1 // dynobj.cc -- dynamic object support for gold 2 3 // Copyright (C) 2006-2014 Free Software Foundation, Inc. 4 // Written by Ian Lance Taylor <iant (at) google.com>. 5 6 // This file is part of gold. 7 8 // This program is free software; you can redistribute it and/or modify 9 // it under the terms of the GNU General Public License as published by 10 // the Free Software Foundation; either version 3 of the License, or 11 // (at your option) any later version. 12 13 // This program is distributed in the hope that it will be useful, 14 // but WITHOUT ANY WARRANTY; without even the implied warranty of 15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 // GNU General Public License for more details. 17 18 // You should have received a copy of the GNU General Public License 19 // along with this program; if not, write to the Free Software 20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 // MA 02110-1301, USA. 22 23 #include "gold.h" 24 25 #include <vector> 26 #include <cstring> 27 28 #include "elfcpp.h" 29 #include "parameters.h" 30 #include "script.h" 31 #include "symtab.h" 32 #include "dynobj.h" 33 34 namespace gold 35 { 36 37 // Class Dynobj. 38 39 // Sets up the default soname_ to use, in the (rare) cases we never 40 // see a DT_SONAME entry. 41 42 Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset) 43 : Object(name, input_file, true, offset), 44 needed_(), 45 unknown_needed_(UNKNOWN_NEEDED_UNSET) 46 { 47 // This will be overridden by a DT_SONAME entry, hopefully. But if 48 // we never see a DT_SONAME entry, our rule is to use the dynamic 49 // object's filename. The only exception is when the dynamic object 50 // is part of an archive (so the filename is the archive's 51 // filename). In that case, we use just the dynobj's name-in-archive. 52 if (input_file == NULL) 53 this->soname_ = name; 54 else 55 { 56 this->soname_ = input_file->found_name(); 57 if (this->offset() != 0) 58 { 59 std::string::size_type open_paren = this->name().find('('); 60 std::string::size_type close_paren = this->name().find(')'); 61 if (open_paren != std::string::npos 62 && close_paren != std::string::npos) 63 { 64 // It's an archive, and name() is of the form 'foo.a(bar.so)'. 65 open_paren += 1; 66 this->soname_ = this->name().substr(open_paren, 67 close_paren - open_paren); 68 } 69 } 70 } 71 } 72 73 // Class Sized_dynobj. 74 75 template<int size, bool big_endian> 76 Sized_dynobj<size, big_endian>::Sized_dynobj( 77 const std::string& name, 78 Input_file* input_file, 79 off_t offset, 80 const elfcpp::Ehdr<size, big_endian>& ehdr) 81 : Dynobj(name, input_file, offset), 82 elf_file_(this, ehdr), 83 dynsym_shndx_(-1U), 84 symbols_(NULL), 85 defined_count_(0) 86 { 87 } 88 89 // Set up the object. 90 91 template<int size, bool big_endian> 92 void 93 Sized_dynobj<size, big_endian>::setup() 94 { 95 const unsigned int shnum = this->elf_file_.shnum(); 96 this->set_shnum(shnum); 97 } 98 99 // Find the SHT_DYNSYM section and the various version sections, and 100 // the dynamic section, given the section headers. 101 102 template<int size, bool big_endian> 103 void 104 Sized_dynobj<size, big_endian>::find_dynsym_sections( 105 const unsigned char* pshdrs, 106 unsigned int* pversym_shndx, 107 unsigned int* pverdef_shndx, 108 unsigned int* pverneed_shndx, 109 unsigned int* pdynamic_shndx) 110 { 111 *pversym_shndx = -1U; 112 *pverdef_shndx = -1U; 113 *pverneed_shndx = -1U; 114 *pdynamic_shndx = -1U; 115 116 unsigned int symtab_shndx = 0; 117 unsigned int xindex_shndx = 0; 118 unsigned int xindex_link = 0; 119 const unsigned int shnum = this->shnum(); 120 const unsigned char* p = pshdrs; 121 for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size) 122 { 123 typename This::Shdr shdr(p); 124 125 unsigned int* pi; 126 switch (shdr.get_sh_type()) 127 { 128 case elfcpp::SHT_DYNSYM: 129 this->dynsym_shndx_ = i; 130 if (xindex_shndx > 0 && xindex_link == i) 131 { 132 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); 133 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx, 134 pshdrs); 135 this->set_xindex(xindex); 136 } 137 pi = NULL; 138 break; 139 case elfcpp::SHT_SYMTAB: 140 symtab_shndx = i; 141 pi = NULL; 142 break; 143 case elfcpp::SHT_GNU_versym: 144 pi = pversym_shndx; 145 break; 146 case elfcpp::SHT_GNU_verdef: 147 pi = pverdef_shndx; 148 break; 149 case elfcpp::SHT_GNU_verneed: 150 pi = pverneed_shndx; 151 break; 152 case elfcpp::SHT_DYNAMIC: 153 pi = pdynamic_shndx; 154 break; 155 case elfcpp::SHT_SYMTAB_SHNDX: 156 xindex_shndx = i; 157 xindex_link = this->adjust_shndx(shdr.get_sh_link()); 158 if (xindex_link == this->dynsym_shndx_) 159 { 160 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); 161 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx, 162 pshdrs); 163 this->set_xindex(xindex); 164 } 165 pi = NULL; 166 break; 167 default: 168 pi = NULL; 169 break; 170 } 171 172 if (pi == NULL) 173 continue; 174 175 if (*pi != -1U) 176 this->error(_("unexpected duplicate type %u section: %u, %u"), 177 shdr.get_sh_type(), *pi, i); 178 179 *pi = i; 180 } 181 182 // If there is no dynamic symbol table, use the normal symbol table. 183 // On some SVR4 systems, a shared library is stored in an archive. 184 // The version stored in the archive only has a normal symbol table. 185 // It has an SONAME entry which points to another copy in the file 186 // system which has a dynamic symbol table as usual. This is way of 187 // addressing the issues which glibc addresses using GROUP with 188 // libc_nonshared.a. 189 if (this->dynsym_shndx_ == -1U && symtab_shndx != 0) 190 { 191 this->dynsym_shndx_ = symtab_shndx; 192 if (xindex_shndx > 0 && xindex_link == symtab_shndx) 193 { 194 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); 195 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx, 196 pshdrs); 197 this->set_xindex(xindex); 198 } 199 } 200 } 201 202 // Read the contents of section SHNDX. PSHDRS points to the section 203 // headers. TYPE is the expected section type. LINK is the expected 204 // section link. Store the data in *VIEW and *VIEW_SIZE. The 205 // section's sh_info field is stored in *VIEW_INFO. 206 207 template<int size, bool big_endian> 208 void 209 Sized_dynobj<size, big_endian>::read_dynsym_section( 210 const unsigned char* pshdrs, 211 unsigned int shndx, 212 elfcpp::SHT type, 213 unsigned int link, 214 File_view** view, 215 section_size_type* view_size, 216 unsigned int* view_info) 217 { 218 if (shndx == -1U) 219 { 220 *view = NULL; 221 *view_size = 0; 222 *view_info = 0; 223 return; 224 } 225 226 typename This::Shdr shdr(pshdrs + shndx * This::shdr_size); 227 228 gold_assert(shdr.get_sh_type() == type); 229 230 if (this->adjust_shndx(shdr.get_sh_link()) != link) 231 this->error(_("unexpected link in section %u header: %u != %u"), 232 shndx, this->adjust_shndx(shdr.get_sh_link()), link); 233 234 *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(), 235 true, false); 236 *view_size = convert_to_section_size_type(shdr.get_sh_size()); 237 *view_info = shdr.get_sh_info(); 238 } 239 240 // Read the dynamic tags. Set the soname field if this shared object 241 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to 242 // the section headers. DYNAMIC_SHNDX is the section index of the 243 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the 244 // section index and contents of a string table which may be the one 245 // associated with the SHT_DYNAMIC section. 246 247 template<int size, bool big_endian> 248 void 249 Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs, 250 unsigned int dynamic_shndx, 251 unsigned int strtab_shndx, 252 const unsigned char* strtabu, 253 off_t strtab_size) 254 { 255 typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size); 256 gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC); 257 258 const off_t dynamic_size = dynamicshdr.get_sh_size(); 259 const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(), 260 dynamic_size, true, false); 261 262 const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link()); 263 if (link != strtab_shndx) 264 { 265 if (link >= this->shnum()) 266 { 267 this->error(_("DYNAMIC section %u link out of range: %u"), 268 dynamic_shndx, link); 269 return; 270 } 271 272 typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size); 273 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) 274 { 275 this->error(_("DYNAMIC section %u link %u is not a strtab"), 276 dynamic_shndx, link); 277 return; 278 } 279 280 strtab_size = strtabshdr.get_sh_size(); 281 strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false, 282 false); 283 } 284 285 const char* const strtab = reinterpret_cast<const char*>(strtabu); 286 287 for (const unsigned char* p = pdynamic; 288 p < pdynamic + dynamic_size; 289 p += This::dyn_size) 290 { 291 typename This::Dyn dyn(p); 292 293 switch (dyn.get_d_tag()) 294 { 295 case elfcpp::DT_NULL: 296 // We should always see DT_NULL at the end of the dynamic 297 // tags. 298 return; 299 300 case elfcpp::DT_SONAME: 301 { 302 off_t val = dyn.get_d_val(); 303 if (val >= strtab_size) 304 this->error(_("DT_SONAME value out of range: %lld >= %lld"), 305 static_cast<long long>(val), 306 static_cast<long long>(strtab_size)); 307 else 308 this->set_soname_string(strtab + val); 309 } 310 break; 311 312 case elfcpp::DT_NEEDED: 313 { 314 off_t val = dyn.get_d_val(); 315 if (val >= strtab_size) 316 this->error(_("DT_NEEDED value out of range: %lld >= %lld"), 317 static_cast<long long>(val), 318 static_cast<long long>(strtab_size)); 319 else 320 this->add_needed(strtab + val); 321 } 322 break; 323 324 default: 325 break; 326 } 327 } 328 329 this->error(_("missing DT_NULL in dynamic segment")); 330 } 331 332 // Read the symbols and sections from a dynamic object. We read the 333 // dynamic symbols, not the normal symbols. 334 335 template<int size, bool big_endian> 336 void 337 Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd) 338 { 339 this->base_read_symbols(sd); 340 } 341 342 // Read the symbols and sections from a dynamic object. We read the 343 // dynamic symbols, not the normal symbols. This is common code for 344 // all target-specific overrides of do_read_symbols(). 345 346 template<int size, bool big_endian> 347 void 348 Sized_dynobj<size, big_endian>::base_read_symbols(Read_symbols_data* sd) 349 { 350 this->read_section_data(&this->elf_file_, sd); 351 352 const unsigned char* const pshdrs = sd->section_headers->data(); 353 354 unsigned int versym_shndx; 355 unsigned int verdef_shndx; 356 unsigned int verneed_shndx; 357 unsigned int dynamic_shndx; 358 this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx, 359 &verneed_shndx, &dynamic_shndx); 360 361 unsigned int strtab_shndx = -1U; 362 363 sd->symbols = NULL; 364 sd->symbols_size = 0; 365 sd->external_symbols_offset = 0; 366 sd->symbol_names = NULL; 367 sd->symbol_names_size = 0; 368 sd->versym = NULL; 369 sd->versym_size = 0; 370 sd->verdef = NULL; 371 sd->verdef_size = 0; 372 sd->verdef_info = 0; 373 sd->verneed = NULL; 374 sd->verneed_size = 0; 375 sd->verneed_info = 0; 376 377 const unsigned char* namesu = sd->section_names->data(); 378 const char* names = reinterpret_cast<const char*>(namesu); 379 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL) 380 { 381 Compressed_section_map* compressed_sections = 382 build_compressed_section_map<size, big_endian>( 383 pshdrs, this->shnum(), names, sd->section_names_size, this, true); 384 if (compressed_sections != NULL) 385 this->set_compressed_sections(compressed_sections); 386 } 387 388 if (this->dynsym_shndx_ != -1U) 389 { 390 // Get the dynamic symbols. 391 typename This::Shdr dynsymshdr(pshdrs 392 + this->dynsym_shndx_ * This::shdr_size); 393 394 sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(), 395 dynsymshdr.get_sh_size(), true, 396 false); 397 sd->symbols_size = 398 convert_to_section_size_type(dynsymshdr.get_sh_size()); 399 400 // Get the symbol names. 401 strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link()); 402 if (strtab_shndx >= this->shnum()) 403 { 404 this->error(_("invalid dynamic symbol table name index: %u"), 405 strtab_shndx); 406 return; 407 } 408 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size); 409 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) 410 { 411 this->error(_("dynamic symbol table name section " 412 "has wrong type: %u"), 413 static_cast<unsigned int>(strtabshdr.get_sh_type())); 414 return; 415 } 416 417 sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(), 418 strtabshdr.get_sh_size(), 419 false, false); 420 sd->symbol_names_size = 421 convert_to_section_size_type(strtabshdr.get_sh_size()); 422 423 // Get the version information. 424 425 unsigned int dummy; 426 this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym, 427 this->dynsym_shndx_, 428 &sd->versym, &sd->versym_size, &dummy); 429 430 // We require that the version definition and need section link 431 // to the same string table as the dynamic symbol table. This 432 // is not a technical requirement, but it always happens in 433 // practice. We could change this if necessary. 434 435 this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef, 436 strtab_shndx, &sd->verdef, &sd->verdef_size, 437 &sd->verdef_info); 438 439 this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed, 440 strtab_shndx, &sd->verneed, &sd->verneed_size, 441 &sd->verneed_info); 442 } 443 444 // Read the SHT_DYNAMIC section to find whether this shared object 445 // has a DT_SONAME tag and to record any DT_NEEDED tags. This 446 // doesn't really have anything to do with reading the symbols, but 447 // this is a convenient place to do it. 448 if (dynamic_shndx != -1U) 449 this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx, 450 (sd->symbol_names == NULL 451 ? NULL 452 : sd->symbol_names->data()), 453 sd->symbol_names_size); 454 } 455 456 // Return the Xindex structure to use for object with lots of 457 // sections. 458 459 template<int size, bool big_endian> 460 Xindex* 461 Sized_dynobj<size, big_endian>::do_initialize_xindex() 462 { 463 gold_assert(this->dynsym_shndx_ != -1U); 464 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); 465 xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_); 466 return xindex; 467 } 468 469 // Lay out the input sections for a dynamic object. We don't want to 470 // include sections from a dynamic object, so all that we actually do 471 // here is check for .gnu.warning and .note.GNU-split-stack sections. 472 473 template<int size, bool big_endian> 474 void 475 Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab, 476 Layout*, 477 Read_symbols_data* sd) 478 { 479 const unsigned int shnum = this->shnum(); 480 if (shnum == 0) 481 return; 482 483 // Get the section headers. 484 const unsigned char* pshdrs = sd->section_headers->data(); 485 486 // Get the section names. 487 const unsigned char* pnamesu = sd->section_names->data(); 488 const char* pnames = reinterpret_cast<const char*>(pnamesu); 489 490 // Skip the first, dummy, section. 491 pshdrs += This::shdr_size; 492 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) 493 { 494 typename This::Shdr shdr(pshdrs); 495 496 if (shdr.get_sh_name() >= sd->section_names_size) 497 { 498 this->error(_("bad section name offset for section %u: %lu"), 499 i, static_cast<unsigned long>(shdr.get_sh_name())); 500 return; 501 } 502 503 const char* name = pnames + shdr.get_sh_name(); 504 505 this->handle_gnu_warning_section(name, i, symtab); 506 this->handle_split_stack_section(name); 507 } 508 509 delete sd->section_headers; 510 sd->section_headers = NULL; 511 delete sd->section_names; 512 sd->section_names = NULL; 513 } 514 515 // Add an entry to the vector mapping version numbers to version 516 // strings. 517 518 template<int size, bool big_endian> 519 void 520 Sized_dynobj<size, big_endian>::set_version_map( 521 Version_map* version_map, 522 unsigned int ndx, 523 const char* name) const 524 { 525 if (ndx >= version_map->size()) 526 version_map->resize(ndx + 1); 527 if ((*version_map)[ndx] != NULL) 528 this->error(_("duplicate definition for version %u"), ndx); 529 (*version_map)[ndx] = name; 530 } 531 532 // Add mappings for the version definitions to VERSION_MAP. 533 534 template<int size, bool big_endian> 535 void 536 Sized_dynobj<size, big_endian>::make_verdef_map( 537 Read_symbols_data* sd, 538 Version_map* version_map) const 539 { 540 if (sd->verdef == NULL) 541 return; 542 543 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data()); 544 section_size_type names_size = sd->symbol_names_size; 545 546 const unsigned char* pverdef = sd->verdef->data(); 547 section_size_type verdef_size = sd->verdef_size; 548 const unsigned int count = sd->verdef_info; 549 550 const unsigned char* p = pverdef; 551 for (unsigned int i = 0; i < count; ++i) 552 { 553 elfcpp::Verdef<size, big_endian> verdef(p); 554 555 if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT) 556 { 557 this->error(_("unexpected verdef version %u"), 558 verdef.get_vd_version()); 559 return; 560 } 561 562 const section_size_type vd_ndx = verdef.get_vd_ndx(); 563 564 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not 565 // sure why. 566 567 // The first Verdaux holds the name of this version. Subsequent 568 // ones are versions that this one depends upon, which we don't 569 // care about here. 570 const section_size_type vd_cnt = verdef.get_vd_cnt(); 571 if (vd_cnt < 1) 572 { 573 this->error(_("verdef vd_cnt field too small: %u"), 574 static_cast<unsigned int>(vd_cnt)); 575 return; 576 } 577 578 const section_size_type vd_aux = verdef.get_vd_aux(); 579 if ((p - pverdef) + vd_aux >= verdef_size) 580 { 581 this->error(_("verdef vd_aux field out of range: %u"), 582 static_cast<unsigned int>(vd_aux)); 583 return; 584 } 585 586 const unsigned char* pvda = p + vd_aux; 587 elfcpp::Verdaux<size, big_endian> verdaux(pvda); 588 589 const section_size_type vda_name = verdaux.get_vda_name(); 590 if (vda_name >= names_size) 591 { 592 this->error(_("verdaux vda_name field out of range: %u"), 593 static_cast<unsigned int>(vda_name)); 594 return; 595 } 596 597 this->set_version_map(version_map, vd_ndx, names + vda_name); 598 599 const section_size_type vd_next = verdef.get_vd_next(); 600 if ((p - pverdef) + vd_next >= verdef_size) 601 { 602 this->error(_("verdef vd_next field out of range: %u"), 603 static_cast<unsigned int>(vd_next)); 604 return; 605 } 606 607 p += vd_next; 608 } 609 } 610 611 // Add mappings for the required versions to VERSION_MAP. 612 613 template<int size, bool big_endian> 614 void 615 Sized_dynobj<size, big_endian>::make_verneed_map( 616 Read_symbols_data* sd, 617 Version_map* version_map) const 618 { 619 if (sd->verneed == NULL) 620 return; 621 622 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data()); 623 section_size_type names_size = sd->symbol_names_size; 624 625 const unsigned char* pverneed = sd->verneed->data(); 626 const section_size_type verneed_size = sd->verneed_size; 627 const unsigned int count = sd->verneed_info; 628 629 const unsigned char* p = pverneed; 630 for (unsigned int i = 0; i < count; ++i) 631 { 632 elfcpp::Verneed<size, big_endian> verneed(p); 633 634 if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT) 635 { 636 this->error(_("unexpected verneed version %u"), 637 verneed.get_vn_version()); 638 return; 639 } 640 641 const section_size_type vn_aux = verneed.get_vn_aux(); 642 643 if ((p - pverneed) + vn_aux >= verneed_size) 644 { 645 this->error(_("verneed vn_aux field out of range: %u"), 646 static_cast<unsigned int>(vn_aux)); 647 return; 648 } 649 650 const unsigned int vn_cnt = verneed.get_vn_cnt(); 651 const unsigned char* pvna = p + vn_aux; 652 for (unsigned int j = 0; j < vn_cnt; ++j) 653 { 654 elfcpp::Vernaux<size, big_endian> vernaux(pvna); 655 656 const unsigned int vna_name = vernaux.get_vna_name(); 657 if (vna_name >= names_size) 658 { 659 this->error(_("vernaux vna_name field out of range: %u"), 660 static_cast<unsigned int>(vna_name)); 661 return; 662 } 663 664 this->set_version_map(version_map, vernaux.get_vna_other(), 665 names + vna_name); 666 667 const section_size_type vna_next = vernaux.get_vna_next(); 668 if ((pvna - pverneed) + vna_next >= verneed_size) 669 { 670 this->error(_("verneed vna_next field out of range: %u"), 671 static_cast<unsigned int>(vna_next)); 672 return; 673 } 674 675 pvna += vna_next; 676 } 677 678 const section_size_type vn_next = verneed.get_vn_next(); 679 if ((p - pverneed) + vn_next >= verneed_size) 680 { 681 this->error(_("verneed vn_next field out of range: %u"), 682 static_cast<unsigned int>(vn_next)); 683 return; 684 } 685 686 p += vn_next; 687 } 688 } 689 690 // Create a vector mapping version numbers to version strings. 691 692 template<int size, bool big_endian> 693 void 694 Sized_dynobj<size, big_endian>::make_version_map( 695 Read_symbols_data* sd, 696 Version_map* version_map) const 697 { 698 if (sd->verdef == NULL && sd->verneed == NULL) 699 return; 700 701 // A guess at the maximum version number we will see. If this is 702 // wrong we will be less efficient but still correct. 703 version_map->reserve(sd->verdef_info + sd->verneed_info * 10); 704 705 this->make_verdef_map(sd, version_map); 706 this->make_verneed_map(sd, version_map); 707 } 708 709 // Add the dynamic symbols to the symbol table. 710 711 template<int size, bool big_endian> 712 void 713 Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab, 714 Read_symbols_data* sd, 715 Layout*) 716 { 717 if (sd->symbols == NULL) 718 { 719 gold_assert(sd->symbol_names == NULL); 720 gold_assert(sd->versym == NULL && sd->verdef == NULL 721 && sd->verneed == NULL); 722 return; 723 } 724 725 const int sym_size = This::sym_size; 726 const size_t symcount = sd->symbols_size / sym_size; 727 gold_assert(sd->external_symbols_offset == 0); 728 if (symcount * sym_size != sd->symbols_size) 729 { 730 this->error(_("size of dynamic symbols is not multiple of symbol size")); 731 return; 732 } 733 734 Version_map version_map; 735 this->make_version_map(sd, &version_map); 736 737 // If printing symbol counts or a cross reference table or 738 // preparing for an incremental link, we want to track symbols. 739 if (parameters->options().user_set_print_symbol_counts() 740 || parameters->options().cref() 741 || parameters->incremental()) 742 { 743 this->symbols_ = new Symbols(); 744 this->symbols_->resize(symcount); 745 } 746 747 const char* sym_names = 748 reinterpret_cast<const char*>(sd->symbol_names->data()); 749 symtab->add_from_dynobj(this, sd->symbols->data(), symcount, 750 sym_names, sd->symbol_names_size, 751 (sd->versym == NULL 752 ? NULL 753 : sd->versym->data()), 754 sd->versym_size, 755 &version_map, 756 this->symbols_, 757 &this->defined_count_); 758 759 delete sd->symbols; 760 sd->symbols = NULL; 761 delete sd->symbol_names; 762 sd->symbol_names = NULL; 763 if (sd->versym != NULL) 764 { 765 delete sd->versym; 766 sd->versym = NULL; 767 } 768 if (sd->verdef != NULL) 769 { 770 delete sd->verdef; 771 sd->verdef = NULL; 772 } 773 if (sd->verneed != NULL) 774 { 775 delete sd->verneed; 776 sd->verneed = NULL; 777 } 778 779 // This is normally the last time we will read any data from this 780 // file. 781 this->clear_view_cache_marks(); 782 } 783 784 template<int size, bool big_endian> 785 Archive::Should_include 786 Sized_dynobj<size, big_endian>::do_should_include_member(Symbol_table*, 787 Layout*, 788 Read_symbols_data*, 789 std::string*) 790 { 791 return Archive::SHOULD_INCLUDE_YES; 792 } 793 794 // Iterate over global symbols, calling a visitor class V for each. 795 796 template<int size, bool big_endian> 797 void 798 Sized_dynobj<size, big_endian>::do_for_all_global_symbols( 799 Read_symbols_data* sd, 800 Library_base::Symbol_visitor_base* v) 801 { 802 const char* sym_names = 803 reinterpret_cast<const char*>(sd->symbol_names->data()); 804 const unsigned char* syms = 805 sd->symbols->data() + sd->external_symbols_offset; 806 const int sym_size = elfcpp::Elf_sizes<size>::sym_size; 807 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset) 808 / sym_size); 809 const unsigned char* p = syms; 810 811 for (size_t i = 0; i < symcount; ++i, p += sym_size) 812 { 813 elfcpp::Sym<size, big_endian> sym(p); 814 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF 815 && sym.get_st_bind() != elfcpp::STB_LOCAL) 816 v->visit(sym_names + sym.get_st_name()); 817 } 818 } 819 820 // Iterate over local symbols, calling a visitor class V for each GOT offset 821 // associated with a local symbol. 822 823 template<int size, bool big_endian> 824 void 825 Sized_dynobj<size, big_endian>::do_for_all_local_got_entries( 826 Got_offset_list::Visitor*) const 827 { 828 } 829 830 // Get symbol counts. 831 832 template<int size, bool big_endian> 833 void 834 Sized_dynobj<size, big_endian>::do_get_global_symbol_counts( 835 const Symbol_table*, 836 size_t* defined, 837 size_t* used) const 838 { 839 *defined = this->defined_count_; 840 size_t count = 0; 841 for (typename Symbols::const_iterator p = this->symbols_->begin(); 842 p != this->symbols_->end(); 843 ++p) 844 if (*p != NULL 845 && (*p)->source() == Symbol::FROM_OBJECT 846 && (*p)->object() == this 847 && (*p)->is_defined() 848 && (*p)->has_dynsym_index()) 849 ++count; 850 *used = count; 851 } 852 853 // Given a vector of hash codes, compute the number of hash buckets to 854 // use. 855 856 unsigned int 857 Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes, 858 bool for_gnu_hash_table) 859 { 860 // FIXME: Implement optional hash table optimization. 861 862 // Array used to determine the number of hash table buckets to use 863 // based on the number of symbols there are. If there are fewer 864 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 865 // buckets, fewer than 37 we use 17 buckets, and so forth. We never 866 // use more than 262147 buckets. This is straight from the old GNU 867 // linker. 868 static const unsigned int buckets[] = 869 { 870 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, 871 16411, 32771, 65537, 131101, 262147 872 }; 873 const int buckets_count = sizeof buckets / sizeof buckets[0]; 874 875 unsigned int symcount = hashcodes.size(); 876 unsigned int ret = 1; 877 const double full_fraction 878 = 1.0 - parameters->options().hash_bucket_empty_fraction(); 879 for (int i = 0; i < buckets_count; ++i) 880 { 881 if (symcount < buckets[i] * full_fraction) 882 break; 883 ret = buckets[i]; 884 } 885 886 if (for_gnu_hash_table && ret < 2) 887 ret = 2; 888 889 return ret; 890 } 891 892 // The standard ELF hash function. This hash function must not 893 // change, as the dynamic linker uses it also. 894 895 uint32_t 896 Dynobj::elf_hash(const char* name) 897 { 898 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name); 899 uint32_t h = 0; 900 unsigned char c; 901 while ((c = *nameu++) != '\0') 902 { 903 h = (h << 4) + c; 904 uint32_t g = h & 0xf0000000; 905 if (g != 0) 906 { 907 h ^= g >> 24; 908 // The ELF ABI says h &= ~g, but using xor is equivalent in 909 // this case (since g was set from h) and may save one 910 // instruction. 911 h ^= g; 912 } 913 } 914 return h; 915 } 916 917 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN. 918 // DYNSYMS is a vector with all the global dynamic symbols. 919 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic 920 // symbol table. 921 922 void 923 Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms, 924 unsigned int local_dynsym_count, 925 unsigned char** pphash, 926 unsigned int* phashlen) 927 { 928 unsigned int dynsym_count = dynsyms.size(); 929 930 // Get the hash values for all the symbols. 931 std::vector<uint32_t> dynsym_hashvals(dynsym_count); 932 for (unsigned int i = 0; i < dynsym_count; ++i) 933 dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name()); 934 935 const unsigned int bucketcount = 936 Dynobj::compute_bucket_count(dynsym_hashvals, false); 937 938 std::vector<uint32_t> bucket(bucketcount); 939 std::vector<uint32_t> chain(local_dynsym_count + dynsym_count); 940 941 for (unsigned int i = 0; i < dynsym_count; ++i) 942 { 943 unsigned int dynsym_index = dynsyms[i]->dynsym_index(); 944 unsigned int bucketpos = dynsym_hashvals[i] % bucketcount; 945 chain[dynsym_index] = bucket[bucketpos]; 946 bucket[bucketpos] = dynsym_index; 947 } 948 949 unsigned int hashlen = ((2 950 + bucketcount 951 + local_dynsym_count 952 + dynsym_count) 953 * 4); 954 unsigned char* phash = new unsigned char[hashlen]; 955 956 if (parameters->target().is_big_endian()) 957 { 958 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG) 959 Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash, 960 hashlen); 961 #else 962 gold_unreachable(); 963 #endif 964 } 965 else 966 { 967 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE) 968 Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash, 969 hashlen); 970 #else 971 gold_unreachable(); 972 #endif 973 } 974 975 *pphash = phash; 976 *phashlen = hashlen; 977 } 978 979 // Fill in an ELF hash table. 980 981 template<bool big_endian> 982 void 983 Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket, 984 const std::vector<uint32_t>& chain, 985 unsigned char* phash, 986 unsigned int hashlen) 987 { 988 unsigned char* p = phash; 989 990 const unsigned int bucketcount = bucket.size(); 991 const unsigned int chaincount = chain.size(); 992 993 elfcpp::Swap<32, big_endian>::writeval(p, bucketcount); 994 p += 4; 995 elfcpp::Swap<32, big_endian>::writeval(p, chaincount); 996 p += 4; 997 998 for (unsigned int i = 0; i < bucketcount; ++i) 999 { 1000 elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]); 1001 p += 4; 1002 } 1003 1004 for (unsigned int i = 0; i < chaincount; ++i) 1005 { 1006 elfcpp::Swap<32, big_endian>::writeval(p, chain[i]); 1007 p += 4; 1008 } 1009 1010 gold_assert(static_cast<unsigned int>(p - phash) == hashlen); 1011 } 1012 1013 // The hash function used for the GNU hash table. This hash function 1014 // must not change, as the dynamic linker uses it also. 1015 1016 uint32_t 1017 Dynobj::gnu_hash(const char* name) 1018 { 1019 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name); 1020 uint32_t h = 5381; 1021 unsigned char c; 1022 while ((c = *nameu++) != '\0') 1023 h = (h << 5) + h + c; 1024 return h; 1025 } 1026 1027 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash 1028 // tables are an extension to ELF which are recognized by the GNU 1029 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH. 1030 // TARGET is the target. DYNSYMS is a vector with all the global 1031 // symbols which will be going into the dynamic symbol table. 1032 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic 1033 // symbol table. 1034 1035 void 1036 Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms, 1037 unsigned int local_dynsym_count, 1038 unsigned char** pphash, 1039 unsigned int* phashlen) 1040 { 1041 const unsigned int count = dynsyms.size(); 1042 1043 // Sort the dynamic symbols into two vectors. Symbols which we do 1044 // not want to put into the hash table we store into 1045 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into 1046 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS, 1047 // and records the hash codes. 1048 1049 std::vector<Symbol*> unhashed_dynsyms; 1050 unhashed_dynsyms.reserve(count); 1051 1052 std::vector<Symbol*> hashed_dynsyms; 1053 hashed_dynsyms.reserve(count); 1054 1055 std::vector<uint32_t> dynsym_hashvals; 1056 dynsym_hashvals.reserve(count); 1057 1058 for (unsigned int i = 0; i < count; ++i) 1059 { 1060 Symbol* sym = dynsyms[i]; 1061 1062 if (!sym->needs_dynsym_value() 1063 && (sym->is_undefined() 1064 || sym->is_from_dynobj() 1065 || sym->is_forced_local())) 1066 unhashed_dynsyms.push_back(sym); 1067 else 1068 { 1069 hashed_dynsyms.push_back(sym); 1070 dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name())); 1071 } 1072 } 1073 1074 // Put the unhashed symbols at the start of the global portion of 1075 // the dynamic symbol table. 1076 const unsigned int unhashed_count = unhashed_dynsyms.size(); 1077 unsigned int unhashed_dynsym_index = local_dynsym_count; 1078 for (unsigned int i = 0; i < unhashed_count; ++i) 1079 { 1080 unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index); 1081 ++unhashed_dynsym_index; 1082 } 1083 1084 // For the actual data generation we call out to a templatized 1085 // function. 1086 int size = parameters->target().get_size(); 1087 bool big_endian = parameters->target().is_big_endian(); 1088 if (size == 32) 1089 { 1090 if (big_endian) 1091 { 1092 #ifdef HAVE_TARGET_32_BIG 1093 Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms, 1094 dynsym_hashvals, 1095 unhashed_dynsym_index, 1096 pphash, 1097 phashlen); 1098 #else 1099 gold_unreachable(); 1100 #endif 1101 } 1102 else 1103 { 1104 #ifdef HAVE_TARGET_32_LITTLE 1105 Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms, 1106 dynsym_hashvals, 1107 unhashed_dynsym_index, 1108 pphash, 1109 phashlen); 1110 #else 1111 gold_unreachable(); 1112 #endif 1113 } 1114 } 1115 else if (size == 64) 1116 { 1117 if (big_endian) 1118 { 1119 #ifdef HAVE_TARGET_64_BIG 1120 Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms, 1121 dynsym_hashvals, 1122 unhashed_dynsym_index, 1123 pphash, 1124 phashlen); 1125 #else 1126 gold_unreachable(); 1127 #endif 1128 } 1129 else 1130 { 1131 #ifdef HAVE_TARGET_64_LITTLE 1132 Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms, 1133 dynsym_hashvals, 1134 unhashed_dynsym_index, 1135 pphash, 1136 phashlen); 1137 #else 1138 gold_unreachable(); 1139 #endif 1140 } 1141 } 1142 else 1143 gold_unreachable(); 1144 } 1145 1146 // Create the actual data for a GNU hash table. This is just a copy 1147 // of the code from the old GNU linker. 1148 1149 template<int size, bool big_endian> 1150 void 1151 Dynobj::sized_create_gnu_hash_table( 1152 const std::vector<Symbol*>& hashed_dynsyms, 1153 const std::vector<uint32_t>& dynsym_hashvals, 1154 unsigned int unhashed_dynsym_count, 1155 unsigned char** pphash, 1156 unsigned int* phashlen) 1157 { 1158 if (hashed_dynsyms.empty()) 1159 { 1160 // Special case for the empty hash table. 1161 unsigned int hashlen = 5 * 4 + size / 8; 1162 unsigned char* phash = new unsigned char[hashlen]; 1163 // One empty bucket. 1164 elfcpp::Swap<32, big_endian>::writeval(phash, 1); 1165 // Symbol index above unhashed symbols. 1166 elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count); 1167 // One word for bitmask. 1168 elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1); 1169 // Only bloom filter. 1170 elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0); 1171 // No valid hashes. 1172 elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0); 1173 // No hashes in only bucket. 1174 elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0); 1175 1176 *phashlen = hashlen; 1177 *pphash = phash; 1178 1179 return; 1180 } 1181 1182 const unsigned int bucketcount = 1183 Dynobj::compute_bucket_count(dynsym_hashvals, true); 1184 1185 const unsigned int nsyms = hashed_dynsyms.size(); 1186 1187 uint32_t maskbitslog2 = 1; 1188 uint32_t x = nsyms >> 1; 1189 while (x != 0) 1190 { 1191 ++maskbitslog2; 1192 x >>= 1; 1193 } 1194 if (maskbitslog2 < 3) 1195 maskbitslog2 = 5; 1196 else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0) 1197 maskbitslog2 += 3; 1198 else 1199 maskbitslog2 += 2; 1200 1201 uint32_t shift1; 1202 if (size == 32) 1203 shift1 = 5; 1204 else 1205 { 1206 if (maskbitslog2 == 5) 1207 maskbitslog2 = 6; 1208 shift1 = 6; 1209 } 1210 uint32_t mask = (1U << shift1) - 1U; 1211 uint32_t shift2 = maskbitslog2; 1212 uint32_t maskbits = 1U << maskbitslog2; 1213 uint32_t maskwords = 1U << (maskbitslog2 - shift1); 1214 1215 typedef typename elfcpp::Elf_types<size>::Elf_WXword Word; 1216 std::vector<Word> bitmask(maskwords); 1217 std::vector<uint32_t> counts(bucketcount); 1218 std::vector<uint32_t> indx(bucketcount); 1219 uint32_t symindx = unhashed_dynsym_count; 1220 1221 // Count the number of times each hash bucket is used. 1222 for (unsigned int i = 0; i < nsyms; ++i) 1223 ++counts[dynsym_hashvals[i] % bucketcount]; 1224 1225 unsigned int cnt = symindx; 1226 for (unsigned int i = 0; i < bucketcount; ++i) 1227 { 1228 indx[i] = cnt; 1229 cnt += counts[i]; 1230 } 1231 1232 unsigned int hashlen = (4 + bucketcount + nsyms) * 4; 1233 hashlen += maskbits / 8; 1234 unsigned char* phash = new unsigned char[hashlen]; 1235 1236 elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount); 1237 elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx); 1238 elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords); 1239 elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2); 1240 1241 unsigned char* p = phash + 16 + maskbits / 8; 1242 for (unsigned int i = 0; i < bucketcount; ++i) 1243 { 1244 if (counts[i] == 0) 1245 elfcpp::Swap<32, big_endian>::writeval(p, 0); 1246 else 1247 elfcpp::Swap<32, big_endian>::writeval(p, indx[i]); 1248 p += 4; 1249 } 1250 1251 for (unsigned int i = 0; i < nsyms; ++i) 1252 { 1253 Symbol* sym = hashed_dynsyms[i]; 1254 uint32_t hashval = dynsym_hashvals[i]; 1255 1256 unsigned int bucket = hashval % bucketcount; 1257 unsigned int val = ((hashval >> shift1) 1258 & ((maskbits >> shift1) - 1)); 1259 bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask); 1260 bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask); 1261 val = hashval & ~ 1U; 1262 if (counts[bucket] == 1) 1263 { 1264 // Last element terminates the chain. 1265 val |= 1; 1266 } 1267 elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4, 1268 val); 1269 --counts[bucket]; 1270 1271 sym->set_dynsym_index(indx[bucket]); 1272 ++indx[bucket]; 1273 } 1274 1275 p = phash + 16; 1276 for (unsigned int i = 0; i < maskwords; ++i) 1277 { 1278 elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]); 1279 p += size / 8; 1280 } 1281 1282 *phashlen = hashlen; 1283 *pphash = phash; 1284 } 1285 1286 // Verdef methods. 1287 1288 // Write this definition to a buffer for the output section. 1289 1290 template<int size, bool big_endian> 1291 unsigned char* 1292 Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const 1293 { 1294 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size; 1295 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size; 1296 1297 elfcpp::Verdef_write<size, big_endian> vd(pb); 1298 vd.set_vd_version(elfcpp::VER_DEF_CURRENT); 1299 vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0) 1300 | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0) 1301 | (this->is_info_ ? elfcpp::VER_FLG_INFO : 0)); 1302 vd.set_vd_ndx(this->index()); 1303 vd.set_vd_cnt(1 + this->deps_.size()); 1304 vd.set_vd_hash(Dynobj::elf_hash(this->name())); 1305 vd.set_vd_aux(verdef_size); 1306 vd.set_vd_next(is_last 1307 ? 0 1308 : verdef_size + (1 + this->deps_.size()) * verdaux_size); 1309 pb += verdef_size; 1310 1311 elfcpp::Verdaux_write<size, big_endian> vda(pb); 1312 vda.set_vda_name(dynpool->get_offset(this->name())); 1313 vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size); 1314 pb += verdaux_size; 1315 1316 Deps::const_iterator p; 1317 unsigned int i; 1318 for (p = this->deps_.begin(), i = 0; 1319 p != this->deps_.end(); 1320 ++p, ++i) 1321 { 1322 elfcpp::Verdaux_write<size, big_endian> vda(pb); 1323 vda.set_vda_name(dynpool->get_offset(*p)); 1324 vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size); 1325 pb += verdaux_size; 1326 } 1327 1328 return pb; 1329 } 1330 1331 // Verneed methods. 1332 1333 Verneed::~Verneed() 1334 { 1335 for (Need_versions::iterator p = this->need_versions_.begin(); 1336 p != this->need_versions_.end(); 1337 ++p) 1338 delete *p; 1339 } 1340 1341 // Add a new version to this file reference. 1342 1343 Verneed_version* 1344 Verneed::add_name(const char* name) 1345 { 1346 Verneed_version* vv = new Verneed_version(name); 1347 this->need_versions_.push_back(vv); 1348 return vv; 1349 } 1350 1351 // Set the version indexes starting at INDEX. 1352 1353 unsigned int 1354 Verneed::finalize(unsigned int index) 1355 { 1356 for (Need_versions::iterator p = this->need_versions_.begin(); 1357 p != this->need_versions_.end(); 1358 ++p) 1359 { 1360 (*p)->set_index(index); 1361 ++index; 1362 } 1363 return index; 1364 } 1365 1366 // Write this list of referenced versions to a buffer for the output 1367 // section. 1368 1369 template<int size, bool big_endian> 1370 unsigned char* 1371 Verneed::write(const Stringpool* dynpool, bool is_last, 1372 unsigned char* pb) const 1373 { 1374 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size; 1375 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size; 1376 1377 elfcpp::Verneed_write<size, big_endian> vn(pb); 1378 vn.set_vn_version(elfcpp::VER_NEED_CURRENT); 1379 vn.set_vn_cnt(this->need_versions_.size()); 1380 vn.set_vn_file(dynpool->get_offset(this->filename())); 1381 vn.set_vn_aux(verneed_size); 1382 vn.set_vn_next(is_last 1383 ? 0 1384 : verneed_size + this->need_versions_.size() * vernaux_size); 1385 pb += verneed_size; 1386 1387 Need_versions::const_iterator p; 1388 unsigned int i; 1389 for (p = this->need_versions_.begin(), i = 0; 1390 p != this->need_versions_.end(); 1391 ++p, ++i) 1392 { 1393 elfcpp::Vernaux_write<size, big_endian> vna(pb); 1394 vna.set_vna_hash(Dynobj::elf_hash((*p)->version())); 1395 // FIXME: We need to sometimes set VER_FLG_WEAK here. 1396 vna.set_vna_flags(0); 1397 vna.set_vna_other((*p)->index()); 1398 vna.set_vna_name(dynpool->get_offset((*p)->version())); 1399 vna.set_vna_next(i + 1 >= this->need_versions_.size() 1400 ? 0 1401 : vernaux_size); 1402 pb += vernaux_size; 1403 } 1404 1405 return pb; 1406 } 1407 1408 // Versions methods. 1409 1410 Versions::Versions(const Version_script_info& version_script, 1411 Stringpool* dynpool) 1412 : defs_(), needs_(), version_table_(), 1413 is_finalized_(false), version_script_(version_script), 1414 needs_base_version_(parameters->options().shared()) 1415 { 1416 if (!this->version_script_.empty()) 1417 { 1418 // Parse the version script, and insert each declared version into 1419 // defs_ and version_table_. 1420 std::vector<std::string> versions = this->version_script_.get_versions(); 1421 1422 if (this->needs_base_version_ && !versions.empty()) 1423 this->define_base_version(dynpool); 1424 1425 for (size_t k = 0; k < versions.size(); ++k) 1426 { 1427 Stringpool::Key version_key; 1428 const char* version = dynpool->add(versions[k].c_str(), 1429 true, &version_key); 1430 Verdef* const vd = new Verdef( 1431 version, 1432 this->version_script_.get_dependencies(version), 1433 false, false, false, false); 1434 this->defs_.push_back(vd); 1435 Key key(version_key, 0); 1436 this->version_table_.insert(std::make_pair(key, vd)); 1437 } 1438 } 1439 } 1440 1441 Versions::~Versions() 1442 { 1443 for (Defs::iterator p = this->defs_.begin(); 1444 p != this->defs_.end(); 1445 ++p) 1446 delete *p; 1447 1448 for (Needs::iterator p = this->needs_.begin(); 1449 p != this->needs_.end(); 1450 ++p) 1451 delete *p; 1452 } 1453 1454 // Define the base version of a shared library. The base version definition 1455 // must be the first entry in defs_. We insert it lazily so that defs_ is 1456 // empty if no symbol versioning is used. Then layout can just drop the 1457 // version sections. 1458 1459 void 1460 Versions::define_base_version(Stringpool* dynpool) 1461 { 1462 // If we do any versioning at all, we always need a base version, so 1463 // define that first. Nothing explicitly declares itself as part of base, 1464 // so it doesn't need to be in version_table_. 1465 gold_assert(this->defs_.empty()); 1466 const char* name = parameters->options().soname(); 1467 if (name == NULL) 1468 name = parameters->options().output_file_name(); 1469 name = dynpool->add(name, false, NULL); 1470 Verdef* vdbase = new Verdef(name, std::vector<std::string>(), 1471 true, false, false, true); 1472 this->defs_.push_back(vdbase); 1473 this->needs_base_version_ = false; 1474 } 1475 1476 // Return the dynamic object which a symbol refers to. 1477 1478 Dynobj* 1479 Versions::get_dynobj_for_sym(const Symbol_table* symtab, 1480 const Symbol* sym) const 1481 { 1482 if (sym->is_copied_from_dynobj()) 1483 return symtab->get_copy_source(sym); 1484 else 1485 { 1486 Object* object = sym->object(); 1487 gold_assert(object->is_dynamic()); 1488 return static_cast<Dynobj*>(object); 1489 } 1490 } 1491 1492 // Record version information for a symbol going into the dynamic 1493 // symbol table. 1494 1495 void 1496 Versions::record_version(const Symbol_table* symtab, 1497 Stringpool* dynpool, const Symbol* sym) 1498 { 1499 gold_assert(!this->is_finalized_); 1500 gold_assert(sym->version() != NULL); 1501 1502 Stringpool::Key version_key; 1503 const char* version = dynpool->add(sym->version(), false, &version_key); 1504 1505 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj()) 1506 { 1507 if (parameters->options().shared()) 1508 this->add_def(dynpool, sym, version, version_key); 1509 } 1510 else 1511 { 1512 // This is a version reference. 1513 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym); 1514 this->add_need(dynpool, dynobj->soname(), version, version_key); 1515 } 1516 } 1517 1518 // We've found a symbol SYM defined in version VERSION. 1519 1520 void 1521 Versions::add_def(Stringpool* dynpool, const Symbol* sym, const char* version, 1522 Stringpool::Key version_key) 1523 { 1524 Key k(version_key, 0); 1525 Version_base* const vbnull = NULL; 1526 std::pair<Version_table::iterator, bool> ins = 1527 this->version_table_.insert(std::make_pair(k, vbnull)); 1528 1529 if (!ins.second) 1530 { 1531 // We already have an entry for this version. 1532 Version_base* vb = ins.first->second; 1533 1534 // We have now seen a symbol in this version, so it is not 1535 // weak. 1536 gold_assert(vb != NULL); 1537 vb->clear_weak(); 1538 } 1539 else 1540 { 1541 // If we are creating a shared object, it is an error to 1542 // find a definition of a symbol with a version which is not 1543 // in the version script. 1544 if (parameters->options().shared()) 1545 { 1546 gold_error(_("symbol %s has undefined version %s"), 1547 sym->demangled_name().c_str(), version); 1548 if (this->needs_base_version_) 1549 this->define_base_version(dynpool); 1550 } 1551 else 1552 // We only insert a base version for shared library. 1553 gold_assert(!this->needs_base_version_); 1554 1555 // When creating a regular executable, automatically define 1556 // a new version. 1557 Verdef* vd = new Verdef(version, std::vector<std::string>(), 1558 false, false, false, false); 1559 this->defs_.push_back(vd); 1560 ins.first->second = vd; 1561 } 1562 } 1563 1564 // Add a reference to version NAME in file FILENAME. 1565 1566 void 1567 Versions::add_need(Stringpool* dynpool, const char* filename, const char* name, 1568 Stringpool::Key name_key) 1569 { 1570 Stringpool::Key filename_key; 1571 filename = dynpool->add(filename, true, &filename_key); 1572 1573 Key k(name_key, filename_key); 1574 Version_base* const vbnull = NULL; 1575 std::pair<Version_table::iterator, bool> ins = 1576 this->version_table_.insert(std::make_pair(k, vbnull)); 1577 1578 if (!ins.second) 1579 { 1580 // We already have an entry for this filename/version. 1581 return; 1582 } 1583 1584 // See whether we already have this filename. We don't expect many 1585 // version references, so we just do a linear search. This could be 1586 // replaced by a hash table. 1587 Verneed* vn = NULL; 1588 for (Needs::iterator p = this->needs_.begin(); 1589 p != this->needs_.end(); 1590 ++p) 1591 { 1592 if ((*p)->filename() == filename) 1593 { 1594 vn = *p; 1595 break; 1596 } 1597 } 1598 1599 if (vn == NULL) 1600 { 1601 // Create base version definition lazily for shared library. 1602 if (this->needs_base_version_) 1603 this->define_base_version(dynpool); 1604 1605 // We have a new filename. 1606 vn = new Verneed(filename); 1607 this->needs_.push_back(vn); 1608 } 1609 1610 ins.first->second = vn->add_name(name); 1611 } 1612 1613 // Set the version indexes. Create a new dynamic version symbol for 1614 // each new version definition. 1615 1616 unsigned int 1617 Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index, 1618 std::vector<Symbol*>* syms) 1619 { 1620 gold_assert(!this->is_finalized_); 1621 1622 unsigned int vi = 1; 1623 1624 for (Defs::iterator p = this->defs_.begin(); 1625 p != this->defs_.end(); 1626 ++p) 1627 { 1628 (*p)->set_index(vi); 1629 ++vi; 1630 1631 // Create a version symbol if necessary. 1632 if (!(*p)->is_symbol_created()) 1633 { 1634 Symbol* vsym = symtab->define_as_constant((*p)->name(), 1635 (*p)->name(), 1636 Symbol_table::PREDEFINED, 1637 0, 0, 1638 elfcpp::STT_OBJECT, 1639 elfcpp::STB_GLOBAL, 1640 elfcpp::STV_DEFAULT, 0, 1641 false, false); 1642 vsym->set_needs_dynsym_entry(); 1643 vsym->set_dynsym_index(dynsym_index); 1644 vsym->set_is_default(); 1645 ++dynsym_index; 1646 syms->push_back(vsym); 1647 // The name is already in the dynamic pool. 1648 } 1649 } 1650 1651 // Index 1 is used for global symbols. 1652 if (vi == 1) 1653 { 1654 gold_assert(this->defs_.empty()); 1655 vi = 2; 1656 } 1657 1658 for (Needs::iterator p = this->needs_.begin(); 1659 p != this->needs_.end(); 1660 ++p) 1661 vi = (*p)->finalize(vi); 1662 1663 this->is_finalized_ = true; 1664 1665 return dynsym_index; 1666 } 1667 1668 // Return the version index to use for a symbol. This does two hash 1669 // table lookups: one in DYNPOOL and one in this->version_table_. 1670 // Another approach alternative would be store a pointer in SYM, which 1671 // would increase the size of the symbol table. Or perhaps we could 1672 // use a hash table from dynamic symbol pointer values to Version_base 1673 // pointers. 1674 1675 unsigned int 1676 Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool, 1677 const Symbol* sym) const 1678 { 1679 Stringpool::Key version_key; 1680 const char* version = dynpool->find(sym->version(), &version_key); 1681 gold_assert(version != NULL); 1682 1683 Key k; 1684 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj()) 1685 { 1686 if (!parameters->options().shared()) 1687 return elfcpp::VER_NDX_GLOBAL; 1688 k = Key(version_key, 0); 1689 } 1690 else 1691 { 1692 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym); 1693 1694 Stringpool::Key filename_key; 1695 const char* filename = dynpool->find(dynobj->soname(), &filename_key); 1696 gold_assert(filename != NULL); 1697 1698 k = Key(version_key, filename_key); 1699 } 1700 1701 Version_table::const_iterator p = this->version_table_.find(k); 1702 gold_assert(p != this->version_table_.end()); 1703 1704 return p->second->index(); 1705 } 1706 1707 // Return an allocated buffer holding the contents of the symbol 1708 // version section. 1709 1710 template<int size, bool big_endian> 1711 void 1712 Versions::symbol_section_contents(const Symbol_table* symtab, 1713 const Stringpool* dynpool, 1714 unsigned int local_symcount, 1715 const std::vector<Symbol*>& syms, 1716 unsigned char** pp, 1717 unsigned int* psize) const 1718 { 1719 gold_assert(this->is_finalized_); 1720 1721 unsigned int sz = (local_symcount + syms.size()) * 2; 1722 unsigned char* pbuf = new unsigned char[sz]; 1723 1724 for (unsigned int i = 0; i < local_symcount; ++i) 1725 elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2, 1726 elfcpp::VER_NDX_LOCAL); 1727 1728 for (std::vector<Symbol*>::const_iterator p = syms.begin(); 1729 p != syms.end(); 1730 ++p) 1731 { 1732 unsigned int version_index; 1733 const char* version = (*p)->version(); 1734 if (version != NULL) 1735 version_index = this->version_index(symtab, dynpool, *p); 1736 else 1737 { 1738 if ((*p)->is_defined() && !(*p)->is_from_dynobj()) 1739 version_index = elfcpp::VER_NDX_GLOBAL; 1740 else 1741 version_index = elfcpp::VER_NDX_LOCAL; 1742 } 1743 // If the symbol was defined as foo@V1 instead of foo@@V1, add 1744 // the hidden bit. 1745 if ((*p)->version() != NULL && !(*p)->is_default()) 1746 version_index |= elfcpp::VERSYM_HIDDEN; 1747 elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2, 1748 version_index); 1749 } 1750 1751 *pp = pbuf; 1752 *psize = sz; 1753 } 1754 1755 // Return an allocated buffer holding the contents of the version 1756 // definition section. 1757 1758 template<int size, bool big_endian> 1759 void 1760 Versions::def_section_contents(const Stringpool* dynpool, 1761 unsigned char** pp, unsigned int* psize, 1762 unsigned int* pentries) const 1763 { 1764 gold_assert(this->is_finalized_); 1765 gold_assert(!this->defs_.empty()); 1766 1767 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size; 1768 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size; 1769 1770 unsigned int sz = 0; 1771 for (Defs::const_iterator p = this->defs_.begin(); 1772 p != this->defs_.end(); 1773 ++p) 1774 { 1775 sz += verdef_size + verdaux_size; 1776 sz += (*p)->count_dependencies() * verdaux_size; 1777 } 1778 1779 unsigned char* pbuf = new unsigned char[sz]; 1780 1781 unsigned char* pb = pbuf; 1782 Defs::const_iterator p; 1783 unsigned int i; 1784 for (p = this->defs_.begin(), i = 0; 1785 p != this->defs_.end(); 1786 ++p, ++i) 1787 pb = (*p)->write<size, big_endian>(dynpool, 1788 i + 1 >= this->defs_.size(), 1789 pb); 1790 1791 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz); 1792 1793 *pp = pbuf; 1794 *psize = sz; 1795 *pentries = this->defs_.size(); 1796 } 1797 1798 // Return an allocated buffer holding the contents of the version 1799 // reference section. 1800 1801 template<int size, bool big_endian> 1802 void 1803 Versions::need_section_contents(const Stringpool* dynpool, 1804 unsigned char** pp, unsigned int* psize, 1805 unsigned int* pentries) const 1806 { 1807 gold_assert(this->is_finalized_); 1808 gold_assert(!this->needs_.empty()); 1809 1810 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size; 1811 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size; 1812 1813 unsigned int sz = 0; 1814 for (Needs::const_iterator p = this->needs_.begin(); 1815 p != this->needs_.end(); 1816 ++p) 1817 { 1818 sz += verneed_size; 1819 sz += (*p)->count_versions() * vernaux_size; 1820 } 1821 1822 unsigned char* pbuf = new unsigned char[sz]; 1823 1824 unsigned char* pb = pbuf; 1825 Needs::const_iterator p; 1826 unsigned int i; 1827 for (p = this->needs_.begin(), i = 0; 1828 p != this->needs_.end(); 1829 ++p, ++i) 1830 pb = (*p)->write<size, big_endian>(dynpool, 1831 i + 1 >= this->needs_.size(), 1832 pb); 1833 1834 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz); 1835 1836 *pp = pbuf; 1837 *psize = sz; 1838 *pentries = this->needs_.size(); 1839 } 1840 1841 // Instantiate the templates we need. We could use the configure 1842 // script to restrict this to only the ones for implemented targets. 1843 1844 #ifdef HAVE_TARGET_32_LITTLE 1845 template 1846 class Sized_dynobj<32, false>; 1847 #endif 1848 1849 #ifdef HAVE_TARGET_32_BIG 1850 template 1851 class Sized_dynobj<32, true>; 1852 #endif 1853 1854 #ifdef HAVE_TARGET_64_LITTLE 1855 template 1856 class Sized_dynobj<64, false>; 1857 #endif 1858 1859 #ifdef HAVE_TARGET_64_BIG 1860 template 1861 class Sized_dynobj<64, true>; 1862 #endif 1863 1864 #ifdef HAVE_TARGET_32_LITTLE 1865 template 1866 void 1867 Versions::symbol_section_contents<32, false>( 1868 const Symbol_table*, 1869 const Stringpool*, 1870 unsigned int, 1871 const std::vector<Symbol*>&, 1872 unsigned char**, 1873 unsigned int*) const; 1874 #endif 1875 1876 #ifdef HAVE_TARGET_32_BIG 1877 template 1878 void 1879 Versions::symbol_section_contents<32, true>( 1880 const Symbol_table*, 1881 const Stringpool*, 1882 unsigned int, 1883 const std::vector<Symbol*>&, 1884 unsigned char**, 1885 unsigned int*) const; 1886 #endif 1887 1888 #ifdef HAVE_TARGET_64_LITTLE 1889 template 1890 void 1891 Versions::symbol_section_contents<64, false>( 1892 const Symbol_table*, 1893 const Stringpool*, 1894 unsigned int, 1895 const std::vector<Symbol*>&, 1896 unsigned char**, 1897 unsigned int*) const; 1898 #endif 1899 1900 #ifdef HAVE_TARGET_64_BIG 1901 template 1902 void 1903 Versions::symbol_section_contents<64, true>( 1904 const Symbol_table*, 1905 const Stringpool*, 1906 unsigned int, 1907 const std::vector<Symbol*>&, 1908 unsigned char**, 1909 unsigned int*) const; 1910 #endif 1911 1912 #ifdef HAVE_TARGET_32_LITTLE 1913 template 1914 void 1915 Versions::def_section_contents<32, false>( 1916 const Stringpool*, 1917 unsigned char**, 1918 unsigned int*, 1919 unsigned int*) const; 1920 #endif 1921 1922 #ifdef HAVE_TARGET_32_BIG 1923 template 1924 void 1925 Versions::def_section_contents<32, true>( 1926 const Stringpool*, 1927 unsigned char**, 1928 unsigned int*, 1929 unsigned int*) const; 1930 #endif 1931 1932 #ifdef HAVE_TARGET_64_LITTLE 1933 template 1934 void 1935 Versions::def_section_contents<64, false>( 1936 const Stringpool*, 1937 unsigned char**, 1938 unsigned int*, 1939 unsigned int*) const; 1940 #endif 1941 1942 #ifdef HAVE_TARGET_64_BIG 1943 template 1944 void 1945 Versions::def_section_contents<64, true>( 1946 const Stringpool*, 1947 unsigned char**, 1948 unsigned int*, 1949 unsigned int*) const; 1950 #endif 1951 1952 #ifdef HAVE_TARGET_32_LITTLE 1953 template 1954 void 1955 Versions::need_section_contents<32, false>( 1956 const Stringpool*, 1957 unsigned char**, 1958 unsigned int*, 1959 unsigned int*) const; 1960 #endif 1961 1962 #ifdef HAVE_TARGET_32_BIG 1963 template 1964 void 1965 Versions::need_section_contents<32, true>( 1966 const Stringpool*, 1967 unsigned char**, 1968 unsigned int*, 1969 unsigned int*) const; 1970 #endif 1971 1972 #ifdef HAVE_TARGET_64_LITTLE 1973 template 1974 void 1975 Versions::need_section_contents<64, false>( 1976 const Stringpool*, 1977 unsigned char**, 1978 unsigned int*, 1979 unsigned int*) const; 1980 #endif 1981 1982 #ifdef HAVE_TARGET_64_BIG 1983 template 1984 void 1985 Versions::need_section_contents<64, true>( 1986 const Stringpool*, 1987 unsigned char**, 1988 unsigned int*, 1989 unsigned int*) const; 1990 #endif 1991 1992 } // End namespace gold. 1993