1 #include "rs_core.rsh" 2 #include "rs_f16_util.h" 3 4 extern float2 __attribute__((overloadable)) convert_float2(int2 c); 5 extern float3 __attribute__((overloadable)) convert_float3(int3 c); 6 extern float4 __attribute__((overloadable)) convert_float4(int4 c); 7 8 extern int2 __attribute__((overloadable)) convert_int2(float2 c); 9 extern int3 __attribute__((overloadable)) convert_int3(float3 c); 10 extern int4 __attribute__((overloadable)) convert_int4(float4 c); 11 12 13 extern float __attribute__((overloadable)) fmin(float v, float v2); 14 extern float2 __attribute__((overloadable)) fmin(float2 v, float v2); 15 extern float3 __attribute__((overloadable)) fmin(float3 v, float v2); 16 extern float4 __attribute__((overloadable)) fmin(float4 v, float v2); 17 18 extern float __attribute__((overloadable)) fmax(float v, float v2); 19 extern float2 __attribute__((overloadable)) fmax(float2 v, float v2); 20 extern float3 __attribute__((overloadable)) fmax(float3 v, float v2); 21 extern float4 __attribute__((overloadable)) fmax(float4 v, float v2); 22 23 // Float ops, 6.11.2 24 25 #define FN_FUNC_FN(fnc) \ 26 extern float2 __attribute__((overloadable)) fnc(float2 v) { \ 27 float2 r; \ 28 r.x = fnc(v.x); \ 29 r.y = fnc(v.y); \ 30 return r; \ 31 } \ 32 extern float3 __attribute__((overloadable)) fnc(float3 v) { \ 33 float3 r; \ 34 r.x = fnc(v.x); \ 35 r.y = fnc(v.y); \ 36 r.z = fnc(v.z); \ 37 return r; \ 38 } \ 39 extern float4 __attribute__((overloadable)) fnc(float4 v) { \ 40 float4 r; \ 41 r.x = fnc(v.x); \ 42 r.y = fnc(v.y); \ 43 r.z = fnc(v.z); \ 44 r.w = fnc(v.w); \ 45 return r; \ 46 } 47 48 #define IN_FUNC_FN(fnc) \ 49 extern int2 __attribute__((overloadable)) fnc(float2 v) { \ 50 int2 r; \ 51 r.x = fnc(v.x); \ 52 r.y = fnc(v.y); \ 53 return r; \ 54 } \ 55 extern int3 __attribute__((overloadable)) fnc(float3 v) { \ 56 int3 r; \ 57 r.x = fnc(v.x); \ 58 r.y = fnc(v.y); \ 59 r.z = fnc(v.z); \ 60 return r; \ 61 } \ 62 extern int4 __attribute__((overloadable)) fnc(float4 v) { \ 63 int4 r; \ 64 r.x = fnc(v.x); \ 65 r.y = fnc(v.y); \ 66 r.z = fnc(v.z); \ 67 r.w = fnc(v.w); \ 68 return r; \ 69 } 70 71 #define FN_FUNC_FN_FN(fnc) \ 72 extern float2 __attribute__((overloadable)) fnc(float2 v1, float2 v2) { \ 73 float2 r; \ 74 r.x = fnc(v1.x, v2.x); \ 75 r.y = fnc(v1.y, v2.y); \ 76 return r; \ 77 } \ 78 extern float3 __attribute__((overloadable)) fnc(float3 v1, float3 v2) { \ 79 float3 r; \ 80 r.x = fnc(v1.x, v2.x); \ 81 r.y = fnc(v1.y, v2.y); \ 82 r.z = fnc(v1.z, v2.z); \ 83 return r; \ 84 } \ 85 extern float4 __attribute__((overloadable)) fnc(float4 v1, float4 v2) { \ 86 float4 r; \ 87 r.x = fnc(v1.x, v2.x); \ 88 r.y = fnc(v1.y, v2.y); \ 89 r.z = fnc(v1.z, v2.z); \ 90 r.w = fnc(v1.w, v2.w); \ 91 return r; \ 92 } 93 94 #define FN_FUNC_FN_F(fnc) \ 95 extern float2 __attribute__((overloadable)) fnc(float2 v1, float v2) { \ 96 float2 r; \ 97 r.x = fnc(v1.x, v2); \ 98 r.y = fnc(v1.y, v2); \ 99 return r; \ 100 } \ 101 extern float3 __attribute__((overloadable)) fnc(float3 v1, float v2) { \ 102 float3 r; \ 103 r.x = fnc(v1.x, v2); \ 104 r.y = fnc(v1.y, v2); \ 105 r.z = fnc(v1.z, v2); \ 106 return r; \ 107 } \ 108 extern float4 __attribute__((overloadable)) fnc(float4 v1, float v2) { \ 109 float4 r; \ 110 r.x = fnc(v1.x, v2); \ 111 r.y = fnc(v1.y, v2); \ 112 r.z = fnc(v1.z, v2); \ 113 r.w = fnc(v1.w, v2); \ 114 return r; \ 115 } 116 117 #define FN_FUNC_FN_IN(fnc) \ 118 extern float2 __attribute__((overloadable)) fnc(float2 v1, int2 v2) { \ 119 float2 r; \ 120 r.x = fnc(v1.x, v2.x); \ 121 r.y = fnc(v1.y, v2.y); \ 122 return r; \ 123 } \ 124 extern float3 __attribute__((overloadable)) fnc(float3 v1, int3 v2) { \ 125 float3 r; \ 126 r.x = fnc(v1.x, v2.x); \ 127 r.y = fnc(v1.y, v2.y); \ 128 r.z = fnc(v1.z, v2.z); \ 129 return r; \ 130 } \ 131 extern float4 __attribute__((overloadable)) fnc(float4 v1, int4 v2) { \ 132 float4 r; \ 133 r.x = fnc(v1.x, v2.x); \ 134 r.y = fnc(v1.y, v2.y); \ 135 r.z = fnc(v1.z, v2.z); \ 136 r.w = fnc(v1.w, v2.w); \ 137 return r; \ 138 } 139 140 #define FN_FUNC_FN_I(fnc) \ 141 extern float2 __attribute__((overloadable)) fnc(float2 v1, int v2) { \ 142 float2 r; \ 143 r.x = fnc(v1.x, v2); \ 144 r.y = fnc(v1.y, v2); \ 145 return r; \ 146 } \ 147 extern float3 __attribute__((overloadable)) fnc(float3 v1, int v2) { \ 148 float3 r; \ 149 r.x = fnc(v1.x, v2); \ 150 r.y = fnc(v1.y, v2); \ 151 r.z = fnc(v1.z, v2); \ 152 return r; \ 153 } \ 154 extern float4 __attribute__((overloadable)) fnc(float4 v1, int v2) { \ 155 float4 r; \ 156 r.x = fnc(v1.x, v2); \ 157 r.y = fnc(v1.y, v2); \ 158 r.z = fnc(v1.z, v2); \ 159 r.w = fnc(v1.w, v2); \ 160 return r; \ 161 } 162 163 #define FN_FUNC_FN_PFN(fnc) \ 164 extern float2 __attribute__((overloadable)) \ 165 fnc(float2 v1, float2 *v2) { \ 166 float2 r; \ 167 float t[2]; \ 168 r.x = fnc(v1.x, &t[0]); \ 169 r.y = fnc(v1.y, &t[1]); \ 170 v2->x = t[0]; \ 171 v2->y = t[1]; \ 172 return r; \ 173 } \ 174 extern float3 __attribute__((overloadable)) \ 175 fnc(float3 v1, float3 *v2) { \ 176 float3 r; \ 177 float t[3]; \ 178 r.x = fnc(v1.x, &t[0]); \ 179 r.y = fnc(v1.y, &t[1]); \ 180 r.z = fnc(v1.z, &t[2]); \ 181 v2->x = t[0]; \ 182 v2->y = t[1]; \ 183 v2->z = t[2]; \ 184 return r; \ 185 } \ 186 extern float4 __attribute__((overloadable)) \ 187 fnc(float4 v1, float4 *v2) { \ 188 float4 r; \ 189 float t[4]; \ 190 r.x = fnc(v1.x, &t[0]); \ 191 r.y = fnc(v1.y, &t[1]); \ 192 r.z = fnc(v1.z, &t[2]); \ 193 r.w = fnc(v1.w, &t[3]); \ 194 v2->x = t[0]; \ 195 v2->y = t[1]; \ 196 v2->z = t[2]; \ 197 v2->w = t[3]; \ 198 return r; \ 199 } 200 201 #define FN_FUNC_FN_PIN(fnc) \ 202 extern float2 __attribute__((overloadable)) fnc(float2 v1, int2 *v2) { \ 203 float2 r; \ 204 int t[2]; \ 205 r.x = fnc(v1.x, &t[0]); \ 206 r.y = fnc(v1.y, &t[1]); \ 207 v2->x = t[0]; \ 208 v2->y = t[1]; \ 209 return r; \ 210 } \ 211 extern float3 __attribute__((overloadable)) fnc(float3 v1, int3 *v2) { \ 212 float3 r; \ 213 int t[3]; \ 214 r.x = fnc(v1.x, &t[0]); \ 215 r.y = fnc(v1.y, &t[1]); \ 216 r.z = fnc(v1.z, &t[2]); \ 217 v2->x = t[0]; \ 218 v2->y = t[1]; \ 219 v2->z = t[2]; \ 220 return r; \ 221 } \ 222 extern float4 __attribute__((overloadable)) fnc(float4 v1, int4 *v2) { \ 223 float4 r; \ 224 int t[4]; \ 225 r.x = fnc(v1.x, &t[0]); \ 226 r.y = fnc(v1.y, &t[1]); \ 227 r.z = fnc(v1.z, &t[2]); \ 228 r.w = fnc(v1.w, &t[3]); \ 229 v2->x = t[0]; \ 230 v2->y = t[1]; \ 231 v2->z = t[2]; \ 232 v2->w = t[3]; \ 233 return r; \ 234 } 235 236 #define FN_FUNC_FN_FN_FN(fnc) \ 237 extern float2 __attribute__((overloadable)) \ 238 fnc(float2 v1, float2 v2, float2 v3) { \ 239 float2 r; \ 240 r.x = fnc(v1.x, v2.x, v3.x); \ 241 r.y = fnc(v1.y, v2.y, v3.y); \ 242 return r; \ 243 } \ 244 extern float3 __attribute__((overloadable)) \ 245 fnc(float3 v1, float3 v2, float3 v3) { \ 246 float3 r; \ 247 r.x = fnc(v1.x, v2.x, v3.x); \ 248 r.y = fnc(v1.y, v2.y, v3.y); \ 249 r.z = fnc(v1.z, v2.z, v3.z); \ 250 return r; \ 251 } \ 252 extern float4 __attribute__((overloadable)) \ 253 fnc(float4 v1, float4 v2, float4 v3) { \ 254 float4 r; \ 255 r.x = fnc(v1.x, v2.x, v3.x); \ 256 r.y = fnc(v1.y, v2.y, v3.y); \ 257 r.z = fnc(v1.z, v2.z, v3.z); \ 258 r.w = fnc(v1.w, v2.w, v3.w); \ 259 return r; \ 260 } 261 262 #define FN_FUNC_FN_FN_PIN(fnc) \ 263 extern float2 __attribute__((overloadable)) \ 264 fnc(float2 v1, float2 v2, int2 *v3) { \ 265 float2 r; \ 266 int t[2]; \ 267 r.x = fnc(v1.x, v2.x, &t[0]); \ 268 r.y = fnc(v1.y, v2.y, &t[1]); \ 269 v3->x = t[0]; \ 270 v3->y = t[1]; \ 271 return r; \ 272 } \ 273 extern float3 __attribute__((overloadable)) \ 274 fnc(float3 v1, float3 v2, int3 *v3) { \ 275 float3 r; \ 276 int t[3]; \ 277 r.x = fnc(v1.x, v2.x, &t[0]); \ 278 r.y = fnc(v1.y, v2.y, &t[1]); \ 279 r.z = fnc(v1.z, v2.z, &t[2]); \ 280 v3->x = t[0]; \ 281 v3->y = t[1]; \ 282 v3->z = t[2]; \ 283 return r; \ 284 } \ 285 extern float4 __attribute__((overloadable)) \ 286 fnc(float4 v1, float4 v2, int4 *v3) { \ 287 float4 r; \ 288 int t[4]; \ 289 r.x = fnc(v1.x, v2.x, &t[0]); \ 290 r.y = fnc(v1.y, v2.y, &t[1]); \ 291 r.z = fnc(v1.z, v2.z, &t[2]); \ 292 r.w = fnc(v1.w, v2.w, &t[3]); \ 293 v3->x = t[0]; \ 294 v3->y = t[1]; \ 295 v3->z = t[2]; \ 296 v3->w = t[3]; \ 297 return r; \ 298 } 299 300 static const int iposinf = 0x7f800000; 301 static const int ineginf = 0xff800000; 302 303 static const float posinf() { 304 float f = *((float*)&iposinf); 305 return f; 306 } 307 308 static const float neginf() { 309 float f = *((float*)&ineginf); 310 return f; 311 } 312 313 static bool isinf(float f) { 314 int i = *((int*)(void*)&f); 315 return (i == iposinf) || (i == ineginf); 316 } 317 318 static bool isnan(float f) { 319 int i = *((int*)(void*)&f); 320 return (((i & 0x7f800000) == 0x7f800000) && (i & 0x007fffff)); 321 } 322 323 static bool isposzero(float f) { 324 int i = *((int*)(void*)&f); 325 return (i == 0x00000000); 326 } 327 328 static bool isnegzero(float f) { 329 int i = *((int*)(void*)&f); 330 return (i == 0x80000000); 331 } 332 333 static bool iszero(float f) { 334 return isposzero(f) || isnegzero(f); 335 } 336 337 338 extern float __attribute__((overloadable)) SC_acosf(float); 339 float __attribute__((overloadable)) acos(float v) { 340 return SC_acosf(v); 341 } 342 FN_FUNC_FN(acos) 343 344 extern float __attribute__((overloadable)) SC_acoshf(float); 345 float __attribute__((overloadable)) acosh(float v) { 346 return SC_acoshf(v); 347 } 348 FN_FUNC_FN(acosh) 349 350 351 extern float __attribute__((overloadable)) acospi(float v) { 352 return acos(v) / M_PI; 353 } 354 FN_FUNC_FN(acospi) 355 356 extern float __attribute__((overloadable)) SC_asinf(float); 357 float __attribute__((overloadable)) asin(float v) { 358 return SC_asinf(v); 359 } 360 FN_FUNC_FN(asin) 361 362 extern float __attribute__((overloadable)) SC_asinhf(float); 363 float __attribute__((overloadable)) asinh(float v) { 364 return SC_asinhf(v); 365 } 366 FN_FUNC_FN(asinh) 367 368 extern float __attribute__((overloadable)) asinpi(float v) { 369 return asin(v) / M_PI; 370 } 371 FN_FUNC_FN(asinpi) 372 373 extern float __attribute__((overloadable)) SC_atanf(float); 374 float __attribute__((overloadable)) atan(float v) { 375 return SC_atanf(v); 376 } 377 FN_FUNC_FN(atan) 378 379 extern float __attribute__((overloadable)) SC_atan2f(float, float); 380 float __attribute__((overloadable)) atan2(float v1, float v2) { 381 return SC_atan2f(v1, v2); 382 } 383 FN_FUNC_FN_FN(atan2) 384 385 extern float __attribute__((overloadable)) SC_atanhf(float); 386 float __attribute__((overloadable)) atanh(float v) { 387 return SC_atanhf(v); 388 } 389 FN_FUNC_FN(atanh) 390 391 extern float __attribute__((overloadable)) atanpi(float v) { 392 return atan(v) / M_PI; 393 } 394 FN_FUNC_FN(atanpi) 395 396 397 extern float __attribute__((overloadable)) atan2pi(float y, float x) { 398 return atan2(y, x) / M_PI; 399 } 400 FN_FUNC_FN_FN(atan2pi) 401 402 extern float __attribute__((overloadable)) SC_cbrtf(float); 403 float __attribute__((overloadable)) cbrt(float v) { 404 return SC_cbrtf(v); 405 } 406 FN_FUNC_FN(cbrt) 407 408 extern float __attribute__((overloadable)) SC_ceilf(float); 409 float __attribute__((overloadable)) ceil(float v) { 410 return SC_ceilf(v); 411 } 412 FN_FUNC_FN(ceil) 413 414 extern float __attribute__((overloadable)) SC_copysignf(float, float); 415 float __attribute__((overloadable)) copysign(float v1, float v2) { 416 return SC_copysignf(v1, v2); 417 } 418 FN_FUNC_FN_FN(copysign) 419 420 extern float __attribute__((overloadable)) SC_cosf(float); 421 float __attribute__((overloadable)) cos(float v) { 422 return SC_cosf(v); 423 } 424 FN_FUNC_FN(cos) 425 426 extern float __attribute__((overloadable)) SC_coshf(float); 427 float __attribute__((overloadable)) cosh(float v) { 428 return SC_coshf(v); 429 } 430 FN_FUNC_FN(cosh) 431 432 extern float __attribute__((overloadable)) cospi(float v) { 433 return cos(v * M_PI); 434 } 435 FN_FUNC_FN(cospi) 436 437 extern float __attribute__((overloadable)) SC_erfcf(float); 438 float __attribute__((overloadable)) erfc(float v) { 439 return SC_erfcf(v); 440 } 441 FN_FUNC_FN(erfc) 442 443 extern float __attribute__((overloadable)) SC_erff(float); 444 float __attribute__((overloadable)) erf(float v) { 445 return SC_erff(v); 446 } 447 FN_FUNC_FN(erf) 448 449 extern float __attribute__((overloadable)) SC_expf(float); 450 float __attribute__((overloadable)) exp(float v) { 451 return SC_expf(v); 452 } 453 FN_FUNC_FN(exp) 454 455 extern float __attribute__((overloadable)) SC_exp2f(float); 456 float __attribute__((overloadable)) exp2(float v) { 457 return SC_exp2f(v); 458 } 459 FN_FUNC_FN(exp2) 460 461 extern float __attribute__((overloadable)) pow(float, float); 462 463 extern float __attribute__((overloadable)) exp10(float v) { 464 return exp2(v * 3.321928095f); 465 } 466 FN_FUNC_FN(exp10) 467 468 extern float __attribute__((overloadable)) SC_expm1f(float); 469 float __attribute__((overloadable)) expm1(float v) { 470 return SC_expm1f(v); 471 } 472 FN_FUNC_FN(expm1) 473 474 extern float __attribute__((overloadable)) fabs(float v) { 475 int i = *((int*)(void*)&v) & 0x7fffffff; 476 return *((float*)(void*)&i); 477 } 478 FN_FUNC_FN(fabs) 479 480 extern float __attribute__((overloadable)) SC_fdimf(float, float); 481 float __attribute__((overloadable)) fdim(float v1, float v2) { 482 return SC_fdimf(v1, v2); 483 } 484 FN_FUNC_FN_FN(fdim) 485 486 extern float __attribute__((overloadable)) SC_floorf(float); 487 float __attribute__((overloadable)) floor(float v) { 488 return SC_floorf(v); 489 } 490 FN_FUNC_FN(floor) 491 492 extern float __attribute__((overloadable)) SC_fmaf(float, float, float); 493 float __attribute__((overloadable)) fma(float v1, float v2, float v3) { 494 return SC_fmaf(v1, v2, v3); 495 } 496 FN_FUNC_FN_FN_FN(fma) 497 498 extern float __attribute__((overloadable)) SC_fminf(float, float); 499 500 extern float __attribute__((overloadable)) SC_fmodf(float, float); 501 float __attribute__((overloadable)) fmod(float v1, float v2) { 502 return SC_fmodf(v1, v2); 503 } 504 FN_FUNC_FN_FN(fmod) 505 506 extern float __attribute__((overloadable)) fract(float v, float *iptr) { 507 int i = (int)floor(v); 508 if (iptr) { 509 iptr[0] = i; 510 } 511 return fmin(v - i, 0x1.fffffep-1f); 512 } 513 FN_FUNC_FN_PFN(fract) 514 515 extern float __attribute__((const, overloadable)) fract(float v) { 516 float unused; 517 return fract(v, &unused); 518 } 519 FN_FUNC_FN(fract) 520 521 extern float __attribute__((overloadable)) SC_frexpf(float, int *); 522 float __attribute__((overloadable)) frexp(float v1, int* v2) { 523 return SC_frexpf(v1, v2); 524 } 525 FN_FUNC_FN_PIN(frexp) 526 527 extern float __attribute__((overloadable)) SC_hypotf(float, float); 528 float __attribute__((overloadable)) hypot(float v1, float v2) { 529 return SC_hypotf(v1, v2); 530 } 531 FN_FUNC_FN_FN(hypot) 532 533 extern int __attribute__((overloadable)) SC_ilogbf(float); 534 int __attribute__((overloadable)) ilogb(float v) { 535 return SC_ilogbf(v); 536 } 537 IN_FUNC_FN(ilogb) 538 539 extern float __attribute__((overloadable)) SC_ldexpf(float, int); 540 float __attribute__((overloadable)) ldexp(float v1, int v2) { 541 return SC_ldexpf(v1, v2); 542 } 543 FN_FUNC_FN_IN(ldexp) 544 FN_FUNC_FN_I(ldexp) 545 546 extern float __attribute__((overloadable)) SC_lgammaf(float); 547 float __attribute__((overloadable)) lgamma(float v) { 548 return SC_lgammaf(v); 549 } 550 FN_FUNC_FN(lgamma) 551 extern float __attribute__((overloadable)) SC_lgammaf_r(float, int*); 552 float __attribute__((overloadable)) lgamma(float v, int* ptr) { 553 return SC_lgammaf_r(v, ptr); 554 } 555 FN_FUNC_FN_PIN(lgamma) 556 557 extern float __attribute__((overloadable)) SC_logf(float); 558 float __attribute__((overloadable)) log(float v) { 559 return SC_logf(v); 560 } 561 FN_FUNC_FN(log) 562 563 extern float __attribute__((overloadable)) SC_log10f(float); 564 float __attribute__((overloadable)) log10(float v) { 565 return SC_log10f(v); 566 } 567 FN_FUNC_FN(log10) 568 569 570 extern float __attribute__((overloadable)) log2(float v) { 571 return log10(v) * 3.321928095f; 572 } 573 FN_FUNC_FN(log2) 574 575 extern float __attribute__((overloadable)) SC_log1pf(float); 576 float __attribute__((overloadable)) log1p(float v) { 577 return SC_log1pf(v); 578 } 579 FN_FUNC_FN(log1p) 580 581 extern float __attribute__((overloadable)) SC_logbf(float); 582 float __attribute__((overloadable)) logb(float v) { 583 return SC_logbf(v); 584 } 585 FN_FUNC_FN(logb) 586 587 extern float __attribute__((overloadable)) mad(float a, float b, float c) { 588 return a * b + c; 589 } 590 extern float2 __attribute__((overloadable)) mad(float2 a, float2 b, float2 c) { 591 return a * b + c; 592 } 593 extern float3 __attribute__((overloadable)) mad(float3 a, float3 b, float3 c) { 594 return a * b + c; 595 } 596 extern float4 __attribute__((overloadable)) mad(float4 a, float4 b, float4 c) { 597 return a * b + c; 598 } 599 600 extern float __attribute__((overloadable)) SC_modff(float, float *); 601 float __attribute__((overloadable)) modf(float v1, float *v2) { 602 return SC_modff(v1, v2); 603 } 604 FN_FUNC_FN_PFN(modf); 605 606 extern float __attribute__((overloadable)) nan(uint v) { 607 float f[1]; 608 uint32_t *ip = (uint32_t *)f; 609 *ip = v | 0x7fc00000; 610 return f[0]; 611 } 612 613 extern float __attribute__((overloadable)) SC_nextafterf(float, float); 614 float __attribute__((overloadable)) nextafter(float v1, float v2) { 615 return SC_nextafterf(v1, v2); 616 } 617 FN_FUNC_FN_FN(nextafter) 618 619 // This function must be defined here if we're compiling with debug info 620 // (libclcore_g.bc), because we need a C source to get debug information. 621 // Otherwise the implementation can be found in IR. 622 #if defined(RS_G_RUNTIME) 623 extern float __attribute__((overloadable)) SC_powf(float, float); 624 float __attribute__((overloadable)) pow(float v1, float v2) { 625 return SC_powf(v1, v2); 626 } 627 #endif // defined(RS_G_RUNTIME) 628 FN_FUNC_FN_FN(pow) 629 630 extern float __attribute__((overloadable)) pown(float v, int p) { 631 /* The mantissa of a float has fewer bits than an int (24 effective vs. 31). 632 * For very large ints, we'll lose whether the exponent is even or odd, making 633 * the selection of a correct sign incorrect. We correct this. Use copysign 634 * to handle the negative zero case. 635 */ 636 float sign = (p & 0x1) ? copysign(1.f, v) : 1.f; 637 float f = pow(v, (float)p); 638 return copysign(f, sign); 639 } 640 FN_FUNC_FN_IN(pown) 641 642 extern float __attribute__((overloadable)) powr(float v, float p) { 643 return pow(v, p); 644 } 645 extern float2 __attribute__((overloadable)) powr(float2 v, float2 p) { 646 return pow(v, p); 647 } 648 extern float3 __attribute__((overloadable)) powr(float3 v, float3 p) { 649 return pow(v, p); 650 } 651 extern float4 __attribute__((overloadable)) powr(float4 v, float4 p) { 652 return pow(v, p); 653 } 654 655 extern float __attribute__((overloadable)) SC_remainderf(float, float); 656 float __attribute__((overloadable)) remainder(float v1, float v2) { 657 return SC_remainderf(v1, v2); 658 } 659 FN_FUNC_FN_FN(remainder) 660 661 extern float __attribute__((overloadable)) SC_remquof(float, float, int *); 662 float __attribute__((overloadable)) remquo(float v1, float v2, int *v3) { 663 return SC_remquof(v1, v2, v3); 664 } 665 FN_FUNC_FN_FN_PIN(remquo) 666 667 extern float __attribute__((overloadable)) SC_rintf(float); 668 float __attribute__((overloadable)) rint(float v) { 669 return SC_rintf(v); 670 } 671 FN_FUNC_FN(rint) 672 673 extern float __attribute__((overloadable)) rootn(float v, int r) { 674 if (r == 0) { 675 return posinf(); 676 } 677 678 if (iszero(v)) { 679 if (r < 0) { 680 if (r & 1) { 681 return copysign(posinf(), v); 682 } else { 683 return posinf(); 684 } 685 } else { 686 if (r & 1) { 687 return copysign(0.f, v); 688 } else { 689 return 0.f; 690 } 691 } 692 } 693 694 if (!isinf(v) && !isnan(v) && (v < 0.f)) { 695 if (r & 1) { 696 return (-1.f * pow(-1.f * v, 1.f / r)); 697 } else { 698 return nan(0); 699 } 700 } 701 702 return pow(v, 1.f / r); 703 } 704 FN_FUNC_FN_IN(rootn); 705 706 extern float __attribute__((overloadable)) SC_roundf(float); 707 float __attribute__((overloadable)) round(float v) { 708 return SC_roundf(v); 709 } 710 FN_FUNC_FN(round) 711 712 extern float __attribute__((overloadable)) SC_randf2(float, float); 713 float __attribute__((overloadable)) rsRand(float min, float max) { 714 return SC_randf2(min, max); 715 } 716 717 718 extern float __attribute__((overloadable)) rsqrt(float v) { 719 return 1.f / sqrt(v); 720 } 721 722 #if !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME) 723 // These functions must be defined here if we are not using the SSE 724 // implementation, which includes when we are built as part of the 725 // debug runtime (libclcore_debug.bc) or compiling with debug info. 726 #if defined(RS_G_RUNTIME) 727 extern float __attribute__((overloadable)) SC_sqrtf(float); 728 float __attribute__((overloadable)) sqrt(float v) { 729 return SC_sqrtf(v); 730 } 731 #endif // defined(RS_G_RUNTIME) 732 733 FN_FUNC_FN(sqrt) 734 #else 735 extern float2 __attribute__((overloadable)) sqrt(float2); 736 extern float3 __attribute__((overloadable)) sqrt(float3); 737 extern float4 __attribute__((overloadable)) sqrt(float4); 738 #endif // !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME) 739 740 FN_FUNC_FN(rsqrt) 741 742 extern float __attribute__((overloadable)) SC_sinf(float); 743 float __attribute__((overloadable)) sin(float v) { 744 return SC_sinf(v); 745 } 746 FN_FUNC_FN(sin) 747 748 extern float __attribute__((overloadable)) sincos(float v, float *cosptr) { 749 *cosptr = cos(v); 750 return sin(v); 751 } 752 extern float2 __attribute__((overloadable)) sincos(float2 v, float2 *cosptr) { 753 *cosptr = cos(v); 754 return sin(v); 755 } 756 extern float3 __attribute__((overloadable)) sincos(float3 v, float3 *cosptr) { 757 *cosptr = cos(v); 758 return sin(v); 759 } 760 extern float4 __attribute__((overloadable)) sincos(float4 v, float4 *cosptr) { 761 *cosptr = cos(v); 762 return sin(v); 763 } 764 765 extern float __attribute__((overloadable)) SC_sinhf(float); 766 float __attribute__((overloadable)) sinh(float v) { 767 return SC_sinhf(v); 768 } 769 FN_FUNC_FN(sinh) 770 771 extern float __attribute__((overloadable)) sinpi(float v) { 772 return sin(v * M_PI); 773 } 774 FN_FUNC_FN(sinpi) 775 776 extern float __attribute__((overloadable)) SC_tanf(float); 777 float __attribute__((overloadable)) tan(float v) { 778 return SC_tanf(v); 779 } 780 FN_FUNC_FN(tan) 781 782 extern float __attribute__((overloadable)) SC_tanhf(float); 783 float __attribute__((overloadable)) tanh(float v) { 784 return SC_tanhf(v); 785 } 786 FN_FUNC_FN(tanh) 787 788 extern float __attribute__((overloadable)) tanpi(float v) { 789 return tan(v * M_PI); 790 } 791 FN_FUNC_FN(tanpi) 792 793 794 extern float __attribute__((overloadable)) SC_tgammaf(float); 795 float __attribute__((overloadable)) tgamma(float v) { 796 return SC_tgammaf(v); 797 } 798 FN_FUNC_FN(tgamma) 799 800 extern float __attribute__((overloadable)) SC_truncf(float); 801 float __attribute__((overloadable)) trunc(float v) { 802 return SC_truncf(v); 803 } 804 FN_FUNC_FN(trunc) 805 806 // Int ops (partial), 6.11.3 807 808 #define XN_FUNC_YN(typeout, fnc, typein) \ 809 extern typeout __attribute__((overloadable)) fnc(typein); \ 810 extern typeout##2 __attribute__((overloadable)) fnc(typein##2 v) { \ 811 typeout##2 r; \ 812 r.x = fnc(v.x); \ 813 r.y = fnc(v.y); \ 814 return r; \ 815 } \ 816 extern typeout##3 __attribute__((overloadable)) fnc(typein##3 v) { \ 817 typeout##3 r; \ 818 r.x = fnc(v.x); \ 819 r.y = fnc(v.y); \ 820 r.z = fnc(v.z); \ 821 return r; \ 822 } \ 823 extern typeout##4 __attribute__((overloadable)) fnc(typein##4 v) { \ 824 typeout##4 r; \ 825 r.x = fnc(v.x); \ 826 r.y = fnc(v.y); \ 827 r.z = fnc(v.z); \ 828 r.w = fnc(v.w); \ 829 return r; \ 830 } 831 832 833 #define UIN_FUNC_IN(fnc) \ 834 XN_FUNC_YN(uchar, fnc, char) \ 835 XN_FUNC_YN(ushort, fnc, short) \ 836 XN_FUNC_YN(uint, fnc, int) 837 838 #define IN_FUNC_IN(fnc) \ 839 XN_FUNC_YN(uchar, fnc, uchar) \ 840 XN_FUNC_YN(char, fnc, char) \ 841 XN_FUNC_YN(ushort, fnc, ushort) \ 842 XN_FUNC_YN(short, fnc, short) \ 843 XN_FUNC_YN(uint, fnc, uint) \ 844 XN_FUNC_YN(int, fnc, int) 845 846 847 #define XN_FUNC_XN_XN_BODY(type, fnc, body) \ 848 extern type __attribute__((overloadable)) \ 849 fnc(type v1, type v2) { \ 850 return body; \ 851 } \ 852 extern type##2 __attribute__((overloadable)) \ 853 fnc(type##2 v1, type##2 v2) { \ 854 type##2 r; \ 855 r.x = fnc(v1.x, v2.x); \ 856 r.y = fnc(v1.y, v2.y); \ 857 return r; \ 858 } \ 859 extern type##3 __attribute__((overloadable)) \ 860 fnc(type##3 v1, type##3 v2) { \ 861 type##3 r; \ 862 r.x = fnc(v1.x, v2.x); \ 863 r.y = fnc(v1.y, v2.y); \ 864 r.z = fnc(v1.z, v2.z); \ 865 return r; \ 866 } \ 867 extern type##4 __attribute__((overloadable)) \ 868 fnc(type##4 v1, type##4 v2) { \ 869 type##4 r; \ 870 r.x = fnc(v1.x, v2.x); \ 871 r.y = fnc(v1.y, v2.y); \ 872 r.z = fnc(v1.z, v2.z); \ 873 r.w = fnc(v1.w, v2.w); \ 874 return r; \ 875 } 876 877 #define IN_FUNC_IN_IN_BODY(fnc, body) \ 878 XN_FUNC_XN_XN_BODY(uchar, fnc, body) \ 879 XN_FUNC_XN_XN_BODY(char, fnc, body) \ 880 XN_FUNC_XN_XN_BODY(ushort, fnc, body) \ 881 XN_FUNC_XN_XN_BODY(short, fnc, body) \ 882 XN_FUNC_XN_XN_BODY(uint, fnc, body) \ 883 XN_FUNC_XN_XN_BODY(int, fnc, body) \ 884 XN_FUNC_XN_XN_BODY(float, fnc, body) 885 886 887 /** 888 * abs 889 */ 890 extern uint32_t __attribute__((overloadable)) abs(int32_t v) { 891 if (v < 0) 892 return -v; 893 return v; 894 } 895 extern uint16_t __attribute__((overloadable)) abs(int16_t v) { 896 if (v < 0) 897 return -v; 898 return v; 899 } 900 extern uint8_t __attribute__((overloadable)) abs(int8_t v) { 901 if (v < 0) 902 return -v; 903 return v; 904 } 905 906 /** 907 * clz 908 * __builtin_clz only accepts a 32-bit unsigned int, so every input will be 909 * expanded to 32 bits. For our smaller data types, we need to subtract off 910 * these unused top bits (that will be always be composed of zeros). 911 */ 912 extern uint32_t __attribute__((overloadable)) clz(uint32_t v) { 913 return __builtin_clz(v); 914 } 915 extern uint16_t __attribute__((overloadable)) clz(uint16_t v) { 916 return __builtin_clz(v) - 16; 917 } 918 extern uint8_t __attribute__((overloadable)) clz(uint8_t v) { 919 return __builtin_clz(v) - 24; 920 } 921 extern int32_t __attribute__((overloadable)) clz(int32_t v) { 922 return __builtin_clz(v); 923 } 924 extern int16_t __attribute__((overloadable)) clz(int16_t v) { 925 return __builtin_clz(((uint32_t)v) & 0x0000ffff) - 16; 926 } 927 extern int8_t __attribute__((overloadable)) clz(int8_t v) { 928 return __builtin_clz(((uint32_t)v) & 0x000000ff) - 24; 929 } 930 931 932 UIN_FUNC_IN(abs) 933 IN_FUNC_IN(clz) 934 935 936 // 6.11.4 937 938 939 extern float __attribute__((overloadable)) degrees(float radians) { 940 return radians * (180.f / M_PI); 941 } 942 extern float2 __attribute__((overloadable)) degrees(float2 radians) { 943 return radians * (180.f / M_PI); 944 } 945 extern float3 __attribute__((overloadable)) degrees(float3 radians) { 946 return radians * (180.f / M_PI); 947 } 948 extern float4 __attribute__((overloadable)) degrees(float4 radians) { 949 return radians * (180.f / M_PI); 950 } 951 952 extern float __attribute__((overloadable)) mix(float start, float stop, float amount) { 953 return start + (stop - start) * amount; 954 } 955 extern float2 __attribute__((overloadable)) mix(float2 start, float2 stop, float2 amount) { 956 return start + (stop - start) * amount; 957 } 958 extern float3 __attribute__((overloadable)) mix(float3 start, float3 stop, float3 amount) { 959 return start + (stop - start) * amount; 960 } 961 extern float4 __attribute__((overloadable)) mix(float4 start, float4 stop, float4 amount) { 962 return start + (stop - start) * amount; 963 } 964 extern float2 __attribute__((overloadable)) mix(float2 start, float2 stop, float amount) { 965 return start + (stop - start) * amount; 966 } 967 extern float3 __attribute__((overloadable)) mix(float3 start, float3 stop, float amount) { 968 return start + (stop - start) * amount; 969 } 970 extern float4 __attribute__((overloadable)) mix(float4 start, float4 stop, float amount) { 971 return start + (stop - start) * amount; 972 } 973 974 extern float __attribute__((overloadable)) radians(float degrees) { 975 return degrees * (M_PI / 180.f); 976 } 977 extern float2 __attribute__((overloadable)) radians(float2 degrees) { 978 return degrees * (M_PI / 180.f); 979 } 980 extern float3 __attribute__((overloadable)) radians(float3 degrees) { 981 return degrees * (M_PI / 180.f); 982 } 983 extern float4 __attribute__((overloadable)) radians(float4 degrees) { 984 return degrees * (M_PI / 180.f); 985 } 986 987 extern float __attribute__((overloadable)) step(float edge, float v) { 988 return (v < edge) ? 0.f : 1.f; 989 } 990 extern float2 __attribute__((overloadable)) step(float2 edge, float2 v) { 991 float2 r; 992 r.x = (v.x < edge.x) ? 0.f : 1.f; 993 r.y = (v.y < edge.y) ? 0.f : 1.f; 994 return r; 995 } 996 extern float3 __attribute__((overloadable)) step(float3 edge, float3 v) { 997 float3 r; 998 r.x = (v.x < edge.x) ? 0.f : 1.f; 999 r.y = (v.y < edge.y) ? 0.f : 1.f; 1000 r.z = (v.z < edge.z) ? 0.f : 1.f; 1001 return r; 1002 } 1003 extern float4 __attribute__((overloadable)) step(float4 edge, float4 v) { 1004 float4 r; 1005 r.x = (v.x < edge.x) ? 0.f : 1.f; 1006 r.y = (v.y < edge.y) ? 0.f : 1.f; 1007 r.z = (v.z < edge.z) ? 0.f : 1.f; 1008 r.w = (v.w < edge.w) ? 0.f : 1.f; 1009 return r; 1010 } 1011 extern float2 __attribute__((overloadable)) step(float2 edge, float v) { 1012 float2 r; 1013 r.x = (v < edge.x) ? 0.f : 1.f; 1014 r.y = (v < edge.y) ? 0.f : 1.f; 1015 return r; 1016 } 1017 extern float3 __attribute__((overloadable)) step(float3 edge, float v) { 1018 float3 r; 1019 r.x = (v < edge.x) ? 0.f : 1.f; 1020 r.y = (v < edge.y) ? 0.f : 1.f; 1021 r.z = (v < edge.z) ? 0.f : 1.f; 1022 return r; 1023 } 1024 extern float4 __attribute__((overloadable)) step(float4 edge, float v) { 1025 float4 r; 1026 r.x = (v < edge.x) ? 0.f : 1.f; 1027 r.y = (v < edge.y) ? 0.f : 1.f; 1028 r.z = (v < edge.z) ? 0.f : 1.f; 1029 r.w = (v < edge.w) ? 0.f : 1.f; 1030 return r; 1031 } 1032 extern float2 __attribute__((overloadable)) step(float edge, float2 v) { 1033 float2 r; 1034 r.x = (v.x < edge) ? 0.f : 1.f; 1035 r.y = (v.y < edge) ? 0.f : 1.f; 1036 return r; 1037 } 1038 extern float3 __attribute__((overloadable)) step(float edge, float3 v) { 1039 float3 r; 1040 r.x = (v.x < edge) ? 0.f : 1.f; 1041 r.y = (v.y < edge) ? 0.f : 1.f; 1042 r.z = (v.z < edge) ? 0.f : 1.f; 1043 return r; 1044 } 1045 extern float4 __attribute__((overloadable)) step(float edge, float4 v) { 1046 float4 r; 1047 r.x = (v.x < edge) ? 0.f : 1.f; 1048 r.y = (v.y < edge) ? 0.f : 1.f; 1049 r.z = (v.z < edge) ? 0.f : 1.f; 1050 r.w = (v.w < edge) ? 0.f : 1.f; 1051 return r; 1052 } 1053 1054 extern float __attribute__((overloadable)) sign(float v) { 1055 if (v > 0) return 1.f; 1056 if (v < 0) return -1.f; 1057 return v; 1058 } 1059 FN_FUNC_FN(sign) 1060 1061 1062 // 6.11.5 1063 extern float3 __attribute__((overloadable)) cross(float3 lhs, float3 rhs) { 1064 float3 r; 1065 r.x = lhs.y * rhs.z - lhs.z * rhs.y; 1066 r.y = lhs.z * rhs.x - lhs.x * rhs.z; 1067 r.z = lhs.x * rhs.y - lhs.y * rhs.x; 1068 return r; 1069 } 1070 1071 extern float4 __attribute__((overloadable)) cross(float4 lhs, float4 rhs) { 1072 float4 r; 1073 r.x = lhs.y * rhs.z - lhs.z * rhs.y; 1074 r.y = lhs.z * rhs.x - lhs.x * rhs.z; 1075 r.z = lhs.x * rhs.y - lhs.y * rhs.x; 1076 r.w = 0.f; 1077 return r; 1078 } 1079 1080 #if !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME) 1081 // These functions must be defined here if we are not using the SSE 1082 // implementation, which includes when we are built as part of the 1083 // debug runtime (libclcore_debug.bc) or compiling with debug info. 1084 1085 extern float __attribute__((overloadable)) dot(float lhs, float rhs) { 1086 return lhs * rhs; 1087 } 1088 extern float __attribute__((overloadable)) dot(float2 lhs, float2 rhs) { 1089 return lhs.x*rhs.x + lhs.y*rhs.y; 1090 } 1091 extern float __attribute__((overloadable)) dot(float3 lhs, float3 rhs) { 1092 return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z; 1093 } 1094 extern float __attribute__((overloadable)) dot(float4 lhs, float4 rhs) { 1095 return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z + lhs.w*rhs.w; 1096 } 1097 1098 extern float __attribute__((overloadable)) length(float v) { 1099 return fabs(v); 1100 } 1101 extern float __attribute__((overloadable)) length(float2 v) { 1102 return sqrt(v.x*v.x + v.y*v.y); 1103 } 1104 extern float __attribute__((overloadable)) length(float3 v) { 1105 return sqrt(v.x*v.x + v.y*v.y + v.z*v.z); 1106 } 1107 extern float __attribute__((overloadable)) length(float4 v) { 1108 return sqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w); 1109 } 1110 1111 #else 1112 1113 extern float __attribute__((overloadable)) length(float v); 1114 extern float __attribute__((overloadable)) length(float2 v); 1115 extern float __attribute__((overloadable)) length(float3 v); 1116 extern float __attribute__((overloadable)) length(float4 v); 1117 1118 #endif // !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME) 1119 1120 extern float __attribute__((overloadable)) distance(float lhs, float rhs) { 1121 return length(lhs - rhs); 1122 } 1123 extern float __attribute__((overloadable)) distance(float2 lhs, float2 rhs) { 1124 return length(lhs - rhs); 1125 } 1126 extern float __attribute__((overloadable)) distance(float3 lhs, float3 rhs) { 1127 return length(lhs - rhs); 1128 } 1129 extern float __attribute__((overloadable)) distance(float4 lhs, float4 rhs) { 1130 return length(lhs - rhs); 1131 } 1132 1133 /* For the normalization functions, vectors of length 0 should simply be 1134 * returned (i.e. all the components of that vector are 0). 1135 */ 1136 extern float __attribute__((overloadable)) normalize(float v) { 1137 if (v == 0.0f) { 1138 return 0.0f; 1139 } else if (v < 0.0f) { 1140 return -1.0f; 1141 } else { 1142 return 1.0f; 1143 } 1144 } 1145 extern float2 __attribute__((overloadable)) normalize(float2 v) { 1146 float l = length(v); 1147 return l == 0.0f ? v : v / l; 1148 } 1149 extern float3 __attribute__((overloadable)) normalize(float3 v) { 1150 float l = length(v); 1151 return l == 0.0f ? v : v / l; 1152 } 1153 extern float4 __attribute__((overloadable)) normalize(float4 v) { 1154 float l = length(v); 1155 return l == 0.0f ? v : v / l; 1156 } 1157 1158 extern float __attribute__((overloadable)) half_sqrt(float v) { 1159 return sqrt(v); 1160 } 1161 FN_FUNC_FN(half_sqrt) 1162 1163 extern float __attribute__((overloadable)) fast_length(float v) { 1164 return fabs(v); 1165 } 1166 extern float __attribute__((overloadable)) fast_length(float2 v) { 1167 return half_sqrt(v.x*v.x + v.y*v.y); 1168 } 1169 extern float __attribute__((overloadable)) fast_length(float3 v) { 1170 return half_sqrt(v.x*v.x + v.y*v.y + v.z*v.z); 1171 } 1172 extern float __attribute__((overloadable)) fast_length(float4 v) { 1173 return half_sqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w); 1174 } 1175 1176 extern float __attribute__((overloadable)) fast_distance(float lhs, float rhs) { 1177 return fast_length(lhs - rhs); 1178 } 1179 extern float __attribute__((overloadable)) fast_distance(float2 lhs, float2 rhs) { 1180 return fast_length(lhs - rhs); 1181 } 1182 extern float __attribute__((overloadable)) fast_distance(float3 lhs, float3 rhs) { 1183 return fast_length(lhs - rhs); 1184 } 1185 extern float __attribute__((overloadable)) fast_distance(float4 lhs, float4 rhs) { 1186 return fast_length(lhs - rhs); 1187 } 1188 1189 extern float __attribute__((overloadable)) half_rsqrt(float); 1190 1191 /* For the normalization functions, vectors of length 0 should simply be 1192 * returned (i.e. all the components of that vector are 0). 1193 */ 1194 extern float __attribute__((overloadable)) fast_normalize(float v) { 1195 if (v == 0.0f) { 1196 return 0.0f; 1197 } else if (v < 0.0f) { 1198 return -1.0f; 1199 } else { 1200 return 1.0f; 1201 } 1202 } 1203 // If the length is 0, then rlength should be NaN. 1204 extern float2 __attribute__((overloadable)) fast_normalize(float2 v) { 1205 float rlength = half_rsqrt(v.x*v.x + v.y*v.y); 1206 return (rlength == rlength) ? v * rlength : v; 1207 } 1208 extern float3 __attribute__((overloadable)) fast_normalize(float3 v) { 1209 float rlength = half_rsqrt(v.x*v.x + v.y*v.y + v.z*v.z); 1210 return (rlength == rlength) ? v * rlength : v; 1211 } 1212 extern float4 __attribute__((overloadable)) fast_normalize(float4 v) { 1213 float rlength = half_rsqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w); 1214 return (rlength == rlength) ? v * rlength : v; 1215 } 1216 1217 extern float __attribute__((overloadable)) half_recip(float v) { 1218 return 1.f / v; 1219 } 1220 1221 /* 1222 extern float __attribute__((overloadable)) approx_atan(float x) { 1223 if (x == 0.f) 1224 return 0.f; 1225 if (x < 0.f) 1226 return -1.f * approx_atan(-1.f * x); 1227 if (x > 1.f) 1228 return M_PI_2 - approx_atan(approx_recip(x)); 1229 return x * approx_recip(1.f + 0.28f * x*x); 1230 } 1231 FN_FUNC_FN(approx_atan) 1232 */ 1233 1234 typedef union 1235 { 1236 float fv; 1237 int32_t iv; 1238 } ieee_float_shape_type; 1239 1240 /* Get a 32 bit int from a float. */ 1241 1242 #define GET_FLOAT_WORD(i,d) \ 1243 do { \ 1244 ieee_float_shape_type gf_u; \ 1245 gf_u.fv = (d); \ 1246 (i) = gf_u.iv; \ 1247 } while (0) 1248 1249 /* Set a float from a 32 bit int. */ 1250 1251 #define SET_FLOAT_WORD(d,i) \ 1252 do { \ 1253 ieee_float_shape_type sf_u; \ 1254 sf_u.iv = (i); \ 1255 (d) = sf_u.fv; \ 1256 } while (0) 1257 1258 1259 1260 // Valid -125 to 125 1261 extern float __attribute__((overloadable)) native_exp2(float v) { 1262 int32_t iv = (int)v; 1263 int32_t x = iv + (iv >> 31); // ~floor(v) 1264 float r = (v - x); 1265 1266 float fo; 1267 SET_FLOAT_WORD(fo, (x + 127) << 23); 1268 1269 r *= 0.694f; // ~ log(e) / log(2) 1270 float r2 = r*r; 1271 float adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f); 1272 return fo * adj; 1273 } 1274 1275 extern float2 __attribute__((overloadable)) native_exp2(float2 v) { 1276 int2 iv = convert_int2(v); 1277 int2 x = iv + (iv >> (int2)31);//floor(v); 1278 float2 r = (v - convert_float2(x)); 1279 1280 x += 127; 1281 1282 float2 fo = (float2)(x << (int2)23); 1283 1284 r *= 0.694f; // ~ log(e) / log(2) 1285 float2 r2 = r*r; 1286 float2 adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f); 1287 return fo * adj; 1288 } 1289 1290 extern float4 __attribute__((overloadable)) native_exp2(float4 v) { 1291 int4 iv = convert_int4(v); 1292 int4 x = iv + (iv >> (int4)31);//floor(v); 1293 float4 r = (v - convert_float4(x)); 1294 1295 x += 127; 1296 1297 float4 fo = (float4)(x << (int4)23); 1298 1299 r *= 0.694f; // ~ log(e) / log(2) 1300 float4 r2 = r*r; 1301 float4 adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f); 1302 return fo * adj; 1303 } 1304 1305 extern float3 __attribute__((overloadable)) native_exp2(float3 v) { 1306 float4 t = 1.f; 1307 t.xyz = v; 1308 return native_exp2(t).xyz; 1309 } 1310 1311 1312 extern float __attribute__((overloadable)) native_exp(float v) { 1313 return native_exp2(v * 1.442695041f); 1314 } 1315 extern float2 __attribute__((overloadable)) native_exp(float2 v) { 1316 return native_exp2(v * 1.442695041f); 1317 } 1318 extern float3 __attribute__((overloadable)) native_exp(float3 v) { 1319 return native_exp2(v * 1.442695041f); 1320 } 1321 extern float4 __attribute__((overloadable)) native_exp(float4 v) { 1322 return native_exp2(v * 1.442695041f); 1323 } 1324 1325 extern float __attribute__((overloadable)) native_exp10(float v) { 1326 return native_exp2(v * 3.321928095f); 1327 } 1328 extern float2 __attribute__((overloadable)) native_exp10(float2 v) { 1329 return native_exp2(v * 3.321928095f); 1330 } 1331 extern float3 __attribute__((overloadable)) native_exp10(float3 v) { 1332 return native_exp2(v * 3.321928095f); 1333 } 1334 extern float4 __attribute__((overloadable)) native_exp10(float4 v) { 1335 return native_exp2(v * 3.321928095f); 1336 } 1337 1338 extern float __attribute__((overloadable)) native_log2(float v) { 1339 int32_t ibits; 1340 GET_FLOAT_WORD(ibits, v); 1341 1342 int32_t e = (ibits >> 23) & 0xff; 1343 1344 ibits &= 0x7fffff; 1345 ibits |= 127 << 23; 1346 1347 float ir; 1348 SET_FLOAT_WORD(ir, ibits); 1349 ir -= 1.5f; 1350 float ir2 = ir*ir; 1351 float adj2 = (0.405465108f / 0.693147181f) + 1352 ((0.666666667f / 0.693147181f) * ir) - 1353 ((0.222222222f / 0.693147181f) * ir2) + 1354 ((0.098765432f / 0.693147181f) * ir*ir2) - 1355 ((0.049382716f / 0.693147181f) * ir2*ir2) + 1356 ((0.026337449f / 0.693147181f) * ir*ir2*ir2) - 1357 ((0.014631916f / 0.693147181f) * ir2*ir2*ir2); 1358 return (float)(e - 127) + adj2; 1359 } 1360 extern float2 __attribute__((overloadable)) native_log2(float2 v) { 1361 float2 v2 = {native_log2(v.x), native_log2(v.y)}; 1362 return v2; 1363 } 1364 extern float3 __attribute__((overloadable)) native_log2(float3 v) { 1365 float3 v2 = {native_log2(v.x), native_log2(v.y), native_log2(v.z)}; 1366 return v2; 1367 } 1368 extern float4 __attribute__((overloadable)) native_log2(float4 v) { 1369 float4 v2 = {native_log2(v.x), native_log2(v.y), native_log2(v.z), native_log2(v.w)}; 1370 return v2; 1371 } 1372 1373 extern float __attribute__((overloadable)) native_log(float v) { 1374 return native_log2(v) * (1.f / 1.442695041f); 1375 } 1376 extern float2 __attribute__((overloadable)) native_log(float2 v) { 1377 return native_log2(v) * (1.f / 1.442695041f); 1378 } 1379 extern float3 __attribute__((overloadable)) native_log(float3 v) { 1380 return native_log2(v) * (1.f / 1.442695041f); 1381 } 1382 extern float4 __attribute__((overloadable)) native_log(float4 v) { 1383 return native_log2(v) * (1.f / 1.442695041f); 1384 } 1385 1386 extern float __attribute__((overloadable)) native_log10(float v) { 1387 return native_log2(v) * (1.f / 3.321928095f); 1388 } 1389 extern float2 __attribute__((overloadable)) native_log10(float2 v) { 1390 return native_log2(v) * (1.f / 3.321928095f); 1391 } 1392 extern float3 __attribute__((overloadable)) native_log10(float3 v) { 1393 return native_log2(v) * (1.f / 3.321928095f); 1394 } 1395 extern float4 __attribute__((overloadable)) native_log10(float4 v) { 1396 return native_log2(v) * (1.f / 3.321928095f); 1397 } 1398 1399 1400 extern float __attribute__((overloadable)) native_powr(float v, float y) { 1401 float v2 = native_log2(v); 1402 v2 = fmax(v2 * y, -125.f); 1403 return native_exp2(v2); 1404 } 1405 extern float2 __attribute__((overloadable)) native_powr(float2 v, float2 y) { 1406 float2 v2 = native_log2(v); 1407 v2 = fmax(v2 * y, -125.f); 1408 return native_exp2(v2); 1409 } 1410 extern float3 __attribute__((overloadable)) native_powr(float3 v, float3 y) { 1411 float3 v2 = native_log2(v); 1412 v2 = fmax(v2 * y, -125.f); 1413 return native_exp2(v2); 1414 } 1415 extern float4 __attribute__((overloadable)) native_powr(float4 v, float4 y) { 1416 float4 v2 = native_log2(v); 1417 v2 = fmax(v2 * y, -125.f); 1418 return native_exp2(v2); 1419 } 1420 1421 extern double __attribute__((overloadable)) min(double v1, double v2) { 1422 return v1 < v2 ? v1 : v2; 1423 } 1424 1425 extern double2 __attribute__((overloadable)) min(double2 v1, double2 v2) { 1426 double2 r; 1427 r.x = v1.x < v2.x ? v1.x : v2.x; 1428 r.y = v1.y < v2.y ? v1.y : v2.y; 1429 return r; 1430 } 1431 1432 extern double3 __attribute__((overloadable)) min(double3 v1, double3 v2) { 1433 double3 r; 1434 r.x = v1.x < v2.x ? v1.x : v2.x; 1435 r.y = v1.y < v2.y ? v1.y : v2.y; 1436 r.z = v1.z < v2.z ? v1.z : v2.z; 1437 return r; 1438 } 1439 1440 extern double4 __attribute__((overloadable)) min(double4 v1, double4 v2) { 1441 double4 r; 1442 r.x = v1.x < v2.x ? v1.x : v2.x; 1443 r.y = v1.y < v2.y ? v1.y : v2.y; 1444 r.z = v1.z < v2.z ? v1.z : v2.z; 1445 r.w = v1.w < v2.w ? v1.w : v2.w; 1446 return r; 1447 } 1448 1449 extern long __attribute__((overloadable)) min(long v1, long v2) { 1450 return v1 < v2 ? v1 : v2; 1451 } 1452 extern long2 __attribute__((overloadable)) min(long2 v1, long2 v2) { 1453 long2 r; 1454 r.x = v1.x < v2.x ? v1.x : v2.x; 1455 r.y = v1.y < v2.y ? v1.y : v2.y; 1456 return r; 1457 } 1458 extern long3 __attribute__((overloadable)) min(long3 v1, long3 v2) { 1459 long3 r; 1460 r.x = v1.x < v2.x ? v1.x : v2.x; 1461 r.y = v1.y < v2.y ? v1.y : v2.y; 1462 r.z = v1.z < v2.z ? v1.z : v2.z; 1463 return r; 1464 } 1465 extern long4 __attribute__((overloadable)) min(long4 v1, long4 v2) { 1466 long4 r; 1467 r.x = v1.x < v2.x ? v1.x : v2.x; 1468 r.y = v1.y < v2.y ? v1.y : v2.y; 1469 r.z = v1.z < v2.z ? v1.z : v2.z; 1470 r.w = v1.w < v2.w ? v1.w : v2.w; 1471 return r; 1472 } 1473 1474 extern ulong __attribute__((overloadable)) min(ulong v1, ulong v2) { 1475 return v1 < v2 ? v1 : v2; 1476 } 1477 extern ulong2 __attribute__((overloadable)) min(ulong2 v1, ulong2 v2) { 1478 ulong2 r; 1479 r.x = v1.x < v2.x ? v1.x : v2.x; 1480 r.y = v1.y < v2.y ? v1.y : v2.y; 1481 return r; 1482 } 1483 extern ulong3 __attribute__((overloadable)) min(ulong3 v1, ulong3 v2) { 1484 ulong3 r; 1485 r.x = v1.x < v2.x ? v1.x : v2.x; 1486 r.y = v1.y < v2.y ? v1.y : v2.y; 1487 r.z = v1.z < v2.z ? v1.z : v2.z; 1488 return r; 1489 } 1490 extern ulong4 __attribute__((overloadable)) min(ulong4 v1, ulong4 v2) { 1491 ulong4 r; 1492 r.x = v1.x < v2.x ? v1.x : v2.x; 1493 r.y = v1.y < v2.y ? v1.y : v2.y; 1494 r.z = v1.z < v2.z ? v1.z : v2.z; 1495 r.w = v1.w < v2.w ? v1.w : v2.w; 1496 return r; 1497 } 1498 1499 extern double __attribute__((overloadable)) max(double v1, double v2) { 1500 return v1 > v2 ? v1 : v2; 1501 } 1502 1503 extern double2 __attribute__((overloadable)) max(double2 v1, double2 v2) { 1504 double2 r; 1505 r.x = v1.x > v2.x ? v1.x : v2.x; 1506 r.y = v1.y > v2.y ? v1.y : v2.y; 1507 return r; 1508 } 1509 1510 extern double3 __attribute__((overloadable)) max(double3 v1, double3 v2) { 1511 double3 r; 1512 r.x = v1.x > v2.x ? v1.x : v2.x; 1513 r.y = v1.y > v2.y ? v1.y : v2.y; 1514 r.z = v1.z > v2.z ? v1.z : v2.z; 1515 return r; 1516 } 1517 1518 extern double4 __attribute__((overloadable)) max(double4 v1, double4 v2) { 1519 double4 r; 1520 r.x = v1.x > v2.x ? v1.x : v2.x; 1521 r.y = v1.y > v2.y ? v1.y : v2.y; 1522 r.z = v1.z > v2.z ? v1.z : v2.z; 1523 r.w = v1.w > v2.w ? v1.w : v2.w; 1524 return r; 1525 } 1526 1527 extern long __attribute__((overloadable)) max(long v1, long v2) { 1528 return v1 > v2 ? v1 : v2; 1529 } 1530 extern long2 __attribute__((overloadable)) max(long2 v1, long2 v2) { 1531 long2 r; 1532 r.x = v1.x > v2.x ? v1.x : v2.x; 1533 r.y = v1.y > v2.y ? v1.y : v2.y; 1534 return r; 1535 } 1536 extern long3 __attribute__((overloadable)) max(long3 v1, long3 v2) { 1537 long3 r; 1538 r.x = v1.x > v2.x ? v1.x : v2.x; 1539 r.y = v1.y > v2.y ? v1.y : v2.y; 1540 r.z = v1.z > v2.z ? v1.z : v2.z; 1541 return r; 1542 } 1543 extern long4 __attribute__((overloadable)) max(long4 v1, long4 v2) { 1544 long4 r; 1545 r.x = v1.x > v2.x ? v1.x : v2.x; 1546 r.y = v1.y > v2.y ? v1.y : v2.y; 1547 r.z = v1.z > v2.z ? v1.z : v2.z; 1548 r.w = v1.w > v2.w ? v1.w : v2.w; 1549 return r; 1550 } 1551 1552 extern ulong __attribute__((overloadable)) max(ulong v1, ulong v2) { 1553 return v1 > v2 ? v1 : v2; 1554 } 1555 extern ulong2 __attribute__((overloadable)) max(ulong2 v1, ulong2 v2) { 1556 ulong2 r; 1557 r.x = v1.x > v2.x ? v1.x : v2.x; 1558 r.y = v1.y > v2.y ? v1.y : v2.y; 1559 return r; 1560 } 1561 extern ulong3 __attribute__((overloadable)) max(ulong3 v1, ulong3 v2) { 1562 ulong3 r; 1563 r.x = v1.x > v2.x ? v1.x : v2.x; 1564 r.y = v1.y > v2.y ? v1.y : v2.y; 1565 r.z = v1.z > v2.z ? v1.z : v2.z; 1566 return r; 1567 } 1568 extern ulong4 __attribute__((overloadable)) max(ulong4 v1, ulong4 v2) { 1569 ulong4 r; 1570 r.x = v1.x > v2.x ? v1.x : v2.x; 1571 r.y = v1.y > v2.y ? v1.y : v2.y; 1572 r.z = v1.z > v2.z ? v1.z : v2.z; 1573 r.w = v1.w > v2.w ? v1.w : v2.w; 1574 return r; 1575 } 1576 1577 #define THUNK_NATIVE_F(fn) \ 1578 float __attribute__((overloadable)) native_##fn(float v) { return fn(v);} \ 1579 float2 __attribute__((overloadable)) native_##fn(float2 v) { return fn(v);} \ 1580 float3 __attribute__((overloadable)) native_##fn(float3 v) { return fn(v);} \ 1581 float4 __attribute__((overloadable)) native_##fn(float4 v) { return fn(v);} 1582 1583 #define THUNK_NATIVE_F_F(fn) \ 1584 float __attribute__((overloadable)) native_##fn(float v1, float v2) { return fn(v1, v2);} \ 1585 float2 __attribute__((overloadable)) native_##fn(float2 v1, float2 v2) { return fn(v1, v2);} \ 1586 float3 __attribute__((overloadable)) native_##fn(float3 v1, float3 v2) { return fn(v1, v2);} \ 1587 float4 __attribute__((overloadable)) native_##fn(float4 v1, float4 v2) { return fn(v1, v2);} 1588 1589 #define THUNK_NATIVE_F_FP(fn) \ 1590 float __attribute__((overloadable)) native_##fn(float v1, float *v2) { return fn(v1, v2);} \ 1591 float2 __attribute__((overloadable)) native_##fn(float2 v1, float2 *v2) { return fn(v1, v2);} \ 1592 float3 __attribute__((overloadable)) native_##fn(float3 v1, float3 *v2) { return fn(v1, v2);} \ 1593 float4 __attribute__((overloadable)) native_##fn(float4 v1, float4 *v2) { return fn(v1, v2);} 1594 1595 #define THUNK_NATIVE_F_I(fn) \ 1596 float __attribute__((overloadable)) native_##fn(float v1, int v2) { return fn(v1, v2);} \ 1597 float2 __attribute__((overloadable)) native_##fn(float2 v1, int2 v2) { return fn(v1, v2);} \ 1598 float3 __attribute__((overloadable)) native_##fn(float3 v1, int3 v2) { return fn(v1, v2);} \ 1599 float4 __attribute__((overloadable)) native_##fn(float4 v1, int4 v2) { return fn(v1, v2);} 1600 1601 THUNK_NATIVE_F(acos) 1602 THUNK_NATIVE_F(acosh) 1603 THUNK_NATIVE_F(acospi) 1604 THUNK_NATIVE_F(asin) 1605 THUNK_NATIVE_F(asinh) 1606 THUNK_NATIVE_F(asinpi) 1607 THUNK_NATIVE_F(atan) 1608 THUNK_NATIVE_F_F(atan2) 1609 THUNK_NATIVE_F(atanh) 1610 THUNK_NATIVE_F(atanpi) 1611 THUNK_NATIVE_F_F(atan2pi) 1612 THUNK_NATIVE_F(cbrt) 1613 THUNK_NATIVE_F(cos) 1614 THUNK_NATIVE_F(cosh) 1615 THUNK_NATIVE_F(cospi) 1616 THUNK_NATIVE_F(expm1) 1617 THUNK_NATIVE_F_F(hypot) 1618 THUNK_NATIVE_F(log1p) 1619 THUNK_NATIVE_F_I(rootn) 1620 THUNK_NATIVE_F(rsqrt) 1621 THUNK_NATIVE_F(sqrt) 1622 THUNK_NATIVE_F(sin) 1623 THUNK_NATIVE_F_FP(sincos) 1624 THUNK_NATIVE_F(sinh) 1625 THUNK_NATIVE_F(sinpi) 1626 THUNK_NATIVE_F(tan) 1627 THUNK_NATIVE_F(tanh) 1628 THUNK_NATIVE_F(tanpi) 1629 1630 #undef THUNK_NATIVE_F 1631 #undef THUNK_NATIVE_F_F 1632 #undef THUNK_NATIVE_F_I 1633 #undef THUNK_NATIVE_F_FP 1634 1635 float __attribute__((overloadable)) native_normalize(float v) { return fast_normalize(v);} 1636 float2 __attribute__((overloadable)) native_normalize(float2 v) { return fast_normalize(v);} 1637 float3 __attribute__((overloadable)) native_normalize(float3 v) { return fast_normalize(v);} 1638 float4 __attribute__((overloadable)) native_normalize(float4 v) { return fast_normalize(v);} 1639 1640 float __attribute__((overloadable)) native_distance(float v1, float v2) { return fast_distance(v1, v2);} 1641 float __attribute__((overloadable)) native_distance(float2 v1, float2 v2) { return fast_distance(v1, v2);} 1642 float __attribute__((overloadable)) native_distance(float3 v1, float3 v2) { return fast_distance(v1, v2);} 1643 float __attribute__((overloadable)) native_distance(float4 v1, float4 v2) { return fast_distance(v1, v2);} 1644 1645 float __attribute__((overloadable)) native_length(float v) { return fast_length(v);} 1646 float __attribute__((overloadable)) native_length(float2 v) { return fast_length(v);} 1647 float __attribute__((overloadable)) native_length(float3 v) { return fast_length(v);} 1648 float __attribute__((overloadable)) native_length(float4 v) { return fast_length(v);} 1649 1650 float __attribute__((overloadable)) native_divide(float v1, float v2) { return v1 / v2;} 1651 float2 __attribute__((overloadable)) native_divide(float2 v1, float2 v2) { return v1 / v2;} 1652 float3 __attribute__((overloadable)) native_divide(float3 v1, float3 v2) { return v1 / v2;} 1653 float4 __attribute__((overloadable)) native_divide(float4 v1, float4 v2) { return v1 / v2;} 1654 1655 float __attribute__((overloadable)) native_recip(float v) { return 1.f / v;} 1656 float2 __attribute__((overloadable)) native_recip(float2 v) { return ((float2)1.f) / v;} 1657 float3 __attribute__((overloadable)) native_recip(float3 v) { return ((float3)1.f) / v;} 1658 float4 __attribute__((overloadable)) native_recip(float4 v) { return ((float4)1.f) / v;} 1659 1660 1661 1662 1663 1664 #undef FN_FUNC_FN 1665 #undef IN_FUNC_FN 1666 #undef FN_FUNC_FN_FN 1667 #undef FN_FUNC_FN_F 1668 #undef FN_FUNC_FN_IN 1669 #undef FN_FUNC_FN_I 1670 #undef FN_FUNC_FN_PFN 1671 #undef FN_FUNC_FN_PIN 1672 #undef FN_FUNC_FN_FN_FN 1673 #undef FN_FUNC_FN_FN_PIN 1674 #undef XN_FUNC_YN 1675 #undef UIN_FUNC_IN 1676 #undef IN_FUNC_IN 1677 #undef XN_FUNC_XN_XN_BODY 1678 #undef IN_FUNC_IN_IN_BODY 1679 1680 static const unsigned short kHalfPositiveInfinity = 0x7c00; 1681 1682 /* Define f16 functions of the form 1683 * HN output = fn(HN input) 1684 * where HN is scalar or vector half type 1685 */ 1686 #define HN_FUNC_HN(fn) \ 1687 extern half __attribute__((overloadable)) fn(half h) { \ 1688 return (half) fn((float) h); \ 1689 } \ 1690 extern half2 __attribute__((overloadable)) fn(half2 v) { \ 1691 return convert_half2(fn(convert_float2(v))); \ 1692 } \ 1693 extern half3 __attribute__((overloadable)) fn(half3 v) { \ 1694 return convert_half3(fn(convert_float3(v))); \ 1695 } \ 1696 extern half4 __attribute__((overloadable)) fn(half4 v) { \ 1697 return convert_half4(fn(convert_float4(v))); \ 1698 } 1699 1700 /* Define f16 functions of the form 1701 * HN output = fn(HN input1, HN input2) 1702 * where HN is scalar or vector half type 1703 */ 1704 #define HN_FUNC_HN_HN(fn) \ 1705 extern half __attribute__((overloadable)) fn(half h1, half h2) { \ 1706 return (half) fn((float) h1, (float) h2); \ 1707 } \ 1708 extern half2 __attribute__((overloadable)) fn(half2 v1, half2 v2) { \ 1709 return convert_half2(fn(convert_float2(v1), \ 1710 convert_float2(v2))); \ 1711 } \ 1712 extern half3 __attribute__((overloadable)) fn(half3 v1, half3 v2) { \ 1713 return convert_half3(fn(convert_float3(v1), \ 1714 convert_float3(v2))); \ 1715 } \ 1716 extern half4 __attribute__((overloadable)) fn(half4 v1, half4 v2) { \ 1717 return convert_half4(fn(convert_float4(v1), \ 1718 convert_float4(v2))); \ 1719 } 1720 1721 /* Define f16 functions of the form 1722 * HN output = fn(HN input1, half input2) 1723 * where HN is scalar or vector half type 1724 */ 1725 #define HN_FUNC_HN_H(fn) \ 1726 extern half2 __attribute__((overloadable)) fn(half2 v1, half v2) { \ 1727 return convert_half2(fn(convert_float2(v1), (float) v2)); \ 1728 } \ 1729 extern half3 __attribute__((overloadable)) fn(half3 v1, half v2) { \ 1730 return convert_half3(fn(convert_float3(v1), (float) v2)); \ 1731 } \ 1732 extern half4 __attribute__((overloadable)) fn(half4 v1, half v2) { \ 1733 return convert_half4(fn(convert_float4(v1), (float) v2)); \ 1734 } 1735 1736 /* Define f16 functions of the form 1737 * HN output = fn(HN input1, HN input2, HN input3) 1738 * where HN is scalar or vector half type 1739 */ 1740 #define HN_FUNC_HN_HN_HN(fn) \ 1741 extern half __attribute__((overloadable)) fn(half h1, half h2, half h3) { \ 1742 return (half) fn((float) h1, (float) h2, (float) h3); \ 1743 } \ 1744 extern half2 __attribute__((overloadable)) fn(half2 v1, half2 v2, half2 v3) { \ 1745 return convert_half2(fn(convert_float2(v1), \ 1746 convert_float2(v2), \ 1747 convert_float2(v3))); \ 1748 } \ 1749 extern half3 __attribute__((overloadable)) fn(half3 v1, half3 v2, half3 v3) { \ 1750 return convert_half3(fn(convert_float3(v1), \ 1751 convert_float3(v2), \ 1752 convert_float3(v3))); \ 1753 } \ 1754 extern half4 __attribute__((overloadable)) fn(half4 v1, half4 v2, half4 v3) { \ 1755 return convert_half4(fn(convert_float4(v1), \ 1756 convert_float4(v2), \ 1757 convert_float4(v3))); \ 1758 } 1759 1760 /* Define f16 functions of the form 1761 * HN output = fn(HN input1, IN input2) 1762 * where HN is scalar or vector half type and IN the equivalent integer type 1763 * of same vector length. 1764 */ 1765 #define HN_FUNC_HN_IN(fn) \ 1766 extern half __attribute__((overloadable)) fn(half h1, int v) { \ 1767 return (half) fn((float) h1, v); \ 1768 } \ 1769 extern half2 __attribute__((overloadable)) fn(half2 v1, int2 v2) { \ 1770 return convert_half2(fn(convert_float2(v1), v2)); \ 1771 } \ 1772 extern half3 __attribute__((overloadable)) fn(half3 v1, int3 v2) { \ 1773 return convert_half3(fn(convert_float3(v1), v2)); \ 1774 } \ 1775 extern half4 __attribute__((overloadable)) fn(half4 v1, int4 v2) { \ 1776 return convert_half4(fn(convert_float4(v1), v2)); \ 1777 } 1778 1779 /* Define f16 functions of the form 1780 * half output = fn(HN input1) 1781 * where HN is a scalar or vector half type. 1782 */ 1783 #define H_FUNC_HN(fn) \ 1784 extern half __attribute__((overloadable)) fn(half h) { \ 1785 return (half) fn((float) h); \ 1786 } \ 1787 extern half __attribute__((overloadable)) fn(half2 v) { \ 1788 return fn(convert_float2(v)); \ 1789 } \ 1790 extern half __attribute__((overloadable)) fn(half3 v) { \ 1791 return fn(convert_float3(v)); \ 1792 } \ 1793 extern half __attribute__((overloadable)) fn(half4 v) { \ 1794 return fn(convert_float4(v)); \ 1795 } 1796 1797 /* Define f16 functions of the form 1798 * half output = fn(HN input1, HN input2) 1799 * where HN is a scalar or vector half type. 1800 */ 1801 #define H_FUNC_HN_HN(fn) \ 1802 extern half __attribute__((overloadable)) fn(half h1, half h2) { \ 1803 return (half) fn((float) h1, (float) h2); \ 1804 } \ 1805 extern half __attribute__((overloadable)) fn(half2 v1, half2 v2) { \ 1806 return fn(convert_float2(v1), convert_float2(v2)); \ 1807 } \ 1808 extern half __attribute__((overloadable)) fn(half3 v1, half3 v2) { \ 1809 return fn(convert_float3(v1), convert_float3(v2)); \ 1810 } \ 1811 extern half __attribute__((overloadable)) fn(half4 v1, half4 v2) { \ 1812 return fn(convert_float4(v1), convert_float4(v2)); \ 1813 } 1814 1815 #define SCALARIZE_HN_FUNC_HN_PHN(fnc) \ 1816 extern half2 __attribute__((overloadable)) fnc(half2 v1, half2 *v2) { \ 1817 half2 ret; \ 1818 half t[2]; \ 1819 ret.x = fnc(v1.x, &t[0]); \ 1820 ret.y = fnc(v1.y, &t[1]); \ 1821 v2->x = t[0]; \ 1822 v2->y = t[1]; \ 1823 return ret; \ 1824 } \ 1825 extern half3 __attribute__((overloadable)) fnc(half3 v1, half3 *v2) { \ 1826 half3 ret; \ 1827 half t[3]; \ 1828 ret.x = fnc(v1.x, &t[0]); \ 1829 ret.y = fnc(v1.y, &t[1]); \ 1830 ret.z = fnc(v1.z, &t[2]); \ 1831 v2->x = t[0]; \ 1832 v2->y = t[1]; \ 1833 v2->z = t[2]; \ 1834 return ret; \ 1835 } \ 1836 extern half4 __attribute__((overloadable)) fnc(half4 v1, half4 *v2) { \ 1837 half4 ret; \ 1838 half t[4]; \ 1839 ret.x = fnc(v1.x, &t[0]); \ 1840 ret.y = fnc(v1.y, &t[1]); \ 1841 ret.z = fnc(v1.z, &t[2]); \ 1842 ret.w = fnc(v1.w, &t[3]); \ 1843 v2->x = t[0]; \ 1844 v2->y = t[1]; \ 1845 v2->z = t[2]; \ 1846 v2->w = t[3]; \ 1847 return ret; \ 1848 } 1849 1850 /* Define f16 functions of the form 1851 * HN output = fn(HN input1, HN input2) 1852 * where HN is a vector half type. The functions are defined to call the 1853 * scalar function of the same name. 1854 */ 1855 #define SCALARIZE_HN_FUNC_HN_HN(fn) \ 1856 extern half2 __attribute__((overloadable)) fn(half2 v1, half2 v2) { \ 1857 half2 ret; \ 1858 ret.x = fn(v1.x, v2.x); \ 1859 ret.y = fn(v1.y, v2.y); \ 1860 return ret; \ 1861 } \ 1862 extern half3 __attribute__((overloadable)) fn(half3 v1, half3 v2) { \ 1863 half3 ret; \ 1864 ret.x = fn(v1.x, v2.x); \ 1865 ret.y = fn(v1.y, v2.y); \ 1866 ret.z = fn(v1.z, v2.z); \ 1867 return ret; \ 1868 } \ 1869 extern half4 __attribute__((overloadable)) fn(half4 v1, half4 v2) { \ 1870 half4 ret; \ 1871 ret.x = fn(v1.x, v2.x); \ 1872 ret.y = fn(v1.y, v2.y); \ 1873 ret.z = fn(v1.z, v2.z); \ 1874 ret.w = fn(v1.w, v2.w); \ 1875 return ret; \ 1876 } \ 1877 1878 HN_FUNC_HN(acos); 1879 HN_FUNC_HN(acosh); 1880 HN_FUNC_HN(acospi); 1881 HN_FUNC_HN(asin); 1882 HN_FUNC_HN(asinh); 1883 HN_FUNC_HN(asinpi); 1884 HN_FUNC_HN(atan); 1885 HN_FUNC_HN(atanh); 1886 HN_FUNC_HN(atanpi); 1887 HN_FUNC_HN_HN(atan2); 1888 HN_FUNC_HN_HN(atan2pi); 1889 1890 HN_FUNC_HN(cbrt); 1891 HN_FUNC_HN(ceil); 1892 1893 extern half __attribute__((overloadable)) copysign(half x, half y); 1894 SCALARIZE_HN_FUNC_HN_HN(copysign); 1895 1896 HN_FUNC_HN(cos); 1897 HN_FUNC_HN(cosh); 1898 HN_FUNC_HN(cospi); 1899 1900 extern half3 __attribute__((overloadable)) cross(half3 lhs, half3 rhs) { 1901 half3 r; 1902 r.x = lhs.y * rhs.z - lhs.z * rhs.y; 1903 r.y = lhs.z * rhs.x - lhs.x * rhs.z; 1904 r.z = lhs.x * rhs.y - lhs.y * rhs.x; 1905 return r; 1906 } 1907 1908 extern half4 __attribute__((overloadable)) cross(half4 lhs, half4 rhs) { 1909 half4 r; 1910 r.x = lhs.y * rhs.z - lhs.z * rhs.y; 1911 r.y = lhs.z * rhs.x - lhs.x * rhs.z; 1912 r.z = lhs.x * rhs.y - lhs.y * rhs.x; 1913 r.w = 0.f; 1914 return r; 1915 } 1916 1917 HN_FUNC_HN(degrees); 1918 H_FUNC_HN_HN(distance); 1919 H_FUNC_HN_HN(dot); 1920 1921 HN_FUNC_HN(erf); 1922 HN_FUNC_HN(erfc); 1923 HN_FUNC_HN(exp); 1924 HN_FUNC_HN(exp10); 1925 HN_FUNC_HN(exp2); 1926 HN_FUNC_HN(expm1); 1927 1928 HN_FUNC_HN(fabs); 1929 HN_FUNC_HN_HN(fdim); 1930 HN_FUNC_HN(floor); 1931 HN_FUNC_HN_HN_HN(fma); 1932 HN_FUNC_HN_HN(fmax); 1933 HN_FUNC_HN_H(fmax); 1934 HN_FUNC_HN_HN(fmin); 1935 HN_FUNC_HN_H(fmin); 1936 HN_FUNC_HN_HN(fmod); 1937 1938 extern half __attribute__((overloadable)) fract(half v, half *iptr) { 1939 // maxLessThanOne = 0.99951171875, the largest value < 1.0 1940 half maxLessThanOne; 1941 SET_HALF_WORD(maxLessThanOne, 0x3bff); 1942 1943 int i = (int) floor(v); 1944 if (iptr) { 1945 *iptr = i; 1946 } 1947 // return v - floor(v), if strictly less than one 1948 return fmin(v - i, maxLessThanOne); 1949 } 1950 1951 SCALARIZE_HN_FUNC_HN_PHN(fract); 1952 1953 extern half __attribute__((const, overloadable)) fract(half v) { 1954 half unused; 1955 return fract(v, &unused); 1956 } 1957 1958 extern half2 __attribute__((const, overloadable)) fract(half2 v) { 1959 half2 unused; 1960 return fract(v, &unused); 1961 } 1962 1963 extern half3 __attribute__((const, overloadable)) fract(half3 v) { 1964 half3 unused; 1965 return fract(v, &unused); 1966 } 1967 1968 extern half4 __attribute__((const, overloadable)) fract(half4 v) { 1969 half4 unused; 1970 return fract(v, &unused); 1971 } 1972 1973 extern half __attribute__((overloadable)) frexp(half x, int *eptr); 1974 1975 extern half2 __attribute__((overloadable)) frexp(half2 v1, int2 *eptr) { 1976 half2 ret; 1977 int e[2]; 1978 ret.x = frexp(v1.x, &e[0]); 1979 ret.y = frexp(v1.y, &e[1]); 1980 eptr->x = e[0]; 1981 eptr->y = e[1]; 1982 return ret; 1983 } 1984 1985 extern half3 __attribute__((overloadable)) frexp(half3 v1, int3 *eptr) { 1986 half3 ret; 1987 int e[3]; 1988 ret.x = frexp(v1.x, &e[0]); 1989 ret.y = frexp(v1.y, &e[1]); 1990 ret.z = frexp(v1.z, &e[2]); 1991 eptr->x = e[0]; 1992 eptr->y = e[1]; 1993 eptr->z = e[2]; 1994 return ret; 1995 } 1996 1997 extern half4 __attribute__((overloadable)) frexp(half4 v1, int4 *eptr) { 1998 half4 ret; 1999 int e[4]; 2000 ret.x = frexp(v1.x, &e[0]); 2001 ret.y = frexp(v1.y, &e[1]); 2002 ret.z = frexp(v1.z, &e[2]); 2003 ret.w = frexp(v1.w, &e[3]); 2004 eptr->x = e[0]; 2005 eptr->y = e[1]; 2006 eptr->z = e[2]; 2007 eptr->w = e[3]; 2008 return ret; 2009 } 2010 2011 HN_FUNC_HN_HN(hypot); 2012 2013 extern int __attribute__((overloadable)) ilogb(half x); 2014 2015 extern int2 __attribute__((overloadable)) ilogb(half2 v) { 2016 int2 ret; 2017 ret.x = ilogb(v.x); 2018 ret.y = ilogb(v.y); 2019 return ret; 2020 } 2021 extern int3 __attribute__((overloadable)) ilogb(half3 v) { 2022 int3 ret; 2023 ret.x = ilogb(v.x); 2024 ret.y = ilogb(v.y); 2025 ret.z = ilogb(v.z); 2026 return ret; 2027 } 2028 extern int4 __attribute__((overloadable)) ilogb(half4 v) { 2029 int4 ret; 2030 ret.x = ilogb(v.x); 2031 ret.y = ilogb(v.y); 2032 ret.z = ilogb(v.z); 2033 ret.w = ilogb(v.w); 2034 return ret; 2035 } 2036 2037 HN_FUNC_HN_IN(ldexp); 2038 extern half2 __attribute__((overloadable)) ldexp(half2 v, int exponent) { 2039 return convert_half2(ldexp(convert_float2(v), exponent)); 2040 } 2041 extern half3 __attribute__((overloadable)) ldexp(half3 v, int exponent) { 2042 return convert_half3(ldexp(convert_float3(v), exponent)); 2043 } 2044 extern half4 __attribute__((overloadable)) ldexp(half4 v, int exponent) { 2045 return convert_half4(ldexp(convert_float4(v), exponent)); 2046 } 2047 2048 H_FUNC_HN(length); 2049 HN_FUNC_HN(lgamma); 2050 2051 extern half __attribute__((overloadable)) lgamma(half h, int *signp) { 2052 return (half) lgamma((float) h, signp); 2053 } 2054 extern half2 __attribute__((overloadable)) lgamma(half2 v, int2 *signp) { 2055 return convert_half2(lgamma(convert_float2(v), signp)); 2056 } 2057 extern half3 __attribute__((overloadable)) lgamma(half3 v, int3 *signp) { 2058 return convert_half3(lgamma(convert_float3(v), signp)); 2059 } 2060 extern half4 __attribute__((overloadable)) lgamma(half4 v, int4 *signp) { 2061 return convert_half4(lgamma(convert_float4(v), signp)); 2062 } 2063 2064 HN_FUNC_HN(log); 2065 HN_FUNC_HN(log10); 2066 HN_FUNC_HN(log1p); 2067 HN_FUNC_HN(log2); 2068 HN_FUNC_HN(logb); 2069 2070 HN_FUNC_HN_HN_HN(mad); 2071 HN_FUNC_HN_HN(max); 2072 HN_FUNC_HN_H(max); // TODO can this be arch-specific similar to _Z3maxDv2_ff? 2073 HN_FUNC_HN_HN(min); 2074 HN_FUNC_HN_H(min); // TODO can this be arch-specific similar to _Z3minDv2_ff? 2075 2076 extern half __attribute__((overloadable)) mix(half start, half stop, half amount) { 2077 return start + (stop - start) * amount; 2078 } 2079 extern half2 __attribute__((overloadable)) mix(half2 start, half2 stop, half2 amount) { 2080 return start + (stop - start) * amount; 2081 } 2082 extern half3 __attribute__((overloadable)) mix(half3 start, half3 stop, half3 amount) { 2083 return start + (stop - start) * amount; 2084 } 2085 extern half4 __attribute__((overloadable)) mix(half4 start, half4 stop, half4 amount) { 2086 return start + (stop - start) * amount; 2087 } 2088 extern half2 __attribute__((overloadable)) mix(half2 start, half2 stop, half amount) { 2089 return start + (stop - start) * amount; 2090 } 2091 extern half3 __attribute__((overloadable)) mix(half3 start, half3 stop, half amount) { 2092 return start + (stop - start) * amount; 2093 } 2094 extern half4 __attribute__((overloadable)) mix(half4 start, half4 stop, half amount) { 2095 return start + (stop - start) * amount; 2096 } 2097 2098 extern half __attribute__((overloadable)) modf(half x, half *iptr); 2099 SCALARIZE_HN_FUNC_HN_PHN(modf); 2100 2101 half __attribute__((overloadable)) nan_half() { 2102 unsigned short nan_short = kHalfPositiveInfinity | 0x0200; 2103 half nan; 2104 SET_HALF_WORD(nan, nan_short); 2105 return nan; 2106 } 2107 2108 HN_FUNC_HN(normalize); 2109 2110 extern half __attribute__((overloadable)) nextafter(half x, half y); 2111 SCALARIZE_HN_FUNC_HN_HN(nextafter); 2112 2113 HN_FUNC_HN_HN(pow); 2114 HN_FUNC_HN_IN(pown); 2115 HN_FUNC_HN_HN(powr); 2116 HN_FUNC_HN(radians); 2117 HN_FUNC_HN_HN(remainder); 2118 2119 extern half __attribute__((overloadable)) remquo(half n, half d, int *quo) { 2120 return (float) remquo((float) n, (float) d, quo); 2121 } 2122 extern half2 __attribute__((overloadable)) remquo(half2 n, half2 d, int2 *quo) { 2123 return convert_half2(remquo(convert_float2(d), convert_float2(n), quo)); 2124 } 2125 extern half3 __attribute__((overloadable)) remquo(half3 n, half3 d, int3 *quo) { 2126 return convert_half3(remquo(convert_float3(d), convert_float3(n), quo)); 2127 } 2128 extern half4 __attribute__((overloadable)) remquo(half4 n, half4 d, int4 *quo) { 2129 return convert_half4(remquo(convert_float4(d), convert_float4(n), quo)); 2130 } 2131 2132 HN_FUNC_HN(rint); 2133 HN_FUNC_HN_IN(rootn); 2134 HN_FUNC_HN(round); 2135 HN_FUNC_HN(rsqrt); 2136 2137 extern half __attribute__((overloadable)) sign(half h) { 2138 if (h > 0) return (half) 1.f; 2139 if (h < 0) return (half) -1.f; 2140 return h; 2141 } 2142 extern half2 __attribute__((overloadable)) sign(half2 v) { 2143 half2 ret; 2144 ret.x = sign(v.x); 2145 ret.y = sign(v.y); 2146 return ret; 2147 } 2148 extern half3 __attribute__((overloadable)) sign(half3 v) { 2149 half3 ret; 2150 ret.x = sign(v.x); 2151 ret.y = sign(v.y); 2152 ret.z = sign(v.z); 2153 return ret; 2154 } 2155 extern half4 __attribute__((overloadable)) sign(half4 v) { 2156 half4 ret; 2157 ret.x = sign(v.x); 2158 ret.y = sign(v.y); 2159 ret.z = sign(v.z); 2160 ret.w = sign(v.w); 2161 return ret; 2162 } 2163 2164 HN_FUNC_HN(sin); 2165 2166 extern half __attribute__((overloadable)) sincos(half v, half *cosptr) { 2167 *cosptr = cos(v); 2168 return sin(v); 2169 } 2170 // TODO verify if LLVM eliminates the duplicate convert_float2 2171 extern half2 __attribute__((overloadable)) sincos(half2 v, half2 *cosptr) { 2172 *cosptr = cos(v); 2173 return sin(v); 2174 } 2175 extern half3 __attribute__((overloadable)) sincos(half3 v, half3 *cosptr) { 2176 *cosptr = cos(v); 2177 return sin(v); 2178 } 2179 extern half4 __attribute__((overloadable)) sincos(half4 v, half4 *cosptr) { 2180 *cosptr = cos(v); 2181 return sin(v); 2182 } 2183 2184 HN_FUNC_HN(sinh); 2185 HN_FUNC_HN(sinpi); 2186 HN_FUNC_HN(sqrt); 2187 2188 extern half __attribute__((overloadable)) step(half edge, half v) { 2189 return (v < edge) ? 0.f : 1.f; 2190 } 2191 extern half2 __attribute__((overloadable)) step(half2 edge, half2 v) { 2192 half2 r; 2193 r.x = (v.x < edge.x) ? 0.f : 1.f; 2194 r.y = (v.y < edge.y) ? 0.f : 1.f; 2195 return r; 2196 } 2197 extern half3 __attribute__((overloadable)) step(half3 edge, half3 v) { 2198 half3 r; 2199 r.x = (v.x < edge.x) ? 0.f : 1.f; 2200 r.y = (v.y < edge.y) ? 0.f : 1.f; 2201 r.z = (v.z < edge.z) ? 0.f : 1.f; 2202 return r; 2203 } 2204 extern half4 __attribute__((overloadable)) step(half4 edge, half4 v) { 2205 half4 r; 2206 r.x = (v.x < edge.x) ? 0.f : 1.f; 2207 r.y = (v.y < edge.y) ? 0.f : 1.f; 2208 r.z = (v.z < edge.z) ? 0.f : 1.f; 2209 r.w = (v.w < edge.w) ? 0.f : 1.f; 2210 return r; 2211 } 2212 extern half2 __attribute__((overloadable)) step(half2 edge, half v) { 2213 half2 r; 2214 r.x = (v < edge.x) ? 0.f : 1.f; 2215 r.y = (v < edge.y) ? 0.f : 1.f; 2216 return r; 2217 } 2218 extern half3 __attribute__((overloadable)) step(half3 edge, half v) { 2219 half3 r; 2220 r.x = (v < edge.x) ? 0.f : 1.f; 2221 r.y = (v < edge.y) ? 0.f : 1.f; 2222 r.z = (v < edge.z) ? 0.f : 1.f; 2223 return r; 2224 } 2225 extern half4 __attribute__((overloadable)) step(half4 edge, half v) { 2226 half4 r; 2227 r.x = (v < edge.x) ? 0.f : 1.f; 2228 r.y = (v < edge.y) ? 0.f : 1.f; 2229 r.z = (v < edge.z) ? 0.f : 1.f; 2230 r.w = (v < edge.w) ? 0.f : 1.f; 2231 return r; 2232 } 2233 extern half2 __attribute__((overloadable)) step(half edge, half2 v) { 2234 half2 r; 2235 r.x = (v.x < edge) ? 0.f : 1.f; 2236 r.y = (v.y < edge) ? 0.f : 1.f; 2237 return r; 2238 } 2239 extern half3 __attribute__((overloadable)) step(half edge, half3 v) { 2240 half3 r; 2241 r.x = (v.x < edge) ? 0.f : 1.f; 2242 r.y = (v.y < edge) ? 0.f : 1.f; 2243 r.z = (v.z < edge) ? 0.f : 1.f; 2244 return r; 2245 } 2246 extern half4 __attribute__((overloadable)) step(half edge, half4 v) { 2247 half4 r; 2248 r.x = (v.x < edge) ? 0.f : 1.f; 2249 r.y = (v.y < edge) ? 0.f : 1.f; 2250 r.z = (v.z < edge) ? 0.f : 1.f; 2251 r.w = (v.w < edge) ? 0.f : 1.f; 2252 return r; 2253 } 2254 2255 HN_FUNC_HN(tan); 2256 HN_FUNC_HN(tanh); 2257 HN_FUNC_HN(tanpi); 2258 HN_FUNC_HN(tgamma); 2259 HN_FUNC_HN(trunc); // TODO: rethink: needs half-specific implementation? 2260 2261 HN_FUNC_HN(native_acos); 2262 HN_FUNC_HN(native_acosh); 2263 HN_FUNC_HN(native_acospi); 2264 HN_FUNC_HN(native_asin); 2265 HN_FUNC_HN(native_asinh); 2266 HN_FUNC_HN(native_asinpi); 2267 HN_FUNC_HN(native_atan); 2268 HN_FUNC_HN(native_atanh); 2269 HN_FUNC_HN(native_atanpi); 2270 HN_FUNC_HN_HN(native_atan2); 2271 HN_FUNC_HN_HN(native_atan2pi); 2272 2273 HN_FUNC_HN(native_cbrt); 2274 HN_FUNC_HN(native_cos); 2275 HN_FUNC_HN(native_cosh); 2276 HN_FUNC_HN(native_cospi); 2277 2278 H_FUNC_HN_HN(native_distance); 2279 HN_FUNC_HN_HN(native_divide); 2280 2281 HN_FUNC_HN(native_exp); 2282 HN_FUNC_HN(native_exp10); 2283 HN_FUNC_HN(native_exp2); 2284 HN_FUNC_HN(native_expm1); 2285 2286 HN_FUNC_HN_HN(native_hypot); 2287 H_FUNC_HN(native_length); 2288 2289 HN_FUNC_HN(native_log); 2290 HN_FUNC_HN(native_log10); 2291 HN_FUNC_HN(native_log1p); 2292 HN_FUNC_HN(native_log2); 2293 2294 HN_FUNC_HN(native_normalize); 2295 2296 HN_FUNC_HN_HN(native_powr); // TODO are parameter limits different for half? 2297 2298 HN_FUNC_HN(native_recip); 2299 HN_FUNC_HN_IN(native_rootn); 2300 HN_FUNC_HN(native_rsqrt); 2301 2302 HN_FUNC_HN(native_sin); 2303 2304 extern half __attribute__((overloadable)) native_sincos(half v, half *cosptr) { 2305 return sincos(v, cosptr); 2306 } 2307 extern half2 __attribute__((overloadable)) native_sincos(half2 v, half2 *cosptr) { 2308 return sincos(v, cosptr); 2309 } 2310 extern half3 __attribute__((overloadable)) native_sincos(half3 v, half3 *cosptr) { 2311 return sincos(v, cosptr); 2312 } 2313 extern half4 __attribute__((overloadable)) native_sincos(half4 v, half4 *cosptr) { 2314 return sincos(v, cosptr); 2315 } 2316 2317 HN_FUNC_HN(native_sinh); 2318 HN_FUNC_HN(native_sinpi); 2319 HN_FUNC_HN(native_sqrt); 2320 2321 HN_FUNC_HN(native_tan); 2322 HN_FUNC_HN(native_tanh); 2323 HN_FUNC_HN(native_tanpi); 2324 2325 #undef HN_FUNC_HN 2326 #undef HN_FUNC_HN_HN 2327 #undef HN_FUNC_HN_H 2328 #undef HN_FUNC_HN_HN_HN 2329 #undef HN_FUNC_HN_IN 2330 #undef H_FUNC_HN 2331 #undef H_FUNC_HN_HN 2332 #undef SCALARIZE_HN_FUNC_HN_HN 2333 2334 // exports unavailable mathlib functions to compat lib 2335 2336 #ifdef RS_COMPATIBILITY_LIB 2337 2338 // !!! DANGER !!! 2339 // These functions are potentially missing on older Android versions. 2340 // Work around the issue by supplying our own variants. 2341 // !!! DANGER !!! 2342 2343 // The logbl() implementation is taken from the latest bionic/, since 2344 // double == long double on Android. 2345 extern "C" long double logbl(long double x) { return logb(x); } 2346 2347 // __aeabi_idiv0 is a missing function in libcompiler_rt.so, so we just 2348 // pick the simplest implementation based on the ARM EABI doc. 2349 extern "C" int __aeabi_idiv0(int v) { return v; } 2350 2351 #endif // compatibility lib 2352