1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // Copyright (C) 2010,2012 Jitse Niesen <jitse (at) maths.leeds.ac.uk> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_EIGENSOLVER_H 12 #define EIGEN_EIGENSOLVER_H 13 14 #include "./RealSchur.h" 15 16 namespace Eigen { 17 18 /** \eigenvalues_module \ingroup Eigenvalues_Module 19 * 20 * 21 * \class EigenSolver 22 * 23 * \brief Computes eigenvalues and eigenvectors of general matrices 24 * 25 * \tparam _MatrixType the type of the matrix of which we are computing the 26 * eigendecomposition; this is expected to be an instantiation of the Matrix 27 * class template. Currently, only real matrices are supported. 28 * 29 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars 30 * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$. If 31 * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and 32 * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = 33 * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we 34 * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition. 35 * 36 * The eigenvalues and eigenvectors of a matrix may be complex, even when the 37 * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D 38 * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the 39 * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to 40 * have blocks of the form 41 * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f] 42 * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal. These 43 * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call 44 * this variant of the eigendecomposition the pseudo-eigendecomposition. 45 * 46 * Call the function compute() to compute the eigenvalues and eigenvectors of 47 * a given matrix. Alternatively, you can use the 48 * EigenSolver(const MatrixType&, bool) constructor which computes the 49 * eigenvalues and eigenvectors at construction time. Once the eigenvalue and 50 * eigenvectors are computed, they can be retrieved with the eigenvalues() and 51 * eigenvectors() functions. The pseudoEigenvalueMatrix() and 52 * pseudoEigenvectors() methods allow the construction of the 53 * pseudo-eigendecomposition. 54 * 55 * The documentation for EigenSolver(const MatrixType&, bool) contains an 56 * example of the typical use of this class. 57 * 58 * \note The implementation is adapted from 59 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain). 60 * Their code is based on EISPACK. 61 * 62 * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver 63 */ 64 template<typename _MatrixType> class EigenSolver 65 { 66 public: 67 68 /** \brief Synonym for the template parameter \p _MatrixType. */ 69 typedef _MatrixType MatrixType; 70 71 enum { 72 RowsAtCompileTime = MatrixType::RowsAtCompileTime, 73 ColsAtCompileTime = MatrixType::ColsAtCompileTime, 74 Options = MatrixType::Options, 75 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, 76 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime 77 }; 78 79 /** \brief Scalar type for matrices of type #MatrixType. */ 80 typedef typename MatrixType::Scalar Scalar; 81 typedef typename NumTraits<Scalar>::Real RealScalar; 82 typedef typename MatrixType::Index Index; 83 84 /** \brief Complex scalar type for #MatrixType. 85 * 86 * This is \c std::complex<Scalar> if #Scalar is real (e.g., 87 * \c float or \c double) and just \c Scalar if #Scalar is 88 * complex. 89 */ 90 typedef std::complex<RealScalar> ComplexScalar; 91 92 /** \brief Type for vector of eigenvalues as returned by eigenvalues(). 93 * 94 * This is a column vector with entries of type #ComplexScalar. 95 * The length of the vector is the size of #MatrixType. 96 */ 97 typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType; 98 99 /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 100 * 101 * This is a square matrix with entries of type #ComplexScalar. 102 * The size is the same as the size of #MatrixType. 103 */ 104 typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType; 105 106 /** \brief Default constructor. 107 * 108 * The default constructor is useful in cases in which the user intends to 109 * perform decompositions via EigenSolver::compute(const MatrixType&, bool). 110 * 111 * \sa compute() for an example. 112 */ 113 EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {} 114 115 /** \brief Default constructor with memory preallocation 116 * 117 * Like the default constructor but with preallocation of the internal data 118 * according to the specified problem \a size. 119 * \sa EigenSolver() 120 */ 121 EigenSolver(Index size) 122 : m_eivec(size, size), 123 m_eivalues(size), 124 m_isInitialized(false), 125 m_eigenvectorsOk(false), 126 m_realSchur(size), 127 m_matT(size, size), 128 m_tmp(size) 129 {} 130 131 /** \brief Constructor; computes eigendecomposition of given matrix. 132 * 133 * \param[in] matrix Square matrix whose eigendecomposition is to be computed. 134 * \param[in] computeEigenvectors If true, both the eigenvectors and the 135 * eigenvalues are computed; if false, only the eigenvalues are 136 * computed. 137 * 138 * This constructor calls compute() to compute the eigenvalues 139 * and eigenvectors. 140 * 141 * Example: \include EigenSolver_EigenSolver_MatrixType.cpp 142 * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out 143 * 144 * \sa compute() 145 */ 146 EigenSolver(const MatrixType& matrix, bool computeEigenvectors = true) 147 : m_eivec(matrix.rows(), matrix.cols()), 148 m_eivalues(matrix.cols()), 149 m_isInitialized(false), 150 m_eigenvectorsOk(false), 151 m_realSchur(matrix.cols()), 152 m_matT(matrix.rows(), matrix.cols()), 153 m_tmp(matrix.cols()) 154 { 155 compute(matrix, computeEigenvectors); 156 } 157 158 /** \brief Returns the eigenvectors of given matrix. 159 * 160 * \returns %Matrix whose columns are the (possibly complex) eigenvectors. 161 * 162 * \pre Either the constructor 163 * EigenSolver(const MatrixType&,bool) or the member function 164 * compute(const MatrixType&, bool) has been called before, and 165 * \p computeEigenvectors was set to true (the default). 166 * 167 * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding 168 * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The 169 * eigenvectors are normalized to have (Euclidean) norm equal to one. The 170 * matrix returned by this function is the matrix \f$ V \f$ in the 171 * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists. 172 * 173 * Example: \include EigenSolver_eigenvectors.cpp 174 * Output: \verbinclude EigenSolver_eigenvectors.out 175 * 176 * \sa eigenvalues(), pseudoEigenvectors() 177 */ 178 EigenvectorsType eigenvectors() const; 179 180 /** \brief Returns the pseudo-eigenvectors of given matrix. 181 * 182 * \returns Const reference to matrix whose columns are the pseudo-eigenvectors. 183 * 184 * \pre Either the constructor 185 * EigenSolver(const MatrixType&,bool) or the member function 186 * compute(const MatrixType&, bool) has been called before, and 187 * \p computeEigenvectors was set to true (the default). 188 * 189 * The real matrix \f$ V \f$ returned by this function and the 190 * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix() 191 * satisfy \f$ AV = VD \f$. 192 * 193 * Example: \include EigenSolver_pseudoEigenvectors.cpp 194 * Output: \verbinclude EigenSolver_pseudoEigenvectors.out 195 * 196 * \sa pseudoEigenvalueMatrix(), eigenvectors() 197 */ 198 const MatrixType& pseudoEigenvectors() const 199 { 200 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 201 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); 202 return m_eivec; 203 } 204 205 /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition. 206 * 207 * \returns A block-diagonal matrix. 208 * 209 * \pre Either the constructor 210 * EigenSolver(const MatrixType&,bool) or the member function 211 * compute(const MatrixType&, bool) has been called before. 212 * 213 * The matrix \f$ D \f$ returned by this function is real and 214 * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2 215 * blocks of the form 216 * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$. 217 * These blocks are not sorted in any particular order. 218 * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by 219 * pseudoEigenvectors() satisfy \f$ AV = VD \f$. 220 * 221 * \sa pseudoEigenvectors() for an example, eigenvalues() 222 */ 223 MatrixType pseudoEigenvalueMatrix() const; 224 225 /** \brief Returns the eigenvalues of given matrix. 226 * 227 * \returns A const reference to the column vector containing the eigenvalues. 228 * 229 * \pre Either the constructor 230 * EigenSolver(const MatrixType&,bool) or the member function 231 * compute(const MatrixType&, bool) has been called before. 232 * 233 * The eigenvalues are repeated according to their algebraic multiplicity, 234 * so there are as many eigenvalues as rows in the matrix. The eigenvalues 235 * are not sorted in any particular order. 236 * 237 * Example: \include EigenSolver_eigenvalues.cpp 238 * Output: \verbinclude EigenSolver_eigenvalues.out 239 * 240 * \sa eigenvectors(), pseudoEigenvalueMatrix(), 241 * MatrixBase::eigenvalues() 242 */ 243 const EigenvalueType& eigenvalues() const 244 { 245 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 246 return m_eivalues; 247 } 248 249 /** \brief Computes eigendecomposition of given matrix. 250 * 251 * \param[in] matrix Square matrix whose eigendecomposition is to be computed. 252 * \param[in] computeEigenvectors If true, both the eigenvectors and the 253 * eigenvalues are computed; if false, only the eigenvalues are 254 * computed. 255 * \returns Reference to \c *this 256 * 257 * This function computes the eigenvalues of the real matrix \p matrix. 258 * The eigenvalues() function can be used to retrieve them. If 259 * \p computeEigenvectors is true, then the eigenvectors are also computed 260 * and can be retrieved by calling eigenvectors(). 261 * 262 * The matrix is first reduced to real Schur form using the RealSchur 263 * class. The Schur decomposition is then used to compute the eigenvalues 264 * and eigenvectors. 265 * 266 * The cost of the computation is dominated by the cost of the 267 * Schur decomposition, which is very approximately \f$ 25n^3 \f$ 268 * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors 269 * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false. 270 * 271 * This method reuses of the allocated data in the EigenSolver object. 272 * 273 * Example: \include EigenSolver_compute.cpp 274 * Output: \verbinclude EigenSolver_compute.out 275 */ 276 EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true); 277 278 ComputationInfo info() const 279 { 280 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 281 return m_realSchur.info(); 282 } 283 284 /** \brief Sets the maximum number of iterations allowed. */ 285 EigenSolver& setMaxIterations(Index maxIters) 286 { 287 m_realSchur.setMaxIterations(maxIters); 288 return *this; 289 } 290 291 /** \brief Returns the maximum number of iterations. */ 292 Index getMaxIterations() 293 { 294 return m_realSchur.getMaxIterations(); 295 } 296 297 private: 298 void doComputeEigenvectors(); 299 300 protected: 301 302 static void check_template_parameters() 303 { 304 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); 305 EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); 306 } 307 308 MatrixType m_eivec; 309 EigenvalueType m_eivalues; 310 bool m_isInitialized; 311 bool m_eigenvectorsOk; 312 RealSchur<MatrixType> m_realSchur; 313 MatrixType m_matT; 314 315 typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; 316 ColumnVectorType m_tmp; 317 }; 318 319 template<typename MatrixType> 320 MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const 321 { 322 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 323 Index n = m_eivalues.rows(); 324 MatrixType matD = MatrixType::Zero(n,n); 325 for (Index i=0; i<n; ++i) 326 { 327 if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)))) 328 matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i)); 329 else 330 { 331 matD.template block<2,2>(i,i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)), 332 -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)); 333 ++i; 334 } 335 } 336 return matD; 337 } 338 339 template<typename MatrixType> 340 typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const 341 { 342 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 343 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); 344 Index n = m_eivec.cols(); 345 EigenvectorsType matV(n,n); 346 for (Index j=0; j<n; ++j) 347 { 348 if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j))) || j+1==n) 349 { 350 // we have a real eigen value 351 matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>(); 352 matV.col(j).normalize(); 353 } 354 else 355 { 356 // we have a pair of complex eigen values 357 for (Index i=0; i<n; ++i) 358 { 359 matV.coeffRef(i,j) = ComplexScalar(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1)); 360 matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1)); 361 } 362 matV.col(j).normalize(); 363 matV.col(j+1).normalize(); 364 ++j; 365 } 366 } 367 return matV; 368 } 369 370 template<typename MatrixType> 371 EigenSolver<MatrixType>& 372 EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors) 373 { 374 check_template_parameters(); 375 376 using std::sqrt; 377 using std::abs; 378 eigen_assert(matrix.cols() == matrix.rows()); 379 380 // Reduce to real Schur form. 381 m_realSchur.compute(matrix, computeEigenvectors); 382 383 if (m_realSchur.info() == Success) 384 { 385 m_matT = m_realSchur.matrixT(); 386 if (computeEigenvectors) 387 m_eivec = m_realSchur.matrixU(); 388 389 // Compute eigenvalues from matT 390 m_eivalues.resize(matrix.cols()); 391 Index i = 0; 392 while (i < matrix.cols()) 393 { 394 if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0)) 395 { 396 m_eivalues.coeffRef(i) = m_matT.coeff(i, i); 397 ++i; 398 } 399 else 400 { 401 Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1)); 402 Scalar z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1))); 403 m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z); 404 m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z); 405 i += 2; 406 } 407 } 408 409 // Compute eigenvectors. 410 if (computeEigenvectors) 411 doComputeEigenvectors(); 412 } 413 414 m_isInitialized = true; 415 m_eigenvectorsOk = computeEigenvectors; 416 417 return *this; 418 } 419 420 // Complex scalar division. 421 template<typename Scalar> 422 std::complex<Scalar> cdiv(const Scalar& xr, const Scalar& xi, const Scalar& yr, const Scalar& yi) 423 { 424 using std::abs; 425 Scalar r,d; 426 if (abs(yr) > abs(yi)) 427 { 428 r = yi/yr; 429 d = yr + r*yi; 430 return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d); 431 } 432 else 433 { 434 r = yr/yi; 435 d = yi + r*yr; 436 return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d); 437 } 438 } 439 440 441 template<typename MatrixType> 442 void EigenSolver<MatrixType>::doComputeEigenvectors() 443 { 444 using std::abs; 445 const Index size = m_eivec.cols(); 446 const Scalar eps = NumTraits<Scalar>::epsilon(); 447 448 // inefficient! this is already computed in RealSchur 449 Scalar norm(0); 450 for (Index j = 0; j < size; ++j) 451 { 452 norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum(); 453 } 454 455 // Backsubstitute to find vectors of upper triangular form 456 if (norm == 0.0) 457 { 458 return; 459 } 460 461 for (Index n = size-1; n >= 0; n--) 462 { 463 Scalar p = m_eivalues.coeff(n).real(); 464 Scalar q = m_eivalues.coeff(n).imag(); 465 466 // Scalar vector 467 if (q == Scalar(0)) 468 { 469 Scalar lastr(0), lastw(0); 470 Index l = n; 471 472 m_matT.coeffRef(n,n) = 1.0; 473 for (Index i = n-1; i >= 0; i--) 474 { 475 Scalar w = m_matT.coeff(i,i) - p; 476 Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); 477 478 if (m_eivalues.coeff(i).imag() < 0.0) 479 { 480 lastw = w; 481 lastr = r; 482 } 483 else 484 { 485 l = i; 486 if (m_eivalues.coeff(i).imag() == 0.0) 487 { 488 if (w != 0.0) 489 m_matT.coeffRef(i,n) = -r / w; 490 else 491 m_matT.coeffRef(i,n) = -r / (eps * norm); 492 } 493 else // Solve real equations 494 { 495 Scalar x = m_matT.coeff(i,i+1); 496 Scalar y = m_matT.coeff(i+1,i); 497 Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag(); 498 Scalar t = (x * lastr - lastw * r) / denom; 499 m_matT.coeffRef(i,n) = t; 500 if (abs(x) > abs(lastw)) 501 m_matT.coeffRef(i+1,n) = (-r - w * t) / x; 502 else 503 m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw; 504 } 505 506 // Overflow control 507 Scalar t = abs(m_matT.coeff(i,n)); 508 if ((eps * t) * t > Scalar(1)) 509 m_matT.col(n).tail(size-i) /= t; 510 } 511 } 512 } 513 else if (q < Scalar(0) && n > 0) // Complex vector 514 { 515 Scalar lastra(0), lastsa(0), lastw(0); 516 Index l = n-1; 517 518 // Last vector component imaginary so matrix is triangular 519 if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n))) 520 { 521 m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1); 522 m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1); 523 } 524 else 525 { 526 std::complex<Scalar> cc = cdiv<Scalar>(0.0,-m_matT.coeff(n-1,n),m_matT.coeff(n-1,n-1)-p,q); 527 m_matT.coeffRef(n-1,n-1) = numext::real(cc); 528 m_matT.coeffRef(n-1,n) = numext::imag(cc); 529 } 530 m_matT.coeffRef(n,n-1) = 0.0; 531 m_matT.coeffRef(n,n) = 1.0; 532 for (Index i = n-2; i >= 0; i--) 533 { 534 Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1)); 535 Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); 536 Scalar w = m_matT.coeff(i,i) - p; 537 538 if (m_eivalues.coeff(i).imag() < 0.0) 539 { 540 lastw = w; 541 lastra = ra; 542 lastsa = sa; 543 } 544 else 545 { 546 l = i; 547 if (m_eivalues.coeff(i).imag() == RealScalar(0)) 548 { 549 std::complex<Scalar> cc = cdiv(-ra,-sa,w,q); 550 m_matT.coeffRef(i,n-1) = numext::real(cc); 551 m_matT.coeffRef(i,n) = numext::imag(cc); 552 } 553 else 554 { 555 // Solve complex equations 556 Scalar x = m_matT.coeff(i,i+1); 557 Scalar y = m_matT.coeff(i+1,i); 558 Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q; 559 Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q; 560 if ((vr == 0.0) && (vi == 0.0)) 561 vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw)); 562 563 std::complex<Scalar> cc = cdiv(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra,vr,vi); 564 m_matT.coeffRef(i,n-1) = numext::real(cc); 565 m_matT.coeffRef(i,n) = numext::imag(cc); 566 if (abs(x) > (abs(lastw) + abs(q))) 567 { 568 m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x; 569 m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x; 570 } 571 else 572 { 573 cc = cdiv(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n),lastw,q); 574 m_matT.coeffRef(i+1,n-1) = numext::real(cc); 575 m_matT.coeffRef(i+1,n) = numext::imag(cc); 576 } 577 } 578 579 // Overflow control 580 using std::max; 581 Scalar t = (max)(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n))); 582 if ((eps * t) * t > Scalar(1)) 583 m_matT.block(i, n-1, size-i, 2) /= t; 584 585 } 586 } 587 588 // We handled a pair of complex conjugate eigenvalues, so need to skip them both 589 n--; 590 } 591 else 592 { 593 eigen_assert(0 && "Internal bug in EigenSolver"); // this should not happen 594 } 595 } 596 597 // Back transformation to get eigenvectors of original matrix 598 for (Index j = size-1; j >= 0; j--) 599 { 600 m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1); 601 m_eivec.col(j) = m_tmp; 602 } 603 } 604 605 } // end namespace Eigen 606 607 #endif // EIGEN_EIGENSOLVER_H 608