Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // Preconditioners for linear systems that arise in Structure from
     32 // Motion problems. VisibilityBasedPreconditioner implements:
     33 //
     34 //  CLUSTER_JACOBI
     35 //  CLUSTER_TRIDIAGONAL
     36 //
     37 // Detailed descriptions of these preconditions beyond what is
     38 // documented here can be found in
     39 //
     40 // Visibility Based Preconditioning for Bundle Adjustment
     41 // A. Kushal & S. Agarwal, CVPR 2012.
     42 //
     43 // http://www.cs.washington.edu/homes/sagarwal/vbp.pdf
     44 //
     45 // The two preconditioners share enough code that its most efficient
     46 // to implement them as part of the same code base.
     47 
     48 #ifndef CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
     49 #define CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
     50 
     51 #include <set>
     52 #include <vector>
     53 #include <utility>
     54 #include "ceres/collections_port.h"
     55 #include "ceres/graph.h"
     56 #include "ceres/internal/macros.h"
     57 #include "ceres/internal/scoped_ptr.h"
     58 #include "ceres/linear_solver.h"
     59 #include "ceres/preconditioner.h"
     60 #include "ceres/suitesparse.h"
     61 
     62 namespace ceres {
     63 namespace internal {
     64 
     65 class BlockRandomAccessSparseMatrix;
     66 class BlockSparseMatrix;
     67 struct CompressedRowBlockStructure;
     68 class SchurEliminatorBase;
     69 
     70 // This class implements visibility based preconditioners for
     71 // Structure from Motion/Bundle Adjustment problems. The name
     72 // VisibilityBasedPreconditioner comes from the fact that the sparsity
     73 // structure of the preconditioner matrix is determined by analyzing
     74 // the visibility structure of the scene, i.e. which cameras see which
     75 // points.
     76 //
     77 // The key idea of visibility based preconditioning is to identify
     78 // cameras that we expect have strong interactions, and then using the
     79 // entries in the Schur complement matrix corresponding to these
     80 // camera pairs as an approximation to the full Schur complement.
     81 //
     82 // CLUSTER_JACOBI identifies these camera pairs by clustering cameras,
     83 // and considering all non-zero camera pairs within each cluster. The
     84 // clustering in the current implementation is done using the
     85 // Canonical Views algorithm of Simon et al. (see
     86 // canonical_views_clustering.h). For the purposes of clustering, the
     87 // similarity or the degree of interaction between a pair of cameras
     88 // is measured by counting the number of points visible in both the
     89 // cameras. Thus the name VisibilityBasedPreconditioner. Further, if we
     90 // were to permute the parameter blocks such that all the cameras in
     91 // the same cluster occur contiguously, the preconditioner matrix will
     92 // be a block diagonal matrix with blocks corresponding to the
     93 // clusters. Thus in analogy with the Jacobi preconditioner we refer
     94 // to this as the CLUSTER_JACOBI preconditioner.
     95 //
     96 // CLUSTER_TRIDIAGONAL adds more mass to the CLUSTER_JACOBI
     97 // preconditioner by considering the interaction between clusters and
     98 // identifying strong interactions between cluster pairs. This is done
     99 // by constructing a weighted graph on the clusters, with the weight
    100 // on the edges connecting two clusters proportional to the number of
    101 // 3D points visible to cameras in both the clusters. A degree-2
    102 // maximum spanning forest is identified in this graph and the camera
    103 // pairs contained in the edges of this forest are added to the
    104 // preconditioner. The detailed reasoning for this construction is
    105 // explained in the paper mentioned above.
    106 //
    107 // Degree-2 spanning trees and forests have the property that they
    108 // correspond to tri-diagonal matrices. Thus there exist a permutation
    109 // of the camera blocks under which the CLUSTER_TRIDIAGONAL
    110 // preconditioner matrix is a block tridiagonal matrix, and thus the
    111 // name for the preconditioner.
    112 //
    113 // Thread Safety: This class is NOT thread safe.
    114 //
    115 // Example usage:
    116 //
    117 //   LinearSolver::Options options;
    118 //   options.preconditioner_type = CLUSTER_JACOBI;
    119 //   options.elimination_groups.push_back(num_points);
    120 //   options.elimination_groups.push_back(num_cameras);
    121 //   VisibilityBasedPreconditioner preconditioner(
    122 //      *A.block_structure(), options);
    123 //   preconditioner.Update(A, NULL);
    124 //   preconditioner.RightMultiply(x, y);
    125 //
    126 #ifndef CERES_NO_SUITESPARSE
    127 class VisibilityBasedPreconditioner : public BlockSparseMatrixPreconditioner {
    128  public:
    129   // Initialize the symbolic structure of the preconditioner. bs is
    130   // the block structure of the linear system to be solved. It is used
    131   // to determine the sparsity structure of the preconditioner matrix.
    132   //
    133   // It has the same structural requirement as other Schur complement
    134   // based solvers. Please see schur_eliminator.h for more details.
    135   VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,
    136                                 const Preconditioner::Options& options);
    137   virtual ~VisibilityBasedPreconditioner();
    138 
    139   // Preconditioner interface
    140   virtual void RightMultiply(const double* x, double* y) const;
    141   virtual int num_rows() const;
    142 
    143   friend class VisibilityBasedPreconditionerTest;
    144 
    145  private:
    146   virtual bool UpdateImpl(const BlockSparseMatrix& A, const double* D);
    147   void ComputeClusterJacobiSparsity(const CompressedRowBlockStructure& bs);
    148   void ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure& bs);
    149   void InitStorage(const CompressedRowBlockStructure& bs);
    150   void InitEliminator(const CompressedRowBlockStructure& bs);
    151   LinearSolverTerminationType Factorize();
    152   void ScaleOffDiagonalCells();
    153 
    154   void ClusterCameras(const vector< set<int> >& visibility);
    155   void FlattenMembershipMap(const HashMap<int, int>& membership_map,
    156                             vector<int>* membership_vector) const;
    157   void ComputeClusterVisibility(const vector<set<int> >& visibility,
    158                                 vector<set<int> >* cluster_visibility) const;
    159   Graph<int>* CreateClusterGraph(const vector<set<int> >& visibility) const;
    160   void ForestToClusterPairs(const Graph<int>& forest,
    161                             HashSet<pair<int, int> >* cluster_pairs) const;
    162   void ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure& bs);
    163   bool IsBlockPairInPreconditioner(int block1, int block2) const;
    164   bool IsBlockPairOffDiagonal(int block1, int block2) const;
    165 
    166   Preconditioner::Options options_;
    167 
    168   // Number of parameter blocks in the schur complement.
    169   int num_blocks_;
    170   int num_clusters_;
    171 
    172   // Sizes of the blocks in the schur complement.
    173   vector<int> block_size_;
    174 
    175   // Mapping from cameras to clusters.
    176   vector<int> cluster_membership_;
    177 
    178   // Non-zero camera pairs from the schur complement matrix that are
    179   // present in the preconditioner, sorted by row (first element of
    180   // each pair), then column (second).
    181   set<pair<int, int> > block_pairs_;
    182 
    183   // Set of cluster pairs (including self pairs (i,i)) in the
    184   // preconditioner.
    185   HashSet<pair<int, int> > cluster_pairs_;
    186   scoped_ptr<SchurEliminatorBase> eliminator_;
    187 
    188   // Preconditioner matrix.
    189   scoped_ptr<BlockRandomAccessSparseMatrix> m_;
    190 
    191   // RightMultiply is a const method for LinearOperators. It is
    192   // implemented using CHOLMOD's sparse triangular matrix solve
    193   // function. This however requires non-const access to the
    194   // SuiteSparse context object, even though it does not result in any
    195   // of the state of the preconditioner being modified.
    196   SuiteSparse ss_;
    197 
    198   // Symbolic and numeric factorization of the preconditioner.
    199   cholmod_factor* factor_;
    200 
    201   // Temporary vector used by RightMultiply.
    202   cholmod_dense* tmp_rhs_;
    203   CERES_DISALLOW_COPY_AND_ASSIGN(VisibilityBasedPreconditioner);
    204 };
    205 #else  // SuiteSparse
    206 // If SuiteSparse is not compiled in, the preconditioner is not
    207 // available.
    208 class VisibilityBasedPreconditioner : public BlockSparseMatrixPreconditioner {
    209  public:
    210   VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,
    211                                 const Preconditioner::Options& options) {
    212     LOG(FATAL) << "Visibility based preconditioning is not available. Please "
    213         "build Ceres with SuiteSparse.";
    214   }
    215   virtual ~VisibilityBasedPreconditioner() {}
    216   virtual void RightMultiply(const double* x, double* y) const {}
    217   virtual void LeftMultiply(const double* x, double* y) const {}
    218   virtual int num_rows() const { return -1; }
    219   virtual int num_cols() const { return -1; }
    220 
    221  private:
    222   bool UpdateImpl(const BlockSparseMatrix& A, const double* D) {
    223     return false;
    224   }
    225 };
    226 #endif  // CERES_NO_SUITESPARSE
    227 
    228 }  // namespace internal
    229 }  // namespace ceres
    230 
    231 #endif  // CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
    232