointer access in a loop. Looks for symbolic
    288 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
    289 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
    290   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
    291   if (!PtrTy || PtrTy->isAggregateType())
    292     return nullptr;
    293 
    294   // Try to remove a gep instruction to make the pointer (actually index at this
    295   // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
    296   // pointer, otherwise, we are analyzing the index.
    297   Value *OrigPtr = Ptr;
    298 
    299   // The size of the pointer access.
    300   int64_t PtrAccessSize = 1;
    301 
    302   Ptr = stripGetElementPtr(Ptr, SE, Lp);
    303   const SCEV *V = SE->getSCEV(Ptr);
    304 
    305   if (Ptr != OrigPtr)
    306     // Strip off casts.
    307     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
    308       V = C->getOperand();
    309 
    310   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
    311   if (!S)
    312     return nullptr;
    313 
    314   V = S->getStepRecurrence(*SE);
    315   if (!V)
    316     return nullptr;
    317 
    318   // Strip off the size of access multiplication if we are still analyzing the
    319   // pointer.
    320   if (OrigPtr == Ptr) {
    321     const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout();
    322     DL.getTypeAllocSize(PtrTy->getElementType());
    323     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
    324       if (M->getOperand(0)->getSCEVType() != scConstant)
    325         return nullptr;
    326 
    327       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
    328 
    329       // Huge step value - give up.
    330       if (APStepVal.getBitWidth() > 64)
    331         return nullptr;
    332 
    333       int64_t StepVal = APStepVal.getSExtValue();
    334       if (PtrAccessSize != StepVal)
    335         return nullptr;
    336       V = M->getOperand(1);
    337     }
    338   }
    339 
    340   // Strip off casts.
    341   Type *StripedOffRecurrenceCast = nullptr;
    342   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
    343     StripedOffRecurrenceCast = C->getType();
    344     V = C->getOperand();
    345   }
    346 
    347   // Look for the loop invariant symbolic value.
    348   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
    349   if (!U)
    350     return nullptr;
    351 
    352   Value *Stride = U->getValue();
    353   if (!Lp->isLoopInvariant(Stride))
    354     return nullptr;
    355 
    356   // If we have stripped off the recurrence cast we have to make sure that we
    357   // return the value that is used in this loop so that we can replace it later.
    358   if (StripedOffRecurrenceCast)
    359     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
    360 
    361   return Stride;
    362 }
    363 
    364 /// \brief Given a vector and an element number, see if the scalar value is
    365 /// already around as a register, for example if it were inserted then extracted
    366 /// from the vector.
    367 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
    368   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
    369   VectorType *VTy = cast<VectorType>(V->getType());
    370   unsigned Width = VTy->getNumElements();
    371   if (EltNo >= Width)  // Out of range access.
    372     return UndefValue::get(VTy->getElementType());
    373 
    374   if (Constant *C = dyn_cast<Constant>(V))
    375     return C->getAggregateElement(EltNo);
    376 
    377   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
    378     // If this is an insert to a variable element, we don't know what it is.
    379     if (!isa<ConstantInt>(III->getOperand(2)))
    380       return nullptr;
    381     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
    382 
    383     // If this is an insert to the element we are looking for, return the
    384     // inserted value.
    385     if (EltNo == IIElt)
    386       return III->getOperand(1);
    387 
    388     // Otherwise, the insertelement doesn't modify the value, recurse on its
    389     // vector input.
    390     return findScalarElement(III->getOperand(0), EltNo);
    391   }
    392 
    393   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
    394     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
    395     int InEl = SVI->getMaskValue(EltNo);
    396     if (InEl < 0)
    397       return UndefValue::get(VTy->getElementType());
    398     if (InEl < (int)LHSWidth)
    399       return findScalarElement(SVI->getOperand(0), InEl);
    400     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
    401   }
    402 
    403   // Extract a value from a vector add operation with a constant zero.
    404   Value *Val = nullptr; Constant *Con = nullptr;
    405   if (match(V, m_Add(m_Value(Val), m_Constant(Con))))
    406     if (Constant *Elt = Con->getAggregateElement(EltNo))
    407       if (Elt->isNullValue())
    408         return findScalarElement(Val, EltNo);
    409 
    410   // Otherwise, we don't know.
    411   return nullptr;
    412 }
    413 
    414 /// \brief Get splat value if the input is a splat vector or return nullptr.
    415 /// This function is not fully general. It checks only 2 cases:
    416 /// the input value is (1) a splat constants vector or (2) a sequence
    417 /// of instructions that broadcast a single value into a vector.
    418 ///
    419 const llvm::Value *llvm::getSplatValue(const Value *V) {
    420 
    421   if (auto *C = dyn_cast<Constant>(V))
    422     if (isa<VectorType>(V->getType()))
    423       return C->getSplatValue();
    424 
    425   auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
    426   if (!ShuffleInst)
    427     return nullptr;
    428   // All-zero (or undef) shuffle mask elements.
    429   for (int MaskElt : ShuffleInst->getShuffleMask())
    430     if (MaskElt != 0 && MaskElt != -1)
    431       return nullptr;
    432   // The first shuffle source is 'insertelement' with index 0.
    433   auto *InsertEltInst =
    434     dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
    435   if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
    436       !cast<ConstantInt>(InsertEltInst->getOperand(2))->isNullValue())
    437     return nullptr;
    438 
    439   return InsertEltInst->getOperand(1);
    440 }
    441 
    442 MapVector<Instruction *, uint64_t>
    443 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
    444                                const TargetTransformInfo *TTI) {
    445 
    446   // DemandedBits will give us every value's live-out bits. But we want
    447   // to ensure no extra casts would need to be inserted, so every DAG
    448   // of connected values must have the same minimum bitwidth.
    449   EquivalenceClasses<Value *> ECs;
    450   SmallVector<Value *, 16> Worklist;
    451   SmallPtrSet<Value *, 4> Roots;
    452   SmallPtrSet<Value *, 16> Visited;
    453   DenseMap<Value *, uint64_t> DBits;
    454   SmallPtrSet<Instruction *, 4> InstructionSet;
    455   MapVector<Instruction *, uint64_t> MinBWs;
    456 
    457   // Determine the roots. We work bottom-up, from truncs or icmps.
    458   bool SeenExtFromIllegalType = false;
    459   for (auto *BB : Blocks)
    460     for (auto &I : *BB) {
    461       InstructionSet.insert(&I);
    462 
    463       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
    464           !TTI->isTypeLegal(I.getOperand(0)->getType()))
    465         SeenExtFromIllegalType = true;
    466 
    467       // Only deal with non-vector integers up to 64-bits wide.
    468       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
    469           !I.getType()->isVectorTy() &&
    470           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
    471         // Don't make work for ourselves. If we know the loaded type is legal,
    472         // don't add it to the worklist.
    473         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
    474           continue;
    475 
    476         Worklist.push_back(&I);
    477         Roots.insert(&I);
    478       }
    479     }
    480   // Early exit.
    481   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
    482     return MinBWs;
    483 
    484   // Now proceed breadth-first, unioning values together.
    485   while (!Worklist.empty()) {
    486     Value *Val = Worklist.pop_back_val();
    487     Value *Leader = ECs.getOrInsertLeaderValue(Val);
    488 
    489     if (Visited.count(Val))
    490       continue;
    491     Visited.insert(Val);
    492 
    493     // Non-instructions terminate a chain successfully.
    494     if (!isa<Instruction>(Val))
    495       continue;
    496     Instruction *I = cast<Instruction>(Val);
    497 
    498     // If we encounter a type that is larger than 64 bits, we can't represent
    499     // it so bail out.
    500     if (DB.getDemandedBits(I).getBitWidth() > 64)
    501       return MapVector<Instruction *, uint64_t>();
    502 
    503     uint64_t V = DB.getDemandedBits(I).getZExtValue();
    504     DBits[Leader] |= V;
    505 
    506     // Casts, loads and instructions outside of our range terminate a chain
    507     // successfully.
    508     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
    509         !InstructionSet.count(I))
    510       continue;
    511 
    512     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
    513     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
    514     // transform anything that relies on them.
    515     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
    516         !I->getType()->isIntegerTy()) {
    517       DBits[Leader] |= ~0ULL;
    518       continue;
    519     }
    520 
    521     // We don't modify the types of PHIs. Reductions will already have been
    522     // truncated if possible, and inductions' sizes will have been chosen by
    523     // indvars.
    524     if (isa<PHINode>(I))
    525       continue;
    526 
    527     if (DBits[Leader] == ~0ULL)
    528       // All bits demanded, no point continuing.
    529       continue;
    530 
    531     for (Value *O : cast<User>(I)->operands()) {
    532       ECs.unionSets(Leader, O);
    533       Worklist.push_back(O);
    534     }
    535   }
    536 
    537   // Now we've discovered all values, walk them to see if there are
    538   // any users we didn't see. If there are, we can't optimize that
    539   // chain.
    540   for (auto &I : DBits)
    541     for (auto *U : I.first->users())
    542       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
    543         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
    544 
    545   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
    546     uint64_t LeaderDemandedBits = 0;
    547     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
    548       LeaderDemandedBits |= DBits[*MI];
    549 
    550     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
    551                      llvm::countLeadingZeros(LeaderDemandedBits);
    552     // Round up to a power of 2
    553     if (!isPowerOf2_64((uint64_t)MinBW))
    554       MinBW = NextPowerOf2(MinBW);
    555     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
    556       if (!isa<Instruction>(*MI))
    557         continue;
    558       Type *Ty = (*MI)->getType();
    559       if (Roots.count(*MI))
    560         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
    561       if (MinBW < Ty->getScalarSizeInBits())
    562         MinBWs[cast<Instruction>(*MI)] = MinBW;
    563     }
    564   }
    565 
    566   return MinBWs;
    567 }
    568