Home | History | Annotate | Download | only in IR
      1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Instruction class for the IR library.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/IR/Instruction.h"
     15 #include "llvm/IR/CallSite.h"
     16 #include "llvm/IR/Constants.h"
     17 #include "llvm/IR/Instructions.h"
     18 #include "llvm/IR/Module.h"
     19 #include "llvm/IR/Operator.h"
     20 #include "llvm/IR/Type.h"
     21 using namespace llvm;
     22 
     23 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
     24                          Instruction *InsertBefore)
     25   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
     26 
     27   // If requested, insert this instruction into a basic block...
     28   if (InsertBefore) {
     29     BasicBlock *BB = InsertBefore->getParent();
     30     assert(BB && "Instruction to insert before is not in a basic block!");
     31     BB->getInstList().insert(InsertBefore->getIterator(), this);
     32   }
     33 }
     34 
     35 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
     36                          BasicBlock *InsertAtEnd)
     37   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
     38 
     39   // append this instruction into the basic block
     40   assert(InsertAtEnd && "Basic block to append to may not be NULL!");
     41   InsertAtEnd->getInstList().push_back(this);
     42 }
     43 
     44 
     45 // Out of line virtual method, so the vtable, etc has a home.
     46 Instruction::~Instruction() {
     47   assert(!Parent && "Instruction still linked in the program!");
     48   if (hasMetadataHashEntry())
     49     clearMetadataHashEntries();
     50 }
     51 
     52 
     53 void Instruction::setParent(BasicBlock *P) {
     54   Parent = P;
     55 }
     56 
     57 const Module *Instruction::getModule() const {
     58   return getParent()->getModule();
     59 }
     60 
     61 Module *Instruction::getModule() {
     62   return getParent()->getModule();
     63 }
     64 
     65 Function *Instruction::getFunction() { return getParent()->getParent(); }
     66 
     67 const Function *Instruction::getFunction() const {
     68   return getParent()->getParent();
     69 }
     70 
     71 void Instruction::removeFromParent() {
     72   getParent()->getInstList().remove(getIterator());
     73 }
     74 
     75 iplist<Instruction>::iterator Instruction::eraseFromParent() {
     76   return getParent()->getInstList().erase(getIterator());
     77 }
     78 
     79 /// insertBefore - Insert an unlinked instructions into a basic block
     80 /// immediately before the specified instruction.
     81 void Instruction::insertBefore(Instruction *InsertPos) {
     82   InsertPos->getParent()->getInstList().insert(InsertPos->getIterator(), this);
     83 }
     84 
     85 /// insertAfter - Insert an unlinked instructions into a basic block
     86 /// immediately after the specified instruction.
     87 void Instruction::insertAfter(Instruction *InsertPos) {
     88   InsertPos->getParent()->getInstList().insertAfter(InsertPos->getIterator(),
     89                                                     this);
     90 }
     91 
     92 /// moveBefore - Unlink this instruction from its current basic block and
     93 /// insert it into the basic block that MovePos lives in, right before
     94 /// MovePos.
     95 void Instruction::moveBefore(Instruction *MovePos) {
     96   MovePos->getParent()->getInstList().splice(
     97       MovePos->getIterator(), getParent()->getInstList(), getIterator());
     98 }
     99 
    100 /// Set or clear the unsafe-algebra flag on this instruction, which must be an
    101 /// operator which supports this flag. See LangRef.html for the meaning of this
    102 /// flag.
    103 void Instruction::setHasUnsafeAlgebra(bool B) {
    104   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
    105   cast<FPMathOperator>(this)->setHasUnsafeAlgebra(B);
    106 }
    107 
    108 /// Set or clear the NoNaNs flag on this instruction, which must be an operator
    109 /// which supports this flag. See LangRef.html for the meaning of this flag.
    110 void Instruction::setHasNoNaNs(bool B) {
    111   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
    112   cast<FPMathOperator>(this)->setHasNoNaNs(B);
    113 }
    114 
    115 /// Set or clear the no-infs flag on this instruction, which must be an operator
    116 /// which supports this flag. See LangRef.html for the meaning of this flag.
    117 void Instruction::setHasNoInfs(bool B) {
    118   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
    119   cast<FPMathOperator>(this)->setHasNoInfs(B);
    120 }
    121 
    122 /// Set or clear the no-signed-zeros flag on this instruction, which must be an
    123 /// operator which supports this flag. See LangRef.html for the meaning of this
    124 /// flag.
    125 void Instruction::setHasNoSignedZeros(bool B) {
    126   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
    127   cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
    128 }
    129 
    130 /// Set or clear the allow-reciprocal flag on this instruction, which must be an
    131 /// operator which supports this flag. See LangRef.html for the meaning of this
    132 /// flag.
    133 void Instruction::setHasAllowReciprocal(bool B) {
    134   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
    135   cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
    136 }
    137 
    138 /// Convenience function for setting all the fast-math flags on this
    139 /// instruction, which must be an operator which supports these flags. See
    140 /// LangRef.html for the meaning of these flats.
    141 void Instruction::setFastMathFlags(FastMathFlags FMF) {
    142   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
    143   cast<FPMathOperator>(this)->setFastMathFlags(FMF);
    144 }
    145 
    146 void Instruction::copyFastMathFlags(FastMathFlags FMF) {
    147   assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
    148   cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
    149 }
    150 
    151 /// Determine whether the unsafe-algebra flag is set.
    152 bool Instruction::hasUnsafeAlgebra() const {
    153   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
    154   return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
    155 }
    156 
    157 /// Determine whether the no-NaNs flag is set.
    158 bool Instruction::hasNoNaNs() const {
    159   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
    160   return cast<FPMathOperator>(this)->hasNoNaNs();
    161 }
    162 
    163 /// Determine whether the no-infs flag is set.
    164 bool Instruction::hasNoInfs() const {
    165   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
    166   return cast<FPMathOperator>(this)->hasNoInfs();
    167 }
    168 
    169 /// Determine whether the no-signed-zeros flag is set.
    170 bool Instruction::hasNoSignedZeros() const {
    171   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
    172   return cast<FPMathOperator>(this)->hasNoSignedZeros();
    173 }
    174 
    175 /// Determine whether the allow-reciprocal flag is set.
    176 bool Instruction::hasAllowReciprocal() const {
    177   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
    178   return cast<FPMathOperator>(this)->hasAllowReciprocal();
    179 }
    180 
    181 /// Convenience function for getting all the fast-math flags, which must be an
    182 /// operator which supports these flags. See LangRef.html for the meaning of
    183 /// these flags.
    184 FastMathFlags Instruction::getFastMathFlags() const {
    185   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
    186   return cast<FPMathOperator>(this)->getFastMathFlags();
    187 }
    188 
    189 /// Copy I's fast-math flags
    190 void Instruction::copyFastMathFlags(const Instruction *I) {
    191   copyFastMathFlags(I->getFastMathFlags());
    192 }
    193 
    194 
    195 const char *Instruction::getOpcodeName(unsigned OpCode) {
    196   switch (OpCode) {
    197   // Terminators
    198   case Ret:    return "ret";
    199   case Br:     return "br";
    200   case Switch: return "switch";
    201   case IndirectBr: return "indirectbr";
    202   case Invoke: return "invoke";
    203   case Resume: return "resume";
    204   case Unreachable: return "unreachable";
    205   case CleanupRet: return "cleanupret";
    206   case CatchRet: return "catchret";
    207   case CatchPad: return "catchpad";
    208   case CatchSwitch: return "catchswitch";
    209 
    210   // Standard binary operators...
    211   case Add: return "add";
    212   case FAdd: return "fadd";
    213   case Sub: return "sub";
    214   case FSub: return "fsub";
    215   case Mul: return "mul";
    216   case FMul: return "fmul";
    217   case UDiv: return "udiv";
    218   case SDiv: return "sdiv";
    219   case FDiv: return "fdiv";
    220   case URem: return "urem";
    221   case SRem: return "srem";
    222   case FRem: return "frem";
    223 
    224   // Logical operators...
    225   case And: return "and";
    226   case Or : return "or";
    227   case Xor: return "xor";
    228 
    229   // Memory instructions...
    230   case Alloca:        return "alloca";
    231   case Load:          return "load";
    232   case Store:         return "store";
    233   case AtomicCmpXchg: return "cmpxchg";
    234   case AtomicRMW:     return "atomicrmw";
    235   case Fence:         return "fence";
    236   case GetElementPtr: return "getelementptr";
    237 
    238   // Convert instructions...
    239   case Trunc:         return "trunc";
    240   case ZExt:          return "zext";
    241   case SExt:          return "sext";
    242   case FPTrunc:       return "fptrunc";
    243   case FPExt:         return "fpext";
    244   case FPToUI:        return "fptoui";
    245   case FPToSI:        return "fptosi";
    246   case UIToFP:        return "uitofp";
    247   case SIToFP:        return "sitofp";
    248   case IntToPtr:      return "inttoptr";
    249   case PtrToInt:      return "ptrtoint";
    250   case BitCast:       return "bitcast";
    251   case AddrSpaceCast: return "addrspacecast";
    252 
    253   // Other instructions...
    254   case ICmp:           return "icmp";
    255   case FCmp:           return "fcmp";
    256   case PHI:            return "phi";
    257   case Select:         return "select";
    258   case Call:           return "call";
    259   case Shl:            return "shl";
    260   case LShr:           return "lshr";
    261   case AShr:           return "ashr";
    262   case VAArg:          return "va_arg";
    263   case ExtractElement: return "extractelement";
    264   case InsertElement:  return "insertelement";
    265   case ShuffleVector:  return "shufflevector";
    266   case ExtractValue:   return "extractvalue";
    267   case InsertValue:    return "insertvalue";
    268   case LandingPad:     return "landingpad";
    269   case CleanupPad:     return "cleanuppad";
    270 
    271   default: return "<Invalid operator> ";
    272   }
    273 }
    274 
    275 /// Return true if both instructions have the same special state
    276 /// This must be kept in sync with lib/Transforms/IPO/MergeFunctions.cpp.
    277 static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2,
    278                                  bool IgnoreAlignment = false) {
    279   assert(I1->getOpcode() == I2->getOpcode() &&
    280          "Can not compare special state of different instructions");
    281 
    282   if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
    283     return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
    284            (LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() ||
    285             IgnoreAlignment) &&
    286            LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
    287            LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
    288   if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
    289     return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
    290            (SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() ||
    291             IgnoreAlignment) &&
    292            SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
    293            SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
    294   if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
    295     return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
    296   if (const CallInst *CI = dyn_cast<CallInst>(I1))
    297     return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
    298            CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
    299            CI->getAttributes() == cast<CallInst>(I2)->getAttributes() &&
    300            CI->hasIdenticalOperandBundleSchema(*cast<CallInst>(I2));
    301   if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
    302     return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
    303            CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes() &&
    304            CI->hasIdenticalOperandBundleSchema(*cast<InvokeInst>(I2));
    305   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
    306     return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
    307   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
    308     return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
    309   if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
    310     return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
    311            FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
    312   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
    313     return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
    314            CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
    315            CXI->getSuccessOrdering() ==
    316                cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
    317            CXI->getFailureOrdering() ==
    318                cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
    319            CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
    320   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
    321     return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
    322            RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
    323            RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
    324            RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
    325 
    326   return true;
    327 }
    328 
    329 /// isIdenticalTo - Return true if the specified instruction is exactly
    330 /// identical to the current one.  This means that all operands match and any
    331 /// extra information (e.g. load is volatile) agree.
    332 bool Instruction::isIdenticalTo(const Instruction *I) const {
    333   return isIdenticalToWhenDefined(I) &&
    334          SubclassOptionalData == I->SubclassOptionalData;
    335 }
    336 
    337 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
    338 /// ignores the SubclassOptionalData flags, which specify conditions
    339 /// under which the instruction's result is undefined.
    340 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
    341   if (getOpcode() != I->getOpcode() ||
    342       getNumOperands() != I->getNumOperands() ||
    343       getType() != I->getType())
    344     return false;
    345 
    346   // If both instructions have no operands, they are identical.
    347   if (getNumOperands() == 0 && I->getNumOperands() == 0)
    348     return haveSameSpecialState(this, I);
    349 
    350   // We have two instructions of identical opcode and #operands.  Check to see
    351   // if all operands are the same.
    352   if (!std::equal(op_begin(), op_end(), I->op_begin()))
    353     return false;
    354 
    355   if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
    356     const PHINode *otherPHI = cast<PHINode>(I);
    357     return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
    358                       otherPHI->block_begin());
    359   }
    360 
    361   return haveSameSpecialState(this, I);
    362 }
    363 
    364 // isSameOperationAs
    365 // This should be kept in sync with isEquivalentOperation in
    366 // lib/Transforms/IPO/MergeFunctions.cpp.
    367 bool Instruction::isSameOperationAs(const Instruction *I,
    368                                     unsigned flags) const {
    369   bool IgnoreAlignment = flags & CompareIgnoringAlignment;
    370   bool UseScalarTypes  = flags & CompareUsingScalarTypes;
    371 
    372   if (getOpcode() != I->getOpcode() ||
    373       getNumOperands() != I->getNumOperands() ||
    374       (UseScalarTypes ?
    375        getType()->getScalarType() != I->getType()->getScalarType() :
    376        getType() != I->getType()))
    377     return false;
    378 
    379   // We have two instructions of identical opcode and #operands.  Check to see
    380   // if all operands are the same type
    381   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    382     if (UseScalarTypes ?
    383         getOperand(i)->getType()->getScalarType() !=
    384           I->getOperand(i)->getType()->getScalarType() :
    385         getOperand(i)->getType() != I->getOperand(i)->getType())
    386       return false;
    387 
    388   return haveSameSpecialState(this, I, IgnoreAlignment);
    389 }
    390 
    391 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
    392 /// specified block.  Note that PHI nodes are considered to evaluate their
    393 /// operands in the corresponding predecessor block.
    394 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
    395   for (const Use &U : uses()) {
    396     // PHI nodes uses values in the corresponding predecessor block.  For other
    397     // instructions, just check to see whether the parent of the use matches up.
    398     const Instruction *I = cast<Instruction>(U.getUser());
    399     const PHINode *PN = dyn_cast<PHINode>(I);
    400     if (!PN) {
    401       if (I->getParent() != BB)
    402         return true;
    403       continue;
    404     }
    405 
    406     if (PN->getIncomingBlock(U) != BB)
    407       return true;
    408   }
    409   return false;
    410 }
    411 
    412 /// mayReadFromMemory - Return true if this instruction may read memory.
    413 ///
    414 bool Instruction::mayReadFromMemory() const {
    415   switch (getOpcode()) {
    416   default: return false;
    417   case Instruction::VAArg:
    418   case Instruction::Load:
    419   case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
    420   case Instruction::AtomicCmpXchg:
    421   case Instruction::AtomicRMW:
    422   case Instruction::CatchPad:
    423   case Instruction::CatchRet:
    424     return true;
    425   case Instruction::Call:
    426     return !cast<CallInst>(this)->doesNotAccessMemory();
    427   case Instruction::Invoke:
    428     return !cast<InvokeInst>(this)->doesNotAccessMemory();
    429   case Instruction::Store:
    430     return !cast<StoreInst>(this)->isUnordered();
    431   }
    432 }
    433 
    434 /// mayWriteToMemory - Return true if this instruction may modify memory.
    435 ///
    436 bool Instruction::mayWriteToMemory() const {
    437   switch (getOpcode()) {
    438   default: return false;
    439   case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
    440   case Instruction::Store:
    441   case Instruction::VAArg:
    442   case Instruction::AtomicCmpXchg:
    443   case Instruction::AtomicRMW:
    444   case Instruction::CatchPad:
    445   case Instruction::CatchRet:
    446     return true;
    447   case Instruction::Call:
    448     return !cast<CallInst>(this)->onlyReadsMemory();
    449   case Instruction::Invoke:
    450     return !cast<InvokeInst>(this)->onlyReadsMemory();
    451   case Instruction::Load:
    452     return !cast<LoadInst>(this)->isUnordered();
    453   }
    454 }
    455 
    456 bool Instruction::isAtomic() const {
    457   switch (getOpcode()) {
    458   default:
    459     return false;
    460   case Instruction::AtomicCmpXchg:
    461   case Instruction::AtomicRMW:
    462   case Instruction::Fence:
    463     return true;
    464   case Instruction::Load:
    465     return cast<LoadInst>(this)->getOrdering() != NotAtomic;
    466   case Instruction::Store:
    467     return cast<StoreInst>(this)->getOrdering() != NotAtomic;
    468   }
    469 }
    470 
    471 bool Instruction::mayThrow() const {
    472   if (const CallInst *CI = dyn_cast<CallInst>(this))
    473     return !CI->doesNotThrow();
    474   if (const auto *CRI = dyn_cast<CleanupReturnInst>(this))
    475     return CRI->unwindsToCaller();
    476   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(this))
    477     return CatchSwitch->unwindsToCaller();
    478   return isa<ResumeInst>(this);
    479 }
    480 
    481 bool Instruction::mayReturn() const {
    482   if (const CallInst *CI = dyn_cast<CallInst>(this))
    483     return !CI->doesNotReturn();
    484   return true;
    485 }
    486 
    487 /// isAssociative - Return true if the instruction is associative:
    488 ///
    489 ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
    490 ///
    491 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
    492 ///
    493 bool Instruction::isAssociative(unsigned Opcode) {
    494   return Opcode == And || Opcode == Or || Opcode == Xor ||
    495          Opcode == Add || Opcode == Mul;
    496 }
    497 
    498 bool Instruction::isAssociative() const {
    499   unsigned Opcode = getOpcode();
    500   if (isAssociative(Opcode))
    501     return true;
    502 
    503   switch (Opcode) {
    504   case FMul:
    505   case FAdd:
    506     return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
    507   default:
    508     return false;
    509   }
    510 }
    511 
    512 /// isCommutative - Return true if the instruction is commutative:
    513 ///
    514 ///   Commutative operators satisfy: (x op y) === (y op x)
    515 ///
    516 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
    517 /// applied to any type.
    518 ///
    519 bool Instruction::isCommutative(unsigned op) {
    520   switch (op) {
    521   case Add:
    522   case FAdd:
    523   case Mul:
    524   case FMul:
    525   case And:
    526   case Or:
    527   case Xor:
    528     return true;
    529   default:
    530     return false;
    531   }
    532 }
    533 
    534 /// isIdempotent - Return true if the instruction is idempotent:
    535 ///
    536 ///   Idempotent operators satisfy:  x op x === x
    537 ///
    538 /// In LLVM, the And and Or operators are idempotent.
    539 ///
    540 bool Instruction::isIdempotent(unsigned Opcode) {
    541   return Opcode == And || Opcode == Or;
    542 }
    543 
    544 /// isNilpotent - Return true if the instruction is nilpotent:
    545 ///
    546 ///   Nilpotent operators satisfy:  x op x === Id,
    547 ///
    548 ///   where Id is the identity for the operator, i.e. a constant such that
    549 ///     x op Id === x and Id op x === x for all x.
    550 ///
    551 /// In LLVM, the Xor operator is nilpotent.
    552 ///
    553 bool Instruction::isNilpotent(unsigned Opcode) {
    554   return Opcode == Xor;
    555 }
    556 
    557 Instruction *Instruction::cloneImpl() const {
    558   llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
    559 }
    560 
    561 Instruction *Instruction::clone() const {
    562   Instruction *New = nullptr;
    563   switch (getOpcode()) {
    564   default:
    565     llvm_unreachable("Unhandled Opcode.");
    566 #define HANDLE_INST(num, opc, clas)                                            \
    567   case Instruction::opc:                                                       \
    568     New = cast<clas>(this)->cloneImpl();                                       \
    569     break;
    570 #include "llvm/IR/Instruction.def"
    571 #undef HANDLE_INST
    572   }
    573 
    574   New->SubclassOptionalData = SubclassOptionalData;
    575   if (!hasMetadata())
    576     return New;
    577 
    578   // Otherwise, enumerate and copy over metadata from the old instruction to the
    579   // new one.
    580   SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
    581   getAllMetadataOtherThanDebugLoc(TheMDs);
    582   for (const auto &MD : TheMDs)
    583     New->setMetadata(MD.first, MD.second);
    584 
    585   New->setDebugLoc(getDebugLoc());
    586   return New;
    587 }
    588