1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate information gleaned from the 11 // target register and register class definitions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenRegisters.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/IntEqClasses.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/TableGen/Error.h" 24 25 using namespace llvm; 26 27 #define DEBUG_TYPE "regalloc-emitter" 28 29 //===----------------------------------------------------------------------===// 30 // CodeGenSubRegIndex 31 //===----------------------------------------------------------------------===// 32 33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 34 : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 35 Name = R->getName(); 36 if (R->getValue("Namespace")) 37 Namespace = R->getValueAsString("Namespace"); 38 Size = R->getValueAsInt("Size"); 39 Offset = R->getValueAsInt("Offset"); 40 } 41 42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 43 unsigned Enum) 44 : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1), 45 EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 46 } 47 48 std::string CodeGenSubRegIndex::getQualifiedName() const { 49 std::string N = getNamespace(); 50 if (!N.empty()) 51 N += "::"; 52 N += getName(); 53 return N; 54 } 55 56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 57 if (!TheDef) 58 return; 59 60 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 61 if (!Comps.empty()) { 62 if (Comps.size() != 2) 63 PrintFatalError(TheDef->getLoc(), 64 "ComposedOf must have exactly two entries"); 65 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 66 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 67 CodeGenSubRegIndex *X = A->addComposite(B, this); 68 if (X) 69 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 70 } 71 72 std::vector<Record*> Parts = 73 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 74 if (!Parts.empty()) { 75 if (Parts.size() < 2) 76 PrintFatalError(TheDef->getLoc(), 77 "CoveredBySubRegs must have two or more entries"); 78 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 79 for (unsigned i = 0, e = Parts.size(); i != e; ++i) 80 IdxParts.push_back(RegBank.getSubRegIdx(Parts[i])); 81 RegBank.addConcatSubRegIndex(IdxParts, this); 82 } 83 } 84 85 unsigned CodeGenSubRegIndex::computeLaneMask() const { 86 // Already computed? 87 if (LaneMask) 88 return LaneMask; 89 90 // Recursion guard, shouldn't be required. 91 LaneMask = ~0u; 92 93 // The lane mask is simply the union of all sub-indices. 94 unsigned M = 0; 95 for (const auto &C : Composed) 96 M |= C.second->computeLaneMask(); 97 assert(M && "Missing lane mask, sub-register cycle?"); 98 LaneMask = M; 99 return LaneMask; 100 } 101 102 //===----------------------------------------------------------------------===// 103 // CodeGenRegister 104 //===----------------------------------------------------------------------===// 105 106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 107 : TheDef(R), 108 EnumValue(Enum), 109 CostPerUse(R->getValueAsInt("CostPerUse")), 110 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 111 HasDisjunctSubRegs(false), 112 SubRegsComplete(false), 113 SuperRegsComplete(false), 114 TopoSig(~0u) 115 {} 116 117 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 118 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 119 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 120 121 if (SRIs.size() != SRs.size()) 122 PrintFatalError(TheDef->getLoc(), 123 "SubRegs and SubRegIndices must have the same size"); 124 125 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 126 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 127 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 128 } 129 130 // Also compute leading super-registers. Each register has a list of 131 // covered-by-subregs super-registers where it appears as the first explicit 132 // sub-register. 133 // 134 // This is used by computeSecondarySubRegs() to find candidates. 135 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 136 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 137 138 // Add ad hoc alias links. This is a symmetric relationship between two 139 // registers, so build a symmetric graph by adding links in both ends. 140 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 141 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { 142 CodeGenRegister *Reg = RegBank.getReg(Aliases[i]); 143 ExplicitAliases.push_back(Reg); 144 Reg->ExplicitAliases.push_back(this); 145 } 146 } 147 148 const std::string &CodeGenRegister::getName() const { 149 assert(TheDef && "no def"); 150 return TheDef->getName(); 151 } 152 153 namespace { 154 // Iterate over all register units in a set of registers. 155 class RegUnitIterator { 156 CodeGenRegister::Vec::const_iterator RegI, RegE; 157 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 158 159 public: 160 RegUnitIterator(const CodeGenRegister::Vec &Regs): 161 RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() { 162 163 if (RegI != RegE) { 164 UnitI = (*RegI)->getRegUnits().begin(); 165 UnitE = (*RegI)->getRegUnits().end(); 166 advance(); 167 } 168 } 169 170 bool isValid() const { return UnitI != UnitE; } 171 172 unsigned operator* () const { assert(isValid()); return *UnitI; } 173 174 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 175 176 /// Preincrement. Move to the next unit. 177 void operator++() { 178 assert(isValid() && "Cannot advance beyond the last operand"); 179 ++UnitI; 180 advance(); 181 } 182 183 protected: 184 void advance() { 185 while (UnitI == UnitE) { 186 if (++RegI == RegE) 187 break; 188 UnitI = (*RegI)->getRegUnits().begin(); 189 UnitE = (*RegI)->getRegUnits().end(); 190 } 191 } 192 }; 193 } // namespace 194 195 // Return true of this unit appears in RegUnits. 196 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 197 return RegUnits.test(Unit); 198 } 199 200 // Inherit register units from subregisters. 201 // Return true if the RegUnits changed. 202 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 203 bool changed = false; 204 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 205 I != E; ++I) { 206 CodeGenRegister *SR = I->second; 207 // Merge the subregister's units into this register's RegUnits. 208 changed |= (RegUnits |= SR->RegUnits); 209 } 210 211 return changed; 212 } 213 214 const CodeGenRegister::SubRegMap & 215 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 216 // Only compute this map once. 217 if (SubRegsComplete) 218 return SubRegs; 219 SubRegsComplete = true; 220 221 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 222 223 // First insert the explicit subregs and make sure they are fully indexed. 224 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 225 CodeGenRegister *SR = ExplicitSubRegs[i]; 226 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 227 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 228 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 229 " appears twice in Register " + getName()); 230 // Map explicit sub-registers first, so the names take precedence. 231 // The inherited sub-registers are mapped below. 232 SubReg2Idx.insert(std::make_pair(SR, Idx)); 233 } 234 235 // Keep track of inherited subregs and how they can be reached. 236 SmallPtrSet<CodeGenRegister*, 8> Orphans; 237 238 // Clone inherited subregs and place duplicate entries in Orphans. 239 // Here the order is important - earlier subregs take precedence. 240 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 241 CodeGenRegister *SR = ExplicitSubRegs[i]; 242 const SubRegMap &Map = SR->computeSubRegs(RegBank); 243 HasDisjunctSubRegs |= SR->HasDisjunctSubRegs; 244 245 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 246 ++SI) { 247 if (!SubRegs.insert(*SI).second) 248 Orphans.insert(SI->second); 249 } 250 } 251 252 // Expand any composed subreg indices. 253 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 254 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 255 // expanded subreg indices recursively. 256 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 257 for (unsigned i = 0; i != Indices.size(); ++i) { 258 CodeGenSubRegIndex *Idx = Indices[i]; 259 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 260 CodeGenRegister *SR = SubRegs[Idx]; 261 const SubRegMap &Map = SR->computeSubRegs(RegBank); 262 263 // Look at the possible compositions of Idx. 264 // They may not all be supported by SR. 265 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), 266 E = Comps.end(); I != E; ++I) { 267 SubRegMap::const_iterator SRI = Map.find(I->first); 268 if (SRI == Map.end()) 269 continue; // Idx + I->first doesn't exist in SR. 270 // Add I->second as a name for the subreg SRI->second, assuming it is 271 // orphaned, and the name isn't already used for something else. 272 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) 273 continue; 274 // We found a new name for the orphaned sub-register. 275 SubRegs.insert(std::make_pair(I->second, SRI->second)); 276 Indices.push_back(I->second); 277 } 278 } 279 280 // Now Orphans contains the inherited subregisters without a direct index. 281 // Create inferred indexes for all missing entries. 282 // Work backwards in the Indices vector in order to compose subregs bottom-up. 283 // Consider this subreg sequence: 284 // 285 // qsub_1 -> dsub_0 -> ssub_0 286 // 287 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 288 // can be reached in two different ways: 289 // 290 // qsub_1 -> ssub_0 291 // dsub_2 -> ssub_0 292 // 293 // We pick the latter composition because another register may have [dsub_0, 294 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 295 // dsub_2 -> ssub_0 composition can be shared. 296 while (!Indices.empty() && !Orphans.empty()) { 297 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 298 CodeGenRegister *SR = SubRegs[Idx]; 299 const SubRegMap &Map = SR->computeSubRegs(RegBank); 300 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 301 ++SI) 302 if (Orphans.erase(SI->second)) 303 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second; 304 } 305 306 // Compute the inverse SubReg -> Idx map. 307 for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end(); 308 SI != SE; ++SI) { 309 if (SI->second == this) { 310 ArrayRef<SMLoc> Loc; 311 if (TheDef) 312 Loc = TheDef->getLoc(); 313 PrintFatalError(Loc, "Register " + getName() + 314 " has itself as a sub-register"); 315 } 316 317 // Compute AllSuperRegsCovered. 318 if (!CoveredBySubRegs) 319 SI->first->AllSuperRegsCovered = false; 320 321 // Ensure that every sub-register has a unique name. 322 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 323 SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first; 324 if (Ins->second == SI->first) 325 continue; 326 // Trouble: Two different names for SI->second. 327 ArrayRef<SMLoc> Loc; 328 if (TheDef) 329 Loc = TheDef->getLoc(); 330 PrintFatalError(Loc, "Sub-register can't have two names: " + 331 SI->second->getName() + " available as " + 332 SI->first->getName() + " and " + Ins->second->getName()); 333 } 334 335 // Derive possible names for sub-register concatenations from any explicit 336 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 337 // that getConcatSubRegIndex() won't invent any concatenated indices that the 338 // user already specified. 339 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 340 CodeGenRegister *SR = ExplicitSubRegs[i]; 341 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1) 342 continue; 343 344 // SR is composed of multiple sub-regs. Find their names in this register. 345 SmallVector<CodeGenSubRegIndex*, 8> Parts; 346 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) 347 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 348 349 // Offer this as an existing spelling for the concatenation of Parts. 350 RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]); 351 } 352 353 // Initialize RegUnitList. Because getSubRegs is called recursively, this 354 // processes the register hierarchy in postorder. 355 // 356 // Inherit all sub-register units. It is good enough to look at the explicit 357 // sub-registers, the other registers won't contribute any more units. 358 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 359 CodeGenRegister *SR = ExplicitSubRegs[i]; 360 RegUnits |= SR->RegUnits; 361 } 362 363 // Absent any ad hoc aliasing, we create one register unit per leaf register. 364 // These units correspond to the maximal cliques in the register overlap 365 // graph which is optimal. 366 // 367 // When there is ad hoc aliasing, we simply create one unit per edge in the 368 // undirected ad hoc aliasing graph. Technically, we could do better by 369 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 370 // are extremely rare anyway (I've never seen one), so we don't bother with 371 // the added complexity. 372 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 373 CodeGenRegister *AR = ExplicitAliases[i]; 374 // Only visit each edge once. 375 if (AR->SubRegsComplete) 376 continue; 377 // Create a RegUnit representing this alias edge, and add it to both 378 // registers. 379 unsigned Unit = RegBank.newRegUnit(this, AR); 380 RegUnits.set(Unit); 381 AR->RegUnits.set(Unit); 382 } 383 384 // Finally, create units for leaf registers without ad hoc aliases. Note that 385 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 386 // necessary. This means the aliasing leaf registers can share a single unit. 387 if (RegUnits.empty()) 388 RegUnits.set(RegBank.newRegUnit(this)); 389 390 // We have now computed the native register units. More may be adopted later 391 // for balancing purposes. 392 NativeRegUnits = RegUnits; 393 394 return SubRegs; 395 } 396 397 // In a register that is covered by its sub-registers, try to find redundant 398 // sub-registers. For example: 399 // 400 // QQ0 = {Q0, Q1} 401 // Q0 = {D0, D1} 402 // Q1 = {D2, D3} 403 // 404 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 405 // the register definition. 406 // 407 // The explicitly specified registers form a tree. This function discovers 408 // sub-register relationships that would force a DAG. 409 // 410 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 411 // Collect new sub-registers first, add them later. 412 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 413 414 // Look at the leading super-registers of each sub-register. Those are the 415 // candidates for new sub-registers, assuming they are fully contained in 416 // this register. 417 for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){ 418 const CodeGenRegister *SubReg = I->second; 419 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 420 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 421 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 422 // Already got this sub-register? 423 if (Cand == this || getSubRegIndex(Cand)) 424 continue; 425 // Check if each component of Cand is already a sub-register. 426 // We know that the first component is I->second, and is present with the 427 // name I->first. 428 SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first); 429 assert(!Cand->ExplicitSubRegs.empty() && 430 "Super-register has no sub-registers"); 431 for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) { 432 if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j])) 433 Parts.push_back(Idx); 434 else { 435 // Sub-register doesn't exist. 436 Parts.clear(); 437 break; 438 } 439 } 440 // If some Cand sub-register is not part of this register, or if Cand only 441 // has one sub-register, there is nothing to do. 442 if (Parts.size() <= 1) 443 continue; 444 445 // Each part of Cand is a sub-register of this. Make the full Cand also 446 // a sub-register with a concatenated sub-register index. 447 CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts); 448 NewSubRegs.push_back(std::make_pair(Concat, Cand)); 449 } 450 } 451 452 // Now add all the new sub-registers. 453 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 454 // Don't add Cand if another sub-register is already using the index. 455 if (!SubRegs.insert(NewSubRegs[i]).second) 456 continue; 457 458 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 459 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 460 SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx)); 461 } 462 463 // Create sub-register index composition maps for the synthesized indices. 464 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 465 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 466 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 467 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), 468 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { 469 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); 470 if (!SubIdx) 471 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 472 SI->second->getName() + " in " + getName()); 473 NewIdx->addComposite(SI->first, SubIdx); 474 } 475 } 476 } 477 478 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 479 // Only visit each register once. 480 if (SuperRegsComplete) 481 return; 482 SuperRegsComplete = true; 483 484 // Make sure all sub-registers have been visited first, so the super-reg 485 // lists will be topologically ordered. 486 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 487 I != E; ++I) 488 I->second->computeSuperRegs(RegBank); 489 490 // Now add this as a super-register on all sub-registers. 491 // Also compute the TopoSigId in post-order. 492 TopoSigId Id; 493 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 494 I != E; ++I) { 495 // Topological signature computed from SubIdx, TopoId(SubReg). 496 // Loops and idempotent indices have TopoSig = ~0u. 497 Id.push_back(I->first->EnumValue); 498 Id.push_back(I->second->TopoSig); 499 500 // Don't add duplicate entries. 501 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) 502 continue; 503 I->second->SuperRegs.push_back(this); 504 } 505 TopoSig = RegBank.getTopoSig(Id); 506 } 507 508 void 509 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 510 CodeGenRegBank &RegBank) const { 511 assert(SubRegsComplete && "Must precompute sub-registers"); 512 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 513 CodeGenRegister *SR = ExplicitSubRegs[i]; 514 if (OSet.insert(SR)) 515 SR->addSubRegsPreOrder(OSet, RegBank); 516 } 517 // Add any secondary sub-registers that weren't part of the explicit tree. 518 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 519 I != E; ++I) 520 OSet.insert(I->second); 521 } 522 523 // Get the sum of this register's unit weights. 524 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 525 unsigned Weight = 0; 526 for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end(); 527 I != E; ++I) { 528 Weight += RegBank.getRegUnit(*I).Weight; 529 } 530 return Weight; 531 } 532 533 //===----------------------------------------------------------------------===// 534 // RegisterTuples 535 //===----------------------------------------------------------------------===// 536 537 // A RegisterTuples def is used to generate pseudo-registers from lists of 538 // sub-registers. We provide a SetTheory expander class that returns the new 539 // registers. 540 namespace { 541 struct TupleExpander : SetTheory::Expander { 542 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 543 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 544 unsigned Dim = Indices.size(); 545 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 546 if (Dim != SubRegs->size()) 547 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 548 if (Dim < 2) 549 PrintFatalError(Def->getLoc(), 550 "Tuples must have at least 2 sub-registers"); 551 552 // Evaluate the sub-register lists to be zipped. 553 unsigned Length = ~0u; 554 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 555 for (unsigned i = 0; i != Dim; ++i) { 556 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 557 Length = std::min(Length, unsigned(Lists[i].size())); 558 } 559 560 if (Length == 0) 561 return; 562 563 // Precompute some types. 564 Record *RegisterCl = Def->getRecords().getClass("Register"); 565 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 566 StringInit *BlankName = StringInit::get(""); 567 568 // Zip them up. 569 for (unsigned n = 0; n != Length; ++n) { 570 std::string Name; 571 Record *Proto = Lists[0][n]; 572 std::vector<Init*> Tuple; 573 unsigned CostPerUse = 0; 574 for (unsigned i = 0; i != Dim; ++i) { 575 Record *Reg = Lists[i][n]; 576 if (i) Name += '_'; 577 Name += Reg->getName(); 578 Tuple.push_back(DefInit::get(Reg)); 579 CostPerUse = std::max(CostPerUse, 580 unsigned(Reg->getValueAsInt("CostPerUse"))); 581 } 582 583 // Create a new Record representing the synthesized register. This record 584 // is only for consumption by CodeGenRegister, it is not added to the 585 // RecordKeeper. 586 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); 587 Elts.insert(NewReg); 588 589 // Copy Proto super-classes. 590 ArrayRef<Record *> Supers = Proto->getSuperClasses(); 591 ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges(); 592 for (unsigned i = 0, e = Supers.size(); i != e; ++i) 593 NewReg->addSuperClass(Supers[i], Ranges[i]); 594 595 // Copy Proto fields. 596 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 597 RecordVal RV = Proto->getValues()[i]; 598 599 // Skip existing fields, like NAME. 600 if (NewReg->getValue(RV.getNameInit())) 601 continue; 602 603 StringRef Field = RV.getName(); 604 605 // Replace the sub-register list with Tuple. 606 if (Field == "SubRegs") 607 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 608 609 // Provide a blank AsmName. MC hacks are required anyway. 610 if (Field == "AsmName") 611 RV.setValue(BlankName); 612 613 // CostPerUse is aggregated from all Tuple members. 614 if (Field == "CostPerUse") 615 RV.setValue(IntInit::get(CostPerUse)); 616 617 // Composite registers are always covered by sub-registers. 618 if (Field == "CoveredBySubRegs") 619 RV.setValue(BitInit::get(true)); 620 621 // Copy fields from the RegisterTuples def. 622 if (Field == "SubRegIndices" || 623 Field == "CompositeIndices") { 624 NewReg->addValue(*Def->getValue(Field)); 625 continue; 626 } 627 628 // Some fields get their default uninitialized value. 629 if (Field == "DwarfNumbers" || 630 Field == "DwarfAlias" || 631 Field == "Aliases") { 632 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 633 NewReg->addValue(*DefRV); 634 continue; 635 } 636 637 // Everything else is copied from Proto. 638 NewReg->addValue(RV); 639 } 640 } 641 } 642 }; 643 } 644 645 //===----------------------------------------------------------------------===// 646 // CodeGenRegisterClass 647 //===----------------------------------------------------------------------===// 648 649 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 650 std::sort(M.begin(), M.end(), deref<llvm::less>()); 651 M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end()); 652 } 653 654 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 655 : TheDef(R), 656 Name(R->getName()), 657 TopoSigs(RegBank.getNumTopoSigs()), 658 EnumValue(-1), 659 LaneMask(0) { 660 // Rename anonymous register classes. 661 if (R->getName().size() > 9 && R->getName()[9] == '.') { 662 static unsigned AnonCounter = 0; 663 R->setName("AnonRegClass_" + utostr(AnonCounter++)); 664 } 665 666 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 667 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 668 Record *Type = TypeList[i]; 669 if (!Type->isSubClassOf("ValueType")) 670 PrintFatalError("RegTypes list member '" + Type->getName() + 671 "' does not derive from the ValueType class!"); 672 VTs.push_back(getValueType(Type)); 673 } 674 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 675 676 // Allocation order 0 is the full set. AltOrders provides others. 677 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 678 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 679 Orders.resize(1 + AltOrders->size()); 680 681 // Default allocation order always contains all registers. 682 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 683 Orders[0].push_back((*Elements)[i]); 684 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 685 Members.push_back(Reg); 686 TopoSigs.set(Reg->getTopoSig()); 687 } 688 sortAndUniqueRegisters(Members); 689 690 // Alternative allocation orders may be subsets. 691 SetTheory::RecSet Order; 692 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 693 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 694 Orders[1 + i].append(Order.begin(), Order.end()); 695 // Verify that all altorder members are regclass members. 696 while (!Order.empty()) { 697 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 698 Order.pop_back(); 699 if (!contains(Reg)) 700 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 701 " is not a class member"); 702 } 703 } 704 705 // Allow targets to override the size in bits of the RegisterClass. 706 unsigned Size = R->getValueAsInt("Size"); 707 708 Namespace = R->getValueAsString("Namespace"); 709 SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits(); 710 SpillAlignment = R->getValueAsInt("Alignment"); 711 CopyCost = R->getValueAsInt("CopyCost"); 712 Allocatable = R->getValueAsBit("isAllocatable"); 713 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 714 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 715 if (AllocationPriority < 0 || AllocationPriority > 63) 716 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 717 this->AllocationPriority = AllocationPriority; 718 } 719 720 // Create an inferred register class that was missing from the .td files. 721 // Most properties will be inherited from the closest super-class after the 722 // class structure has been computed. 723 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 724 StringRef Name, Key Props) 725 : Members(*Props.Members), 726 TheDef(nullptr), 727 Name(Name), 728 TopoSigs(RegBank.getNumTopoSigs()), 729 EnumValue(-1), 730 SpillSize(Props.SpillSize), 731 SpillAlignment(Props.SpillAlignment), 732 CopyCost(0), 733 Allocatable(true), 734 AllocationPriority(0) { 735 for (const auto R : Members) 736 TopoSigs.set(R->getTopoSig()); 737 } 738 739 // Compute inherited propertied for a synthesized register class. 740 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 741 assert(!getDef() && "Only synthesized classes can inherit properties"); 742 assert(!SuperClasses.empty() && "Synthesized class without super class"); 743 744 // The last super-class is the smallest one. 745 CodeGenRegisterClass &Super = *SuperClasses.back(); 746 747 // Most properties are copied directly. 748 // Exceptions are members, size, and alignment 749 Namespace = Super.Namespace; 750 VTs = Super.VTs; 751 CopyCost = Super.CopyCost; 752 Allocatable = Super.Allocatable; 753 AltOrderSelect = Super.AltOrderSelect; 754 AllocationPriority = Super.AllocationPriority; 755 756 // Copy all allocation orders, filter out foreign registers from the larger 757 // super-class. 758 Orders.resize(Super.Orders.size()); 759 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 760 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 761 if (contains(RegBank.getReg(Super.Orders[i][j]))) 762 Orders[i].push_back(Super.Orders[i][j]); 763 } 764 765 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 766 return std::binary_search(Members.begin(), Members.end(), Reg, 767 deref<llvm::less>()); 768 } 769 770 namespace llvm { 771 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 772 OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; 773 for (const auto R : *K.Members) 774 OS << ", " << R->getName(); 775 return OS << " }"; 776 } 777 } 778 779 // This is a simple lexicographical order that can be used to search for sets. 780 // It is not the same as the topological order provided by TopoOrderRC. 781 bool CodeGenRegisterClass::Key:: 782 operator<(const CodeGenRegisterClass::Key &B) const { 783 assert(Members && B.Members); 784 return std::tie(*Members, SpillSize, SpillAlignment) < 785 std::tie(*B.Members, B.SpillSize, B.SpillAlignment); 786 } 787 788 // Returns true if RC is a strict subclass. 789 // RC is a sub-class of this class if it is a valid replacement for any 790 // instruction operand where a register of this classis required. It must 791 // satisfy these conditions: 792 // 793 // 1. All RC registers are also in this. 794 // 2. The RC spill size must not be smaller than our spill size. 795 // 3. RC spill alignment must be compatible with ours. 796 // 797 static bool testSubClass(const CodeGenRegisterClass *A, 798 const CodeGenRegisterClass *B) { 799 return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && 800 A->SpillSize <= B->SpillSize && 801 std::includes(A->getMembers().begin(), A->getMembers().end(), 802 B->getMembers().begin(), B->getMembers().end(), 803 deref<llvm::less>()); 804 } 805 806 /// Sorting predicate for register classes. This provides a topological 807 /// ordering that arranges all register classes before their sub-classes. 808 /// 809 /// Register classes with the same registers, spill size, and alignment form a 810 /// clique. They will be ordered alphabetically. 811 /// 812 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 813 const CodeGenRegisterClass &PB) { 814 auto *A = &PA; 815 auto *B = &PB; 816 if (A == B) 817 return 0; 818 819 // Order by ascending spill size. 820 if (A->SpillSize < B->SpillSize) 821 return true; 822 if (A->SpillSize > B->SpillSize) 823 return false; 824 825 // Order by ascending spill alignment. 826 if (A->SpillAlignment < B->SpillAlignment) 827 return true; 828 if (A->SpillAlignment > B->SpillAlignment) 829 return false; 830 831 // Order by descending set size. Note that the classes' allocation order may 832 // not have been computed yet. The Members set is always vaild. 833 if (A->getMembers().size() > B->getMembers().size()) 834 return true; 835 if (A->getMembers().size() < B->getMembers().size()) 836 return false; 837 838 // Finally order by name as a tie breaker. 839 return StringRef(A->getName()) < B->getName(); 840 } 841 842 std::string CodeGenRegisterClass::getQualifiedName() const { 843 if (Namespace.empty()) 844 return getName(); 845 else 846 return Namespace + "::" + getName(); 847 } 848 849 // Compute sub-classes of all register classes. 850 // Assume the classes are ordered topologically. 851 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 852 auto &RegClasses = RegBank.getRegClasses(); 853 854 // Visit backwards so sub-classes are seen first. 855 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 856 CodeGenRegisterClass &RC = *I; 857 RC.SubClasses.resize(RegClasses.size()); 858 RC.SubClasses.set(RC.EnumValue); 859 860 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 861 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 862 CodeGenRegisterClass &SubRC = *I2; 863 if (RC.SubClasses.test(SubRC.EnumValue)) 864 continue; 865 if (!testSubClass(&RC, &SubRC)) 866 continue; 867 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 868 // check them again. 869 RC.SubClasses |= SubRC.SubClasses; 870 } 871 872 // Sweep up missed clique members. They will be immediately preceding RC. 873 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 874 RC.SubClasses.set(I2->EnumValue); 875 } 876 877 // Compute the SuperClasses lists from the SubClasses vectors. 878 for (auto &RC : RegClasses) { 879 const BitVector &SC = RC.getSubClasses(); 880 auto I = RegClasses.begin(); 881 for (int s = 0, next_s = SC.find_first(); next_s != -1; 882 next_s = SC.find_next(s)) { 883 std::advance(I, next_s - s); 884 s = next_s; 885 if (&*I == &RC) 886 continue; 887 I->SuperClasses.push_back(&RC); 888 } 889 } 890 891 // With the class hierarchy in place, let synthesized register classes inherit 892 // properties from their closest super-class. The iteration order here can 893 // propagate properties down multiple levels. 894 for (auto &RC : RegClasses) 895 if (!RC.getDef()) 896 RC.inheritProperties(RegBank); 897 } 898 899 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 900 BitVector &Out) const { 901 auto FindI = SuperRegClasses.find(SubIdx); 902 if (FindI == SuperRegClasses.end()) 903 return; 904 for (CodeGenRegisterClass *RC : FindI->second) 905 Out.set(RC->EnumValue); 906 } 907 908 // Populate a unique sorted list of units from a register set. 909 void CodeGenRegisterClass::buildRegUnitSet( 910 std::vector<unsigned> &RegUnits) const { 911 std::vector<unsigned> TmpUnits; 912 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) 913 TmpUnits.push_back(*UnitI); 914 std::sort(TmpUnits.begin(), TmpUnits.end()); 915 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 916 std::back_inserter(RegUnits)); 917 } 918 919 //===----------------------------------------------------------------------===// 920 // CodeGenRegBank 921 //===----------------------------------------------------------------------===// 922 923 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) { 924 // Configure register Sets to understand register classes and tuples. 925 Sets.addFieldExpander("RegisterClass", "MemberList"); 926 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 927 Sets.addExpander("RegisterTuples", llvm::make_unique<TupleExpander>()); 928 929 // Read in the user-defined (named) sub-register indices. 930 // More indices will be synthesized later. 931 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 932 std::sort(SRIs.begin(), SRIs.end(), LessRecord()); 933 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 934 getSubRegIdx(SRIs[i]); 935 // Build composite maps from ComposedOf fields. 936 for (auto &Idx : SubRegIndices) 937 Idx.updateComponents(*this); 938 939 // Read in the register definitions. 940 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 941 std::sort(Regs.begin(), Regs.end(), LessRecordRegister()); 942 // Assign the enumeration values. 943 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 944 getReg(Regs[i]); 945 946 // Expand tuples and number the new registers. 947 std::vector<Record*> Tups = 948 Records.getAllDerivedDefinitions("RegisterTuples"); 949 950 for (Record *R : Tups) { 951 std::vector<Record *> TupRegs = *Sets.expand(R); 952 std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister()); 953 for (Record *RC : TupRegs) 954 getReg(RC); 955 } 956 957 // Now all the registers are known. Build the object graph of explicit 958 // register-register references. 959 for (auto &Reg : Registers) 960 Reg.buildObjectGraph(*this); 961 962 // Compute register name map. 963 for (auto &Reg : Registers) 964 // FIXME: This could just be RegistersByName[name] = register, except that 965 // causes some failures in MIPS - perhaps they have duplicate register name 966 // entries? (or maybe there's a reason for it - I don't know much about this 967 // code, just drive-by refactoring) 968 RegistersByName.insert( 969 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 970 971 // Precompute all sub-register maps. 972 // This will create Composite entries for all inferred sub-register indices. 973 for (auto &Reg : Registers) 974 Reg.computeSubRegs(*this); 975 976 // Infer even more sub-registers by combining leading super-registers. 977 for (auto &Reg : Registers) 978 if (Reg.CoveredBySubRegs) 979 Reg.computeSecondarySubRegs(*this); 980 981 // After the sub-register graph is complete, compute the topologically 982 // ordered SuperRegs list. 983 for (auto &Reg : Registers) 984 Reg.computeSuperRegs(*this); 985 986 // Native register units are associated with a leaf register. They've all been 987 // discovered now. 988 NumNativeRegUnits = RegUnits.size(); 989 990 // Read in register class definitions. 991 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 992 if (RCs.empty()) 993 PrintFatalError("No 'RegisterClass' subclasses defined!"); 994 995 // Allocate user-defined register classes. 996 for (auto *RC : RCs) { 997 RegClasses.emplace_back(*this, RC); 998 addToMaps(&RegClasses.back()); 999 } 1000 1001 // Infer missing classes to create a full algebra. 1002 computeInferredRegisterClasses(); 1003 1004 // Order register classes topologically and assign enum values. 1005 RegClasses.sort(TopoOrderRC); 1006 unsigned i = 0; 1007 for (auto &RC : RegClasses) 1008 RC.EnumValue = i++; 1009 CodeGenRegisterClass::computeSubClasses(*this); 1010 } 1011 1012 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1013 CodeGenSubRegIndex* 1014 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1015 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1016 return &SubRegIndices.back(); 1017 } 1018 1019 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1020 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1021 if (Idx) 1022 return Idx; 1023 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1024 Idx = &SubRegIndices.back(); 1025 return Idx; 1026 } 1027 1028 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1029 CodeGenRegister *&Reg = Def2Reg[Def]; 1030 if (Reg) 1031 return Reg; 1032 Registers.emplace_back(Def, Registers.size() + 1); 1033 Reg = &Registers.back(); 1034 return Reg; 1035 } 1036 1037 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1038 if (Record *Def = RC->getDef()) 1039 Def2RC.insert(std::make_pair(Def, RC)); 1040 1041 // Duplicate classes are rejected by insert(). 1042 // That's OK, we only care about the properties handled by CGRC::Key. 1043 CodeGenRegisterClass::Key K(*RC); 1044 Key2RC.insert(std::make_pair(K, RC)); 1045 } 1046 1047 // Create a synthetic sub-class if it is missing. 1048 CodeGenRegisterClass* 1049 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1050 const CodeGenRegister::Vec *Members, 1051 StringRef Name) { 1052 // Synthetic sub-class has the same size and alignment as RC. 1053 CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment); 1054 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1055 if (FoundI != Key2RC.end()) 1056 return FoundI->second; 1057 1058 // Sub-class doesn't exist, create a new one. 1059 RegClasses.emplace_back(*this, Name, K); 1060 addToMaps(&RegClasses.back()); 1061 return &RegClasses.back(); 1062 } 1063 1064 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { 1065 if (CodeGenRegisterClass *RC = Def2RC[Def]) 1066 return RC; 1067 1068 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1069 } 1070 1071 CodeGenSubRegIndex* 1072 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1073 CodeGenSubRegIndex *B) { 1074 // Look for an existing entry. 1075 CodeGenSubRegIndex *Comp = A->compose(B); 1076 if (Comp) 1077 return Comp; 1078 1079 // None exists, synthesize one. 1080 std::string Name = A->getName() + "_then_" + B->getName(); 1081 Comp = createSubRegIndex(Name, A->getNamespace()); 1082 A->addComposite(B, Comp); 1083 return Comp; 1084 } 1085 1086 CodeGenSubRegIndex *CodeGenRegBank:: 1087 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1088 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1089 1090 // Look for an existing entry. 1091 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1092 if (Idx) 1093 return Idx; 1094 1095 // None exists, synthesize one. 1096 std::string Name = Parts.front()->getName(); 1097 // Determine whether all parts are contiguous. 1098 bool isContinuous = true; 1099 unsigned Size = Parts.front()->Size; 1100 unsigned LastOffset = Parts.front()->Offset; 1101 unsigned LastSize = Parts.front()->Size; 1102 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1103 Name += '_'; 1104 Name += Parts[i]->getName(); 1105 Size += Parts[i]->Size; 1106 if (Parts[i]->Offset != (LastOffset + LastSize)) 1107 isContinuous = false; 1108 LastOffset = Parts[i]->Offset; 1109 LastSize = Parts[i]->Size; 1110 } 1111 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1112 Idx->Size = Size; 1113 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1114 return Idx; 1115 } 1116 1117 void CodeGenRegBank::computeComposites() { 1118 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1119 // and many registers will share TopoSigs on regular architectures. 1120 BitVector TopoSigs(getNumTopoSigs()); 1121 1122 for (const auto &Reg1 : Registers) { 1123 // Skip identical subreg structures already processed. 1124 if (TopoSigs.test(Reg1.getTopoSig())) 1125 continue; 1126 TopoSigs.set(Reg1.getTopoSig()); 1127 1128 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1129 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), 1130 e1 = SRM1.end(); i1 != e1; ++i1) { 1131 CodeGenSubRegIndex *Idx1 = i1->first; 1132 CodeGenRegister *Reg2 = i1->second; 1133 // Ignore identity compositions. 1134 if (&Reg1 == Reg2) 1135 continue; 1136 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1137 // Try composing Idx1 with another SubRegIndex. 1138 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), 1139 e2 = SRM2.end(); i2 != e2; ++i2) { 1140 CodeGenSubRegIndex *Idx2 = i2->first; 1141 CodeGenRegister *Reg3 = i2->second; 1142 // Ignore identity compositions. 1143 if (Reg2 == Reg3) 1144 continue; 1145 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1146 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1147 assert(Idx3 && "Sub-register doesn't have an index"); 1148 1149 // Conflicting composition? Emit a warning but allow it. 1150 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) 1151 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1152 " and " + Idx2->getQualifiedName() + 1153 " compose ambiguously as " + Prev->getQualifiedName() + 1154 " or " + Idx3->getQualifiedName()); 1155 } 1156 } 1157 } 1158 } 1159 1160 // Compute lane masks. This is similar to register units, but at the 1161 // sub-register index level. Each bit in the lane mask is like a register unit 1162 // class, and two lane masks will have a bit in common if two sub-register 1163 // indices overlap in some register. 1164 // 1165 // Conservatively share a lane mask bit if two sub-register indices overlap in 1166 // some registers, but not in others. That shouldn't happen a lot. 1167 void CodeGenRegBank::computeSubRegLaneMasks() { 1168 // First assign individual bits to all the leaf indices. 1169 unsigned Bit = 0; 1170 // Determine mask of lanes that cover their registers. 1171 CoveringLanes = ~0u; 1172 for (auto &Idx : SubRegIndices) { 1173 if (Idx.getComposites().empty()) { 1174 if (Bit > 32) { 1175 PrintFatalError( 1176 Twine("Ran out of lanemask bits to represent subregister ") 1177 + Idx.getName()); 1178 } 1179 Idx.LaneMask = 1u << Bit; 1180 ++Bit; 1181 } else { 1182 Idx.LaneMask = 0; 1183 } 1184 } 1185 1186 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1187 // here is that for each possible target subregister we look at the leafs 1188 // in the subregister graph that compose for this target and create 1189 // transformation sequences for the lanemasks. Each step in the sequence 1190 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1191 // are usually the same for many subregisters we can easily combine the steps 1192 // by combining the masks. 1193 for (const auto &Idx : SubRegIndices) { 1194 const auto &Composites = Idx.getComposites(); 1195 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1196 // Go through all leaf subregisters and find the ones that compose with Idx. 1197 // These make out all possible valid bits in the lane mask we want to 1198 // transform. Looking only at the leafs ensure that only a single bit in 1199 // the mask is set. 1200 unsigned NextBit = 0; 1201 for (auto &Idx2 : SubRegIndices) { 1202 // Skip non-leaf subregisters. 1203 if (!Idx2.getComposites().empty()) 1204 continue; 1205 // Replicate the behaviour from the lane mask generation loop above. 1206 unsigned SrcBit = NextBit; 1207 unsigned SrcMask = 1u << SrcBit; 1208 if (NextBit < 31) 1209 ++NextBit; 1210 assert(Idx2.LaneMask == SrcMask); 1211 1212 // Get the composed subregister if there is any. 1213 auto C = Composites.find(&Idx2); 1214 if (C == Composites.end()) 1215 continue; 1216 const CodeGenSubRegIndex *Composite = C->second; 1217 // The Composed subreg should be a leaf subreg too 1218 assert(Composite->getComposites().empty()); 1219 1220 // Create Mask+Rotate operation and merge with existing ops if possible. 1221 unsigned DstBit = Log2_32(Composite->LaneMask); 1222 int Shift = DstBit - SrcBit; 1223 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift; 1224 for (auto &I : LaneTransforms) { 1225 if (I.RotateLeft == RotateLeft) { 1226 I.Mask |= SrcMask; 1227 SrcMask = 0; 1228 } 1229 } 1230 if (SrcMask != 0) { 1231 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1232 LaneTransforms.push_back(MaskRol); 1233 } 1234 } 1235 // Optimize if the transformation consists of one step only: Set mask to 1236 // 0xffffffff (including some irrelevant invalid bits) so that it should 1237 // merge with more entries later while compressing the table. 1238 if (LaneTransforms.size() == 1) 1239 LaneTransforms[0].Mask = ~0u; 1240 1241 // Further compression optimization: For invalid compositions resulting 1242 // in a sequence with 0 entries we can just pick any other. Choose 1243 // Mask 0xffffffff with Rotation 0. 1244 if (LaneTransforms.size() == 0) { 1245 MaskRolPair P = { ~0u, 0 }; 1246 LaneTransforms.push_back(P); 1247 } 1248 } 1249 1250 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1251 // by the sub-register graph? This doesn't occur in any known targets. 1252 1253 // Inherit lanes from composites. 1254 for (const auto &Idx : SubRegIndices) { 1255 unsigned Mask = Idx.computeLaneMask(); 1256 // If some super-registers without CoveredBySubRegs use this index, we can 1257 // no longer assume that the lanes are covering their registers. 1258 if (!Idx.AllSuperRegsCovered) 1259 CoveringLanes &= ~Mask; 1260 } 1261 1262 // Compute lane mask combinations for register classes. 1263 for (auto &RegClass : RegClasses) { 1264 unsigned LaneMask = 0; 1265 for (const auto &SubRegIndex : SubRegIndices) { 1266 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1267 continue; 1268 LaneMask |= SubRegIndex.LaneMask; 1269 } 1270 1271 // For classes without any subregisters set LaneMask to ~0u instead of 0. 1272 // This makes it easier for client code to handle classes uniformly. 1273 if (LaneMask == 0) 1274 LaneMask = ~0u; 1275 1276 RegClass.LaneMask = LaneMask; 1277 } 1278 } 1279 1280 namespace { 1281 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1282 // the transitive closure of the union of overlapping register 1283 // classes. Together, the UberRegSets form a partition of the registers. If we 1284 // consider overlapping register classes to be connected, then each UberRegSet 1285 // is a set of connected components. 1286 // 1287 // An UberRegSet will likely be a horizontal slice of register names of 1288 // the same width. Nontrivial subregisters should then be in a separate 1289 // UberRegSet. But this property isn't required for valid computation of 1290 // register unit weights. 1291 // 1292 // A Weight field caches the max per-register unit weight in each UberRegSet. 1293 // 1294 // A set of SingularDeterminants flags single units of some register in this set 1295 // for which the unit weight equals the set weight. These units should not have 1296 // their weight increased. 1297 struct UberRegSet { 1298 CodeGenRegister::Vec Regs; 1299 unsigned Weight; 1300 CodeGenRegister::RegUnitList SingularDeterminants; 1301 1302 UberRegSet(): Weight(0) {} 1303 }; 1304 } // namespace 1305 1306 // Partition registers into UberRegSets, where each set is the transitive 1307 // closure of the union of overlapping register classes. 1308 // 1309 // UberRegSets[0] is a special non-allocatable set. 1310 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1311 std::vector<UberRegSet*> &RegSets, 1312 CodeGenRegBank &RegBank) { 1313 1314 const auto &Registers = RegBank.getRegisters(); 1315 1316 // The Register EnumValue is one greater than its index into Registers. 1317 assert(Registers.size() == Registers.back().EnumValue && 1318 "register enum value mismatch"); 1319 1320 // For simplicitly make the SetID the same as EnumValue. 1321 IntEqClasses UberSetIDs(Registers.size()+1); 1322 std::set<unsigned> AllocatableRegs; 1323 for (auto &RegClass : RegBank.getRegClasses()) { 1324 if (!RegClass.Allocatable) 1325 continue; 1326 1327 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1328 if (Regs.empty()) 1329 continue; 1330 1331 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1332 assert(USetID && "register number 0 is invalid"); 1333 1334 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1335 for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) { 1336 AllocatableRegs.insert((*I)->EnumValue); 1337 UberSetIDs.join(USetID, (*I)->EnumValue); 1338 } 1339 } 1340 // Combine non-allocatable regs. 1341 for (const auto &Reg : Registers) { 1342 unsigned RegNum = Reg.EnumValue; 1343 if (AllocatableRegs.count(RegNum)) 1344 continue; 1345 1346 UberSetIDs.join(0, RegNum); 1347 } 1348 UberSetIDs.compress(); 1349 1350 // Make the first UberSet a special unallocatable set. 1351 unsigned ZeroID = UberSetIDs[0]; 1352 1353 // Insert Registers into the UberSets formed by union-find. 1354 // Do not resize after this. 1355 UberSets.resize(UberSetIDs.getNumClasses()); 1356 unsigned i = 0; 1357 for (const CodeGenRegister &Reg : Registers) { 1358 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1359 if (!USetID) 1360 USetID = ZeroID; 1361 else if (USetID == ZeroID) 1362 USetID = 0; 1363 1364 UberRegSet *USet = &UberSets[USetID]; 1365 USet->Regs.push_back(&Reg); 1366 sortAndUniqueRegisters(USet->Regs); 1367 RegSets[i++] = USet; 1368 } 1369 } 1370 1371 // Recompute each UberSet weight after changing unit weights. 1372 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1373 CodeGenRegBank &RegBank) { 1374 // Skip the first unallocatable set. 1375 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1376 E = UberSets.end(); I != E; ++I) { 1377 1378 // Initialize all unit weights in this set, and remember the max units/reg. 1379 const CodeGenRegister *Reg = nullptr; 1380 unsigned MaxWeight = 0, Weight = 0; 1381 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1382 if (Reg != UnitI.getReg()) { 1383 if (Weight > MaxWeight) 1384 MaxWeight = Weight; 1385 Reg = UnitI.getReg(); 1386 Weight = 0; 1387 } 1388 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1389 if (!UWeight) { 1390 UWeight = 1; 1391 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1392 } 1393 Weight += UWeight; 1394 } 1395 if (Weight > MaxWeight) 1396 MaxWeight = Weight; 1397 if (I->Weight != MaxWeight) { 1398 DEBUG( 1399 dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight; 1400 for (auto &Unit : I->Regs) 1401 dbgs() << " " << Unit->getName(); 1402 dbgs() << "\n"); 1403 // Update the set weight. 1404 I->Weight = MaxWeight; 1405 } 1406 1407 // Find singular determinants. 1408 for (const auto R : I->Regs) { 1409 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1410 I->SingularDeterminants |= R->getRegUnits(); 1411 } 1412 } 1413 } 1414 } 1415 1416 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1417 // a register and its subregisters so that they have the same weight as their 1418 // UberSet. Self-recursion processes the subregister tree in postorder so 1419 // subregisters are normalized first. 1420 // 1421 // Side effects: 1422 // - creates new adopted register units 1423 // - causes superregisters to inherit adopted units 1424 // - increases the weight of "singular" units 1425 // - induces recomputation of UberWeights. 1426 static bool normalizeWeight(CodeGenRegister *Reg, 1427 std::vector<UberRegSet> &UberSets, 1428 std::vector<UberRegSet*> &RegSets, 1429 SparseBitVector<> &NormalRegs, 1430 CodeGenRegister::RegUnitList &NormalUnits, 1431 CodeGenRegBank &RegBank) { 1432 if (NormalRegs.test(Reg->EnumValue)) 1433 return false; 1434 NormalRegs.set(Reg->EnumValue); 1435 1436 bool Changed = false; 1437 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1438 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), 1439 SRE = SRM.end(); SRI != SRE; ++SRI) { 1440 if (SRI->second == Reg) 1441 continue; // self-cycles happen 1442 1443 Changed |= normalizeWeight(SRI->second, UberSets, RegSets, 1444 NormalRegs, NormalUnits, RegBank); 1445 } 1446 // Postorder register normalization. 1447 1448 // Inherit register units newly adopted by subregisters. 1449 if (Reg->inheritRegUnits(RegBank)) 1450 computeUberWeights(UberSets, RegBank); 1451 1452 // Check if this register is too skinny for its UberRegSet. 1453 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1454 1455 unsigned RegWeight = Reg->getWeight(RegBank); 1456 if (UberSet->Weight > RegWeight) { 1457 // A register unit's weight can be adjusted only if it is the singular unit 1458 // for this register, has not been used to normalize a subregister's set, 1459 // and has not already been used to singularly determine this UberRegSet. 1460 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1461 if (Reg->getRegUnits().count() != 1 1462 || hasRegUnit(NormalUnits, AdjustUnit) 1463 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1464 // We don't have an adjustable unit, so adopt a new one. 1465 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1466 Reg->adoptRegUnit(AdjustUnit); 1467 // Adopting a unit does not immediately require recomputing set weights. 1468 } 1469 else { 1470 // Adjust the existing single unit. 1471 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1472 // The unit may be shared among sets and registers within this set. 1473 computeUberWeights(UberSets, RegBank); 1474 } 1475 Changed = true; 1476 } 1477 1478 // Mark these units normalized so superregisters can't change their weights. 1479 NormalUnits |= Reg->getRegUnits(); 1480 1481 return Changed; 1482 } 1483 1484 // Compute a weight for each register unit created during getSubRegs. 1485 // 1486 // The goal is that two registers in the same class will have the same weight, 1487 // where each register's weight is defined as sum of its units' weights. 1488 void CodeGenRegBank::computeRegUnitWeights() { 1489 std::vector<UberRegSet> UberSets; 1490 std::vector<UberRegSet*> RegSets(Registers.size()); 1491 computeUberSets(UberSets, RegSets, *this); 1492 // UberSets and RegSets are now immutable. 1493 1494 computeUberWeights(UberSets, *this); 1495 1496 // Iterate over each Register, normalizing the unit weights until reaching 1497 // a fix point. 1498 unsigned NumIters = 0; 1499 for (bool Changed = true; Changed; ++NumIters) { 1500 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1501 Changed = false; 1502 for (auto &Reg : Registers) { 1503 CodeGenRegister::RegUnitList NormalUnits; 1504 SparseBitVector<> NormalRegs; 1505 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1506 NormalUnits, *this); 1507 } 1508 } 1509 } 1510 1511 // Find a set in UniqueSets with the same elements as Set. 1512 // Return an iterator into UniqueSets. 1513 static std::vector<RegUnitSet>::const_iterator 1514 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1515 const RegUnitSet &Set) { 1516 std::vector<RegUnitSet>::const_iterator 1517 I = UniqueSets.begin(), E = UniqueSets.end(); 1518 for(;I != E; ++I) { 1519 if (I->Units == Set.Units) 1520 break; 1521 } 1522 return I; 1523 } 1524 1525 // Return true if the RUSubSet is a subset of RUSuperSet. 1526 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1527 const std::vector<unsigned> &RUSuperSet) { 1528 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1529 RUSubSet.begin(), RUSubSet.end()); 1530 } 1531 1532 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1533 /// but with one or two registers removed. We occasionally have registers like 1534 /// APSR and PC thrown in with the general registers. We also see many 1535 /// special-purpose register subsets, such as tail-call and Thumb 1536 /// encodings. Generating all possible overlapping sets is combinatorial and 1537 /// overkill for modeling pressure. Ideally we could fix this statically in 1538 /// tablegen by (1) having the target define register classes that only include 1539 /// the allocatable registers and marking other classes as non-allocatable and 1540 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1541 /// the purpose of pressure. However, we make an attempt to handle targets that 1542 /// are not nicely defined by merging nearly identical register unit sets 1543 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1544 /// set limit by filtering the reserved registers. 1545 /// 1546 /// Merge sets only if the units have the same weight. For example, on ARM, 1547 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1548 /// should not expand the S set to include D regs. 1549 void CodeGenRegBank::pruneUnitSets() { 1550 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1551 1552 // Form an equivalence class of UnitSets with no significant difference. 1553 std::vector<unsigned> SuperSetIDs; 1554 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1555 SubIdx != EndIdx; ++SubIdx) { 1556 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1557 unsigned SuperIdx = 0; 1558 for (; SuperIdx != EndIdx; ++SuperIdx) { 1559 if (SuperIdx == SubIdx) 1560 continue; 1561 1562 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1563 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1564 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1565 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1566 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1567 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1568 DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1569 << "\n"); 1570 // We can pick any of the set names for the merged set. Go for the 1571 // shortest one to avoid picking the name of one of the classes that are 1572 // artificially created by tablegen. So "FPR128_lo" instead of 1573 // "QQQQ_with_qsub3_in_FPR128_lo". 1574 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1575 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1576 break; 1577 } 1578 } 1579 if (SuperIdx == EndIdx) 1580 SuperSetIDs.push_back(SubIdx); 1581 } 1582 // Populate PrunedUnitSets with each equivalence class's superset. 1583 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1584 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1585 unsigned SuperIdx = SuperSetIDs[i]; 1586 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1587 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1588 } 1589 RegUnitSets.swap(PrunedUnitSets); 1590 } 1591 1592 // Create a RegUnitSet for each RegClass that contains all units in the class 1593 // including adopted units that are necessary to model register pressure. Then 1594 // iteratively compute RegUnitSets such that the union of any two overlapping 1595 // RegUnitSets is repreresented. 1596 // 1597 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1598 // RegUnitSet that is a superset of that RegUnitClass. 1599 void CodeGenRegBank::computeRegUnitSets() { 1600 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1601 1602 // Compute a unique RegUnitSet for each RegClass. 1603 auto &RegClasses = getRegClasses(); 1604 for (auto &RC : RegClasses) { 1605 if (!RC.Allocatable) 1606 continue; 1607 1608 // Speculatively grow the RegUnitSets to hold the new set. 1609 RegUnitSets.resize(RegUnitSets.size() + 1); 1610 RegUnitSets.back().Name = RC.getName(); 1611 1612 // Compute a sorted list of units in this class. 1613 RC.buildRegUnitSet(RegUnitSets.back().Units); 1614 1615 // Find an existing RegUnitSet. 1616 std::vector<RegUnitSet>::const_iterator SetI = 1617 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1618 if (SetI != std::prev(RegUnitSets.end())) 1619 RegUnitSets.pop_back(); 1620 } 1621 1622 DEBUG(dbgs() << "\nBefore pruning:\n"; 1623 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1624 USIdx < USEnd; ++USIdx) { 1625 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1626 << ":"; 1627 for (auto &U : RegUnitSets[USIdx].Units) 1628 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1629 dbgs() << "\n"; 1630 }); 1631 1632 // Iteratively prune unit sets. 1633 pruneUnitSets(); 1634 1635 DEBUG(dbgs() << "\nBefore union:\n"; 1636 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1637 USIdx < USEnd; ++USIdx) { 1638 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1639 << ":"; 1640 for (auto &U : RegUnitSets[USIdx].Units) 1641 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1642 dbgs() << "\n"; 1643 } 1644 dbgs() << "\nUnion sets:\n"); 1645 1646 // Iterate over all unit sets, including new ones added by this loop. 1647 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1648 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1649 // In theory, this is combinatorial. In practice, it needs to be bounded 1650 // by a small number of sets for regpressure to be efficient. 1651 // If the assert is hit, we need to implement pruning. 1652 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1653 1654 // Compare new sets with all original classes. 1655 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1656 SearchIdx != EndIdx; ++SearchIdx) { 1657 std::set<unsigned> Intersection; 1658 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1659 RegUnitSets[Idx].Units.end(), 1660 RegUnitSets[SearchIdx].Units.begin(), 1661 RegUnitSets[SearchIdx].Units.end(), 1662 std::inserter(Intersection, Intersection.begin())); 1663 if (Intersection.empty()) 1664 continue; 1665 1666 // Speculatively grow the RegUnitSets to hold the new set. 1667 RegUnitSets.resize(RegUnitSets.size() + 1); 1668 RegUnitSets.back().Name = 1669 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; 1670 1671 std::set_union(RegUnitSets[Idx].Units.begin(), 1672 RegUnitSets[Idx].Units.end(), 1673 RegUnitSets[SearchIdx].Units.begin(), 1674 RegUnitSets[SearchIdx].Units.end(), 1675 std::inserter(RegUnitSets.back().Units, 1676 RegUnitSets.back().Units.begin())); 1677 1678 // Find an existing RegUnitSet, or add the union to the unique sets. 1679 std::vector<RegUnitSet>::const_iterator SetI = 1680 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1681 if (SetI != std::prev(RegUnitSets.end())) 1682 RegUnitSets.pop_back(); 1683 else { 1684 DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1 1685 << " " << RegUnitSets.back().Name << ":"; 1686 for (auto &U : RegUnitSets.back().Units) 1687 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1688 dbgs() << "\n";); 1689 } 1690 } 1691 } 1692 1693 // Iteratively prune unit sets after inferring supersets. 1694 pruneUnitSets(); 1695 1696 DEBUG(dbgs() << "\n"; 1697 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1698 USIdx < USEnd; ++USIdx) { 1699 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1700 << ":"; 1701 for (auto &U : RegUnitSets[USIdx].Units) 1702 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1703 dbgs() << "\n"; 1704 }); 1705 1706 // For each register class, list the UnitSets that are supersets. 1707 RegClassUnitSets.resize(RegClasses.size()); 1708 int RCIdx = -1; 1709 for (auto &RC : RegClasses) { 1710 ++RCIdx; 1711 if (!RC.Allocatable) 1712 continue; 1713 1714 // Recompute the sorted list of units in this class. 1715 std::vector<unsigned> RCRegUnits; 1716 RC.buildRegUnitSet(RCRegUnits); 1717 1718 // Don't increase pressure for unallocatable regclasses. 1719 if (RCRegUnits.empty()) 1720 continue; 1721 1722 DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n"; 1723 for (auto &U : RCRegUnits) 1724 dbgs() << RegUnits[U].getRoots()[0]->getName() << " "; 1725 dbgs() << "\n UnitSetIDs:"); 1726 1727 // Find all supersets. 1728 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1729 USIdx != USEnd; ++USIdx) { 1730 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 1731 DEBUG(dbgs() << " " << USIdx); 1732 RegClassUnitSets[RCIdx].push_back(USIdx); 1733 } 1734 } 1735 DEBUG(dbgs() << "\n"); 1736 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 1737 } 1738 1739 // For each register unit, ensure that we have the list of UnitSets that 1740 // contain the unit. Normally, this matches an existing list of UnitSets for a 1741 // register class. If not, we create a new entry in RegClassUnitSets as a 1742 // "fake" register class. 1743 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 1744 UnitIdx < UnitEnd; ++UnitIdx) { 1745 std::vector<unsigned> RUSets; 1746 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 1747 RegUnitSet &RUSet = RegUnitSets[i]; 1748 if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx) 1749 == RUSet.Units.end()) 1750 continue; 1751 RUSets.push_back(i); 1752 } 1753 unsigned RCUnitSetsIdx = 0; 1754 for (unsigned e = RegClassUnitSets.size(); 1755 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 1756 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 1757 break; 1758 } 1759 } 1760 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 1761 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 1762 // Create a new list of UnitSets as a "fake" register class. 1763 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 1764 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 1765 } 1766 } 1767 } 1768 1769 void CodeGenRegBank::computeRegUnitLaneMasks() { 1770 for (auto &Register : Registers) { 1771 // Create an initial lane mask for all register units. 1772 const auto &RegUnits = Register.getRegUnits(); 1773 CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), 0); 1774 // Iterate through SubRegisters. 1775 typedef CodeGenRegister::SubRegMap SubRegMap; 1776 const SubRegMap &SubRegs = Register.getSubRegs(); 1777 for (SubRegMap::const_iterator S = SubRegs.begin(), 1778 SE = SubRegs.end(); S != SE; ++S) { 1779 CodeGenRegister *SubReg = S->second; 1780 // Ignore non-leaf subregisters, their lane masks are fully covered by 1781 // the leaf subregisters anyway. 1782 if (SubReg->getSubRegs().size() != 0) 1783 continue; 1784 CodeGenSubRegIndex *SubRegIndex = S->first; 1785 const CodeGenRegister *SubRegister = S->second; 1786 unsigned LaneMask = SubRegIndex->LaneMask; 1787 // Distribute LaneMask to Register Units touched. 1788 for (unsigned SUI : SubRegister->getRegUnits()) { 1789 bool Found = false; 1790 unsigned u = 0; 1791 for (unsigned RU : RegUnits) { 1792 if (SUI == RU) { 1793 RegUnitLaneMasks[u] |= LaneMask; 1794 assert(!Found); 1795 Found = true; 1796 } 1797 ++u; 1798 } 1799 (void)Found; 1800 assert(Found); 1801 } 1802 } 1803 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 1804 } 1805 } 1806 1807 void CodeGenRegBank::computeDerivedInfo() { 1808 computeComposites(); 1809 computeSubRegLaneMasks(); 1810 1811 // Compute a weight for each register unit created during getSubRegs. 1812 // This may create adopted register units (with unit # >= NumNativeRegUnits). 1813 computeRegUnitWeights(); 1814 1815 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 1816 // supersets for the union of overlapping sets. 1817 computeRegUnitSets(); 1818 1819 computeRegUnitLaneMasks(); 1820 1821 // Compute register class HasDisjunctSubRegs flag. 1822 for (CodeGenRegisterClass &RC : RegClasses) { 1823 RC.HasDisjunctSubRegs = false; 1824 for (const CodeGenRegister *Reg : RC.getMembers()) 1825 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 1826 } 1827 1828 // Get the weight of each set. 1829 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1830 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 1831 1832 // Find the order of each set. 1833 RegUnitSetOrder.reserve(RegUnitSets.size()); 1834 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1835 RegUnitSetOrder.push_back(Idx); 1836 1837 std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(), 1838 [this](unsigned ID1, unsigned ID2) { 1839 return getRegPressureSet(ID1).Units.size() < 1840 getRegPressureSet(ID2).Units.size(); 1841 }); 1842 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1843 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 1844 } 1845 } 1846 1847 // 1848 // Synthesize missing register class intersections. 1849 // 1850 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 1851 // returns a maximal register class for all X. 1852 // 1853 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 1854 assert(!RegClasses.empty()); 1855 // Stash the iterator to the last element so that this loop doesn't visit 1856 // elements added by the getOrCreateSubClass call within it. 1857 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 1858 I != std::next(E); ++I) { 1859 CodeGenRegisterClass *RC1 = RC; 1860 CodeGenRegisterClass *RC2 = &*I; 1861 if (RC1 == RC2) 1862 continue; 1863 1864 // Compute the set intersection of RC1 and RC2. 1865 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 1866 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 1867 CodeGenRegister::Vec Intersection; 1868 std::set_intersection( 1869 Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(), 1870 std::inserter(Intersection, Intersection.begin()), deref<llvm::less>()); 1871 1872 // Skip disjoint class pairs. 1873 if (Intersection.empty()) 1874 continue; 1875 1876 // If RC1 and RC2 have different spill sizes or alignments, use the 1877 // larger size for sub-classing. If they are equal, prefer RC1. 1878 if (RC2->SpillSize > RC1->SpillSize || 1879 (RC2->SpillSize == RC1->SpillSize && 1880 RC2->SpillAlignment > RC1->SpillAlignment)) 1881 std::swap(RC1, RC2); 1882 1883 getOrCreateSubClass(RC1, &Intersection, 1884 RC1->getName() + "_and_" + RC2->getName()); 1885 } 1886 } 1887 1888 // 1889 // Synthesize missing sub-classes for getSubClassWithSubReg(). 1890 // 1891 // Make sure that the set of registers in RC with a given SubIdx sub-register 1892 // form a register class. Update RC->SubClassWithSubReg. 1893 // 1894 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 1895 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 1896 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 1897 deref<llvm::less>> SubReg2SetMap; 1898 1899 // Compute the set of registers supporting each SubRegIndex. 1900 SubReg2SetMap SRSets; 1901 for (const auto R : RC->getMembers()) { 1902 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 1903 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 1904 E = SRM.end(); I != E; ++I) 1905 SRSets[I->first].push_back(R); 1906 } 1907 1908 for (auto I : SRSets) 1909 sortAndUniqueRegisters(I.second); 1910 1911 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 1912 // numerical order to visit synthetic indices last. 1913 for (const auto &SubIdx : SubRegIndices) { 1914 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 1915 // Unsupported SubRegIndex. Skip it. 1916 if (I == SRSets.end()) 1917 continue; 1918 // In most cases, all RC registers support the SubRegIndex. 1919 if (I->second.size() == RC->getMembers().size()) { 1920 RC->setSubClassWithSubReg(&SubIdx, RC); 1921 continue; 1922 } 1923 // This is a real subset. See if we have a matching class. 1924 CodeGenRegisterClass *SubRC = 1925 getOrCreateSubClass(RC, &I->second, 1926 RC->getName() + "_with_" + I->first->getName()); 1927 RC->setSubClassWithSubReg(&SubIdx, SubRC); 1928 } 1929 } 1930 1931 // 1932 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 1933 // 1934 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 1935 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 1936 // 1937 1938 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 1939 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 1940 SmallVector<std::pair<const CodeGenRegister*, 1941 const CodeGenRegister*>, 16> SSPairs; 1942 BitVector TopoSigs(getNumTopoSigs()); 1943 1944 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 1945 for (auto &SubIdx : SubRegIndices) { 1946 // Skip indexes that aren't fully supported by RC's registers. This was 1947 // computed by inferSubClassWithSubReg() above which should have been 1948 // called first. 1949 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 1950 continue; 1951 1952 // Build list of (Super, Sub) pairs for this SubIdx. 1953 SSPairs.clear(); 1954 TopoSigs.reset(); 1955 for (const auto Super : RC->getMembers()) { 1956 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 1957 assert(Sub && "Missing sub-register"); 1958 SSPairs.push_back(std::make_pair(Super, Sub)); 1959 TopoSigs.set(Sub->getTopoSig()); 1960 } 1961 1962 // Iterate over sub-register class candidates. Ignore classes created by 1963 // this loop. They will never be useful. 1964 // Store an iterator to the last element (not end) so that this loop doesn't 1965 // visit newly inserted elements. 1966 assert(!RegClasses.empty()); 1967 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 1968 I != std::next(E); ++I) { 1969 CodeGenRegisterClass &SubRC = *I; 1970 // Topological shortcut: SubRC members have the wrong shape. 1971 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 1972 continue; 1973 // Compute the subset of RC that maps into SubRC. 1974 CodeGenRegister::Vec SubSetVec; 1975 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 1976 if (SubRC.contains(SSPairs[i].second)) 1977 SubSetVec.push_back(SSPairs[i].first); 1978 1979 if (SubSetVec.empty()) 1980 continue; 1981 1982 // RC injects completely into SubRC. 1983 sortAndUniqueRegisters(SubSetVec); 1984 if (SubSetVec.size() == SSPairs.size()) { 1985 SubRC.addSuperRegClass(&SubIdx, RC); 1986 continue; 1987 } 1988 1989 // Only a subset of RC maps into SubRC. Make sure it is represented by a 1990 // class. 1991 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 1992 SubIdx.getName() + "_in_" + 1993 SubRC.getName()); 1994 } 1995 } 1996 } 1997 1998 1999 // 2000 // Infer missing register classes. 2001 // 2002 void CodeGenRegBank::computeInferredRegisterClasses() { 2003 assert(!RegClasses.empty()); 2004 // When this function is called, the register classes have not been sorted 2005 // and assigned EnumValues yet. That means getSubClasses(), 2006 // getSuperClasses(), and hasSubClass() functions are defunct. 2007 2008 // Use one-before-the-end so it doesn't move forward when new elements are 2009 // added. 2010 auto FirstNewRC = std::prev(RegClasses.end()); 2011 2012 // Visit all register classes, including the ones being added by the loop. 2013 // Watch out for iterator invalidation here. 2014 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2015 CodeGenRegisterClass *RC = &*I; 2016 2017 // Synthesize answers for getSubClassWithSubReg(). 2018 inferSubClassWithSubReg(RC); 2019 2020 // Synthesize answers for getCommonSubClass(). 2021 inferCommonSubClass(RC); 2022 2023 // Synthesize answers for getMatchingSuperRegClass(). 2024 inferMatchingSuperRegClass(RC); 2025 2026 // New register classes are created while this loop is running, and we need 2027 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2028 // to match old super-register classes with sub-register classes created 2029 // after inferMatchingSuperRegClass was called. At this point, 2030 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2031 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2032 if (I == FirstNewRC) { 2033 auto NextNewRC = std::prev(RegClasses.end()); 2034 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2035 ++I2) 2036 inferMatchingSuperRegClass(&*I2, E2); 2037 FirstNewRC = NextNewRC; 2038 } 2039 } 2040 } 2041 2042 /// getRegisterClassForRegister - Find the register class that contains the 2043 /// specified physical register. If the register is not in a register class, 2044 /// return null. If the register is in multiple classes, and the classes have a 2045 /// superset-subset relationship and the same set of types, return the 2046 /// superclass. Otherwise return null. 2047 const CodeGenRegisterClass* 2048 CodeGenRegBank::getRegClassForRegister(Record *R) { 2049 const CodeGenRegister *Reg = getReg(R); 2050 const CodeGenRegisterClass *FoundRC = nullptr; 2051 for (const auto &RC : getRegClasses()) { 2052 if (!RC.contains(Reg)) 2053 continue; 2054 2055 // If this is the first class that contains the register, 2056 // make a note of it and go on to the next class. 2057 if (!FoundRC) { 2058 FoundRC = &RC; 2059 continue; 2060 } 2061 2062 // If a register's classes have different types, return null. 2063 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2064 return nullptr; 2065 2066 // Check to see if the previously found class that contains 2067 // the register is a subclass of the current class. If so, 2068 // prefer the superclass. 2069 if (RC.hasSubClass(FoundRC)) { 2070 FoundRC = &RC; 2071 continue; 2072 } 2073 2074 // Check to see if the previously found class that contains 2075 // the register is a superclass of the current class. If so, 2076 // prefer the superclass. 2077 if (FoundRC->hasSubClass(&RC)) 2078 continue; 2079 2080 // Multiple classes, and neither is a superclass of the other. 2081 // Return null. 2082 return nullptr; 2083 } 2084 return FoundRC; 2085 } 2086 2087 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2088 SetVector<const CodeGenRegister*> Set; 2089 2090 // First add Regs with all sub-registers. 2091 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2092 CodeGenRegister *Reg = getReg(Regs[i]); 2093 if (Set.insert(Reg)) 2094 // Reg is new, add all sub-registers. 2095 // The pre-ordering is not important here. 2096 Reg->addSubRegsPreOrder(Set, *this); 2097 } 2098 2099 // Second, find all super-registers that are completely covered by the set. 2100 for (unsigned i = 0; i != Set.size(); ++i) { 2101 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2102 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2103 const CodeGenRegister *Super = SR[j]; 2104 if (!Super->CoveredBySubRegs || Set.count(Super)) 2105 continue; 2106 // This new super-register is covered by its sub-registers. 2107 bool AllSubsInSet = true; 2108 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2109 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2110 E = SRM.end(); I != E; ++I) 2111 if (!Set.count(I->second)) { 2112 AllSubsInSet = false; 2113 break; 2114 } 2115 // All sub-registers in Set, add Super as well. 2116 // We will visit Super later to recheck its super-registers. 2117 if (AllSubsInSet) 2118 Set.insert(Super); 2119 } 2120 } 2121 2122 // Convert to BitVector. 2123 BitVector BV(Registers.size() + 1); 2124 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2125 BV.set(Set[i]->EnumValue); 2126 return BV; 2127 } 2128