1 // output.cc -- manage the output file for gold 2 3 // Copyright (C) 2006-2014 Free Software Foundation, Inc. 4 // Written by Ian Lance Taylor <iant (at) google.com>. 5 6 // This file is part of gold. 7 8 // This program is free software; you can redistribute it and/or modify 9 // it under the terms of the GNU General Public License as published by 10 // the Free Software Foundation; either version 3 of the License, or 11 // (at your option) any later version. 12 13 // This program is distributed in the hope that it will be useful, 14 // but WITHOUT ANY WARRANTY; without even the implied warranty of 15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 // GNU General Public License for more details. 17 18 // You should have received a copy of the GNU General Public License 19 // along with this program; if not, write to the Free Software 20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 // MA 02110-1301, USA. 22 23 #include "gold.h" 24 25 #include <cstdlib> 26 #include <cstring> 27 #include <cerrno> 28 #include <fcntl.h> 29 #include <unistd.h> 30 #include <sys/stat.h> 31 #include <algorithm> 32 33 #ifdef HAVE_SYS_MMAN_H 34 #include <sys/mman.h> 35 #endif 36 37 #include "libiberty.h" 38 39 #include "dwarf.h" 40 #include "parameters.h" 41 #include "object.h" 42 #include "symtab.h" 43 #include "reloc.h" 44 #include "merge.h" 45 #include "descriptors.h" 46 #include "layout.h" 47 #include "output.h" 48 49 // For systems without mmap support. 50 #ifndef HAVE_MMAP 51 # define mmap gold_mmap 52 # define munmap gold_munmap 53 # define mremap gold_mremap 54 # ifndef MAP_FAILED 55 # define MAP_FAILED (reinterpret_cast<void*>(-1)) 56 # endif 57 # ifndef PROT_READ 58 # define PROT_READ 0 59 # endif 60 # ifndef PROT_WRITE 61 # define PROT_WRITE 0 62 # endif 63 # ifndef MAP_PRIVATE 64 # define MAP_PRIVATE 0 65 # endif 66 # ifndef MAP_ANONYMOUS 67 # define MAP_ANONYMOUS 0 68 # endif 69 # ifndef MAP_SHARED 70 # define MAP_SHARED 0 71 # endif 72 73 # ifndef ENOSYS 74 # define ENOSYS EINVAL 75 # endif 76 77 static void * 78 gold_mmap(void *, size_t, int, int, int, off_t) 79 { 80 errno = ENOSYS; 81 return MAP_FAILED; 82 } 83 84 static int 85 gold_munmap(void *, size_t) 86 { 87 errno = ENOSYS; 88 return -1; 89 } 90 91 static void * 92 gold_mremap(void *, size_t, size_t, int) 93 { 94 errno = ENOSYS; 95 return MAP_FAILED; 96 } 97 98 #endif 99 100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP) 101 # define mremap gold_mremap 102 extern "C" void *gold_mremap(void *, size_t, size_t, int); 103 #endif 104 105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS 106 #ifndef MAP_ANONYMOUS 107 # define MAP_ANONYMOUS MAP_ANON 108 #endif 109 110 #ifndef MREMAP_MAYMOVE 111 # define MREMAP_MAYMOVE 1 112 #endif 113 114 // Mingw does not have S_ISLNK. 115 #ifndef S_ISLNK 116 # define S_ISLNK(mode) 0 117 #endif 118 119 namespace gold 120 { 121 122 // A wrapper around posix_fallocate. If we don't have posix_fallocate, 123 // or the --no-posix-fallocate option is set, we try the fallocate 124 // system call directly. If that fails, we use ftruncate to set 125 // the file size and hope that there is enough disk space. 126 127 static int 128 gold_fallocate(int o, off_t offset, off_t len) 129 { 130 #ifdef HAVE_POSIX_FALLOCATE 131 if (parameters->options().posix_fallocate()) 132 return ::posix_fallocate(o, offset, len); 133 #endif // defined(HAVE_POSIX_FALLOCATE) 134 #ifdef HAVE_FALLOCATE 135 if (::fallocate(o, 0, offset, len) == 0) 136 return 0; 137 #endif // defined(HAVE_FALLOCATE) 138 if (::ftruncate(o, offset + len) < 0) 139 return errno; 140 return 0; 141 } 142 143 // Output_data variables. 144 145 bool Output_data::allocated_sizes_are_fixed; 146 147 // Output_data methods. 148 149 Output_data::~Output_data() 150 { 151 } 152 153 // Return the default alignment for the target size. 154 155 uint64_t 156 Output_data::default_alignment() 157 { 158 return Output_data::default_alignment_for_size( 159 parameters->target().get_size()); 160 } 161 162 // Return the default alignment for a size--32 or 64. 163 164 uint64_t 165 Output_data::default_alignment_for_size(int size) 166 { 167 if (size == 32) 168 return 4; 169 else if (size == 64) 170 return 8; 171 else 172 gold_unreachable(); 173 } 174 175 // Output_section_header methods. This currently assumes that the 176 // segment and section lists are complete at construction time. 177 178 Output_section_headers::Output_section_headers( 179 const Layout* layout, 180 const Layout::Segment_list* segment_list, 181 const Layout::Section_list* section_list, 182 const Layout::Section_list* unattached_section_list, 183 const Stringpool* secnamepool, 184 const Output_section* shstrtab_section) 185 : layout_(layout), 186 segment_list_(segment_list), 187 section_list_(section_list), 188 unattached_section_list_(unattached_section_list), 189 secnamepool_(secnamepool), 190 shstrtab_section_(shstrtab_section) 191 { 192 } 193 194 // Compute the current data size. 195 196 off_t 197 Output_section_headers::do_size() const 198 { 199 // Count all the sections. Start with 1 for the null section. 200 off_t count = 1; 201 if (!parameters->options().relocatable()) 202 { 203 for (Layout::Segment_list::const_iterator p = 204 this->segment_list_->begin(); 205 p != this->segment_list_->end(); 206 ++p) 207 if ((*p)->type() == elfcpp::PT_LOAD) 208 count += (*p)->output_section_count(); 209 } 210 else 211 { 212 for (Layout::Section_list::const_iterator p = 213 this->section_list_->begin(); 214 p != this->section_list_->end(); 215 ++p) 216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0) 217 ++count; 218 } 219 count += this->unattached_section_list_->size(); 220 221 const int size = parameters->target().get_size(); 222 int shdr_size; 223 if (size == 32) 224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size; 225 else if (size == 64) 226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size; 227 else 228 gold_unreachable(); 229 230 return count * shdr_size; 231 } 232 233 // Write out the section headers. 234 235 void 236 Output_section_headers::do_write(Output_file* of) 237 { 238 switch (parameters->size_and_endianness()) 239 { 240 #ifdef HAVE_TARGET_32_LITTLE 241 case Parameters::TARGET_32_LITTLE: 242 this->do_sized_write<32, false>(of); 243 break; 244 #endif 245 #ifdef HAVE_TARGET_32_BIG 246 case Parameters::TARGET_32_BIG: 247 this->do_sized_write<32, true>(of); 248 break; 249 #endif 250 #ifdef HAVE_TARGET_64_LITTLE 251 case Parameters::TARGET_64_LITTLE: 252 this->do_sized_write<64, false>(of); 253 break; 254 #endif 255 #ifdef HAVE_TARGET_64_BIG 256 case Parameters::TARGET_64_BIG: 257 this->do_sized_write<64, true>(of); 258 break; 259 #endif 260 default: 261 gold_unreachable(); 262 } 263 } 264 265 template<int size, bool big_endian> 266 void 267 Output_section_headers::do_sized_write(Output_file* of) 268 { 269 off_t all_shdrs_size = this->data_size(); 270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size); 271 272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; 273 unsigned char* v = view; 274 275 { 276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v); 277 oshdr.put_sh_name(0); 278 oshdr.put_sh_type(elfcpp::SHT_NULL); 279 oshdr.put_sh_flags(0); 280 oshdr.put_sh_addr(0); 281 oshdr.put_sh_offset(0); 282 283 size_t section_count = (this->data_size() 284 / elfcpp::Elf_sizes<size>::shdr_size); 285 if (section_count < elfcpp::SHN_LORESERVE) 286 oshdr.put_sh_size(0); 287 else 288 oshdr.put_sh_size(section_count); 289 290 unsigned int shstrndx = this->shstrtab_section_->out_shndx(); 291 if (shstrndx < elfcpp::SHN_LORESERVE) 292 oshdr.put_sh_link(0); 293 else 294 oshdr.put_sh_link(shstrndx); 295 296 size_t segment_count = this->segment_list_->size(); 297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0); 298 299 oshdr.put_sh_addralign(0); 300 oshdr.put_sh_entsize(0); 301 } 302 303 v += shdr_size; 304 305 unsigned int shndx = 1; 306 if (!parameters->options().relocatable()) 307 { 308 for (Layout::Segment_list::const_iterator p = 309 this->segment_list_->begin(); 310 p != this->segment_list_->end(); 311 ++p) 312 v = (*p)->write_section_headers<size, big_endian>(this->layout_, 313 this->secnamepool_, 314 v, 315 &shndx); 316 } 317 else 318 { 319 for (Layout::Section_list::const_iterator p = 320 this->section_list_->begin(); 321 p != this->section_list_->end(); 322 ++p) 323 { 324 // We do unallocated sections below, except that group 325 // sections have to come first. 326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0 327 && (*p)->type() != elfcpp::SHT_GROUP) 328 continue; 329 gold_assert(shndx == (*p)->out_shndx()); 330 elfcpp::Shdr_write<size, big_endian> oshdr(v); 331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr); 332 v += shdr_size; 333 ++shndx; 334 } 335 } 336 337 for (Layout::Section_list::const_iterator p = 338 this->unattached_section_list_->begin(); 339 p != this->unattached_section_list_->end(); 340 ++p) 341 { 342 // For a relocatable link, we did unallocated group sections 343 // above, since they have to come first. 344 if ((*p)->type() == elfcpp::SHT_GROUP 345 && parameters->options().relocatable()) 346 continue; 347 gold_assert(shndx == (*p)->out_shndx()); 348 elfcpp::Shdr_write<size, big_endian> oshdr(v); 349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr); 350 v += shdr_size; 351 ++shndx; 352 } 353 354 of->write_output_view(this->offset(), all_shdrs_size, view); 355 } 356 357 // Output_segment_header methods. 358 359 Output_segment_headers::Output_segment_headers( 360 const Layout::Segment_list& segment_list) 361 : segment_list_(segment_list) 362 { 363 this->set_current_data_size_for_child(this->do_size()); 364 } 365 366 void 367 Output_segment_headers::do_write(Output_file* of) 368 { 369 switch (parameters->size_and_endianness()) 370 { 371 #ifdef HAVE_TARGET_32_LITTLE 372 case Parameters::TARGET_32_LITTLE: 373 this->do_sized_write<32, false>(of); 374 break; 375 #endif 376 #ifdef HAVE_TARGET_32_BIG 377 case Parameters::TARGET_32_BIG: 378 this->do_sized_write<32, true>(of); 379 break; 380 #endif 381 #ifdef HAVE_TARGET_64_LITTLE 382 case Parameters::TARGET_64_LITTLE: 383 this->do_sized_write<64, false>(of); 384 break; 385 #endif 386 #ifdef HAVE_TARGET_64_BIG 387 case Parameters::TARGET_64_BIG: 388 this->do_sized_write<64, true>(of); 389 break; 390 #endif 391 default: 392 gold_unreachable(); 393 } 394 } 395 396 template<int size, bool big_endian> 397 void 398 Output_segment_headers::do_sized_write(Output_file* of) 399 { 400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size; 401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size; 402 gold_assert(all_phdrs_size == this->data_size()); 403 unsigned char* view = of->get_output_view(this->offset(), 404 all_phdrs_size); 405 unsigned char* v = view; 406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin(); 407 p != this->segment_list_.end(); 408 ++p) 409 { 410 elfcpp::Phdr_write<size, big_endian> ophdr(v); 411 (*p)->write_header(&ophdr); 412 v += phdr_size; 413 } 414 415 gold_assert(v - view == all_phdrs_size); 416 417 of->write_output_view(this->offset(), all_phdrs_size, view); 418 } 419 420 off_t 421 Output_segment_headers::do_size() const 422 { 423 const int size = parameters->target().get_size(); 424 int phdr_size; 425 if (size == 32) 426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size; 427 else if (size == 64) 428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size; 429 else 430 gold_unreachable(); 431 432 return this->segment_list_.size() * phdr_size; 433 } 434 435 // Output_file_header methods. 436 437 Output_file_header::Output_file_header(Target* target, 438 const Symbol_table* symtab, 439 const Output_segment_headers* osh) 440 : target_(target), 441 symtab_(symtab), 442 segment_header_(osh), 443 section_header_(NULL), 444 shstrtab_(NULL) 445 { 446 this->set_data_size(this->do_size()); 447 } 448 449 // Set the section table information for a file header. 450 451 void 452 Output_file_header::set_section_info(const Output_section_headers* shdrs, 453 const Output_section* shstrtab) 454 { 455 this->section_header_ = shdrs; 456 this->shstrtab_ = shstrtab; 457 } 458 459 // Write out the file header. 460 461 void 462 Output_file_header::do_write(Output_file* of) 463 { 464 gold_assert(this->offset() == 0); 465 466 switch (parameters->size_and_endianness()) 467 { 468 #ifdef HAVE_TARGET_32_LITTLE 469 case Parameters::TARGET_32_LITTLE: 470 this->do_sized_write<32, false>(of); 471 break; 472 #endif 473 #ifdef HAVE_TARGET_32_BIG 474 case Parameters::TARGET_32_BIG: 475 this->do_sized_write<32, true>(of); 476 break; 477 #endif 478 #ifdef HAVE_TARGET_64_LITTLE 479 case Parameters::TARGET_64_LITTLE: 480 this->do_sized_write<64, false>(of); 481 break; 482 #endif 483 #ifdef HAVE_TARGET_64_BIG 484 case Parameters::TARGET_64_BIG: 485 this->do_sized_write<64, true>(of); 486 break; 487 #endif 488 default: 489 gold_unreachable(); 490 } 491 } 492 493 // Write out the file header with appropriate size and endianness. 494 495 template<int size, bool big_endian> 496 void 497 Output_file_header::do_sized_write(Output_file* of) 498 { 499 gold_assert(this->offset() == 0); 500 501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size; 502 unsigned char* view = of->get_output_view(0, ehdr_size); 503 elfcpp::Ehdr_write<size, big_endian> oehdr(view); 504 505 unsigned char e_ident[elfcpp::EI_NIDENT]; 506 memset(e_ident, 0, elfcpp::EI_NIDENT); 507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0; 508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1; 509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2; 510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3; 511 if (size == 32) 512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32; 513 else if (size == 64) 514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64; 515 else 516 gold_unreachable(); 517 e_ident[elfcpp::EI_DATA] = (big_endian 518 ? elfcpp::ELFDATA2MSB 519 : elfcpp::ELFDATA2LSB); 520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT; 521 oehdr.put_e_ident(e_ident); 522 523 elfcpp::ET e_type; 524 if (parameters->options().relocatable()) 525 e_type = elfcpp::ET_REL; 526 else if (parameters->options().output_is_position_independent()) 527 e_type = elfcpp::ET_DYN; 528 else 529 e_type = elfcpp::ET_EXEC; 530 oehdr.put_e_type(e_type); 531 532 oehdr.put_e_machine(this->target_->machine_code()); 533 oehdr.put_e_version(elfcpp::EV_CURRENT); 534 535 oehdr.put_e_entry(this->entry<size>()); 536 537 if (this->segment_header_ == NULL) 538 oehdr.put_e_phoff(0); 539 else 540 oehdr.put_e_phoff(this->segment_header_->offset()); 541 542 oehdr.put_e_shoff(this->section_header_->offset()); 543 oehdr.put_e_flags(this->target_->processor_specific_flags()); 544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size); 545 546 if (this->segment_header_ == NULL) 547 { 548 oehdr.put_e_phentsize(0); 549 oehdr.put_e_phnum(0); 550 } 551 else 552 { 553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size); 554 size_t phnum = (this->segment_header_->data_size() 555 / elfcpp::Elf_sizes<size>::phdr_size); 556 if (phnum > elfcpp::PN_XNUM) 557 phnum = elfcpp::PN_XNUM; 558 oehdr.put_e_phnum(phnum); 559 } 560 561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size); 562 size_t section_count = (this->section_header_->data_size() 563 / elfcpp::Elf_sizes<size>::shdr_size); 564 565 if (section_count < elfcpp::SHN_LORESERVE) 566 oehdr.put_e_shnum(this->section_header_->data_size() 567 / elfcpp::Elf_sizes<size>::shdr_size); 568 else 569 oehdr.put_e_shnum(0); 570 571 unsigned int shstrndx = this->shstrtab_->out_shndx(); 572 if (shstrndx < elfcpp::SHN_LORESERVE) 573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx()); 574 else 575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX); 576 577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in 578 // the e_ident field. 579 this->target_->adjust_elf_header(view, ehdr_size); 580 581 of->write_output_view(0, ehdr_size, view); 582 } 583 584 // Return the value to use for the entry address. 585 586 template<int size> 587 typename elfcpp::Elf_types<size>::Elf_Addr 588 Output_file_header::entry() 589 { 590 const bool should_issue_warning = (parameters->options().entry() != NULL 591 && !parameters->options().relocatable() 592 && !parameters->options().shared()); 593 const char* entry = parameters->entry(); 594 Symbol* sym = this->symtab_->lookup(entry); 595 596 typename Sized_symbol<size>::Value_type v; 597 if (sym != NULL) 598 { 599 Sized_symbol<size>* ssym; 600 ssym = this->symtab_->get_sized_symbol<size>(sym); 601 if (!ssym->is_defined() && should_issue_warning) 602 gold_warning("entry symbol '%s' exists but is not defined", entry); 603 v = ssym->value(); 604 } 605 else 606 { 607 // We couldn't find the entry symbol. See if we can parse it as 608 // a number. This supports, e.g., -e 0x1000. 609 char* endptr; 610 v = strtoull(entry, &endptr, 0); 611 if (*endptr != '\0') 612 { 613 if (should_issue_warning) 614 gold_warning("cannot find entry symbol '%s'", entry); 615 v = 0; 616 } 617 } 618 619 return v; 620 } 621 622 // Compute the current data size. 623 624 off_t 625 Output_file_header::do_size() const 626 { 627 const int size = parameters->target().get_size(); 628 if (size == 32) 629 return elfcpp::Elf_sizes<32>::ehdr_size; 630 else if (size == 64) 631 return elfcpp::Elf_sizes<64>::ehdr_size; 632 else 633 gold_unreachable(); 634 } 635 636 // Output_data_const methods. 637 638 void 639 Output_data_const::do_write(Output_file* of) 640 { 641 of->write(this->offset(), this->data_.data(), this->data_.size()); 642 } 643 644 // Output_data_const_buffer methods. 645 646 void 647 Output_data_const_buffer::do_write(Output_file* of) 648 { 649 of->write(this->offset(), this->p_, this->data_size()); 650 } 651 652 // Output_section_data methods. 653 654 // Record the output section, and set the entry size and such. 655 656 void 657 Output_section_data::set_output_section(Output_section* os) 658 { 659 gold_assert(this->output_section_ == NULL); 660 this->output_section_ = os; 661 this->do_adjust_output_section(os); 662 } 663 664 // Return the section index of the output section. 665 666 unsigned int 667 Output_section_data::do_out_shndx() const 668 { 669 gold_assert(this->output_section_ != NULL); 670 return this->output_section_->out_shndx(); 671 } 672 673 // Set the alignment, which means we may need to update the alignment 674 // of the output section. 675 676 void 677 Output_section_data::set_addralign(uint64_t addralign) 678 { 679 this->addralign_ = addralign; 680 if (this->output_section_ != NULL 681 && this->output_section_->addralign() < addralign) 682 this->output_section_->set_addralign(addralign); 683 } 684 685 // Output_data_strtab methods. 686 687 // Set the final data size. 688 689 void 690 Output_data_strtab::set_final_data_size() 691 { 692 this->strtab_->set_string_offsets(); 693 this->set_data_size(this->strtab_->get_strtab_size()); 694 } 695 696 // Write out a string table. 697 698 void 699 Output_data_strtab::do_write(Output_file* of) 700 { 701 this->strtab_->write(of, this->offset()); 702 } 703 704 // Output_reloc methods. 705 706 // A reloc against a global symbol. 707 708 template<bool dynamic, int size, bool big_endian> 709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( 710 Symbol* gsym, 711 unsigned int type, 712 Output_data* od, 713 Address address, 714 bool is_relative, 715 bool is_symbolless, 716 bool use_plt_offset) 717 : address_(address), local_sym_index_(GSYM_CODE), type_(type), 718 is_relative_(is_relative), is_symbolless_(is_symbolless), 719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE) 720 { 721 // this->type_ is a bitfield; make sure TYPE fits. 722 gold_assert(this->type_ == type); 723 this->u1_.gsym = gsym; 724 this->u2_.od = od; 725 if (dynamic) 726 this->set_needs_dynsym_index(); 727 } 728 729 template<bool dynamic, int size, bool big_endian> 730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( 731 Symbol* gsym, 732 unsigned int type, 733 Sized_relobj<size, big_endian>* relobj, 734 unsigned int shndx, 735 Address address, 736 bool is_relative, 737 bool is_symbolless, 738 bool use_plt_offset) 739 : address_(address), local_sym_index_(GSYM_CODE), type_(type), 740 is_relative_(is_relative), is_symbolless_(is_symbolless), 741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx) 742 { 743 gold_assert(shndx != INVALID_CODE); 744 // this->type_ is a bitfield; make sure TYPE fits. 745 gold_assert(this->type_ == type); 746 this->u1_.gsym = gsym; 747 this->u2_.relobj = relobj; 748 if (dynamic) 749 this->set_needs_dynsym_index(); 750 } 751 752 // A reloc against a local symbol. 753 754 template<bool dynamic, int size, bool big_endian> 755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( 756 Sized_relobj<size, big_endian>* relobj, 757 unsigned int local_sym_index, 758 unsigned int type, 759 Output_data* od, 760 Address address, 761 bool is_relative, 762 bool is_symbolless, 763 bool is_section_symbol, 764 bool use_plt_offset) 765 : address_(address), local_sym_index_(local_sym_index), type_(type), 766 is_relative_(is_relative), is_symbolless_(is_symbolless), 767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset), 768 shndx_(INVALID_CODE) 769 { 770 gold_assert(local_sym_index != GSYM_CODE 771 && local_sym_index != INVALID_CODE); 772 // this->type_ is a bitfield; make sure TYPE fits. 773 gold_assert(this->type_ == type); 774 this->u1_.relobj = relobj; 775 this->u2_.od = od; 776 if (dynamic) 777 this->set_needs_dynsym_index(); 778 } 779 780 template<bool dynamic, int size, bool big_endian> 781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( 782 Sized_relobj<size, big_endian>* relobj, 783 unsigned int local_sym_index, 784 unsigned int type, 785 unsigned int shndx, 786 Address address, 787 bool is_relative, 788 bool is_symbolless, 789 bool is_section_symbol, 790 bool use_plt_offset) 791 : address_(address), local_sym_index_(local_sym_index), type_(type), 792 is_relative_(is_relative), is_symbolless_(is_symbolless), 793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset), 794 shndx_(shndx) 795 { 796 gold_assert(local_sym_index != GSYM_CODE 797 && local_sym_index != INVALID_CODE); 798 gold_assert(shndx != INVALID_CODE); 799 // this->type_ is a bitfield; make sure TYPE fits. 800 gold_assert(this->type_ == type); 801 this->u1_.relobj = relobj; 802 this->u2_.relobj = relobj; 803 if (dynamic) 804 this->set_needs_dynsym_index(); 805 } 806 807 // A reloc against the STT_SECTION symbol of an output section. 808 809 template<bool dynamic, int size, bool big_endian> 810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( 811 Output_section* os, 812 unsigned int type, 813 Output_data* od, 814 Address address, 815 bool is_relative) 816 : address_(address), local_sym_index_(SECTION_CODE), type_(type), 817 is_relative_(is_relative), is_symbolless_(is_relative), 818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE) 819 { 820 // this->type_ is a bitfield; make sure TYPE fits. 821 gold_assert(this->type_ == type); 822 this->u1_.os = os; 823 this->u2_.od = od; 824 if (dynamic) 825 this->set_needs_dynsym_index(); 826 else 827 os->set_needs_symtab_index(); 828 } 829 830 template<bool dynamic, int size, bool big_endian> 831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( 832 Output_section* os, 833 unsigned int type, 834 Sized_relobj<size, big_endian>* relobj, 835 unsigned int shndx, 836 Address address, 837 bool is_relative) 838 : address_(address), local_sym_index_(SECTION_CODE), type_(type), 839 is_relative_(is_relative), is_symbolless_(is_relative), 840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx) 841 { 842 gold_assert(shndx != INVALID_CODE); 843 // this->type_ is a bitfield; make sure TYPE fits. 844 gold_assert(this->type_ == type); 845 this->u1_.os = os; 846 this->u2_.relobj = relobj; 847 if (dynamic) 848 this->set_needs_dynsym_index(); 849 else 850 os->set_needs_symtab_index(); 851 } 852 853 // An absolute or relative relocation. 854 855 template<bool dynamic, int size, bool big_endian> 856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( 857 unsigned int type, 858 Output_data* od, 859 Address address, 860 bool is_relative) 861 : address_(address), local_sym_index_(0), type_(type), 862 is_relative_(is_relative), is_symbolless_(false), 863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE) 864 { 865 // this->type_ is a bitfield; make sure TYPE fits. 866 gold_assert(this->type_ == type); 867 this->u1_.relobj = NULL; 868 this->u2_.od = od; 869 } 870 871 template<bool dynamic, int size, bool big_endian> 872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( 873 unsigned int type, 874 Sized_relobj<size, big_endian>* relobj, 875 unsigned int shndx, 876 Address address, 877 bool is_relative) 878 : address_(address), local_sym_index_(0), type_(type), 879 is_relative_(is_relative), is_symbolless_(false), 880 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx) 881 { 882 gold_assert(shndx != INVALID_CODE); 883 // this->type_ is a bitfield; make sure TYPE fits. 884 gold_assert(this->type_ == type); 885 this->u1_.relobj = NULL; 886 this->u2_.relobj = relobj; 887 } 888 889 // A target specific relocation. 890 891 template<bool dynamic, int size, bool big_endian> 892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( 893 unsigned int type, 894 void* arg, 895 Output_data* od, 896 Address address) 897 : address_(address), local_sym_index_(TARGET_CODE), type_(type), 898 is_relative_(false), is_symbolless_(false), 899 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE) 900 { 901 // this->type_ is a bitfield; make sure TYPE fits. 902 gold_assert(this->type_ == type); 903 this->u1_.arg = arg; 904 this->u2_.od = od; 905 } 906 907 template<bool dynamic, int size, bool big_endian> 908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( 909 unsigned int type, 910 void* arg, 911 Sized_relobj<size, big_endian>* relobj, 912 unsigned int shndx, 913 Address address) 914 : address_(address), local_sym_index_(TARGET_CODE), type_(type), 915 is_relative_(false), is_symbolless_(false), 916 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx) 917 { 918 gold_assert(shndx != INVALID_CODE); 919 // this->type_ is a bitfield; make sure TYPE fits. 920 gold_assert(this->type_ == type); 921 this->u1_.arg = arg; 922 this->u2_.relobj = relobj; 923 } 924 925 // Record that we need a dynamic symbol index for this relocation. 926 927 template<bool dynamic, int size, bool big_endian> 928 void 929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>:: 930 set_needs_dynsym_index() 931 { 932 if (this->is_symbolless_) 933 return; 934 switch (this->local_sym_index_) 935 { 936 case INVALID_CODE: 937 gold_unreachable(); 938 939 case GSYM_CODE: 940 this->u1_.gsym->set_needs_dynsym_entry(); 941 break; 942 943 case SECTION_CODE: 944 this->u1_.os->set_needs_dynsym_index(); 945 break; 946 947 case TARGET_CODE: 948 // The target must take care of this if necessary. 949 break; 950 951 case 0: 952 break; 953 954 default: 955 { 956 const unsigned int lsi = this->local_sym_index_; 957 Sized_relobj_file<size, big_endian>* relobj = 958 this->u1_.relobj->sized_relobj(); 959 gold_assert(relobj != NULL); 960 if (!this->is_section_symbol_) 961 relobj->set_needs_output_dynsym_entry(lsi); 962 else 963 relobj->output_section(lsi)->set_needs_dynsym_index(); 964 } 965 break; 966 } 967 } 968 969 // Get the symbol index of a relocation. 970 971 template<bool dynamic, int size, bool big_endian> 972 unsigned int 973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index() 974 const 975 { 976 unsigned int index; 977 if (this->is_symbolless_) 978 return 0; 979 switch (this->local_sym_index_) 980 { 981 case INVALID_CODE: 982 gold_unreachable(); 983 984 case GSYM_CODE: 985 if (this->u1_.gsym == NULL) 986 index = 0; 987 else if (dynamic) 988 index = this->u1_.gsym->dynsym_index(); 989 else 990 index = this->u1_.gsym->symtab_index(); 991 break; 992 993 case SECTION_CODE: 994 if (dynamic) 995 index = this->u1_.os->dynsym_index(); 996 else 997 index = this->u1_.os->symtab_index(); 998 break; 999 1000 case TARGET_CODE: 1001 index = parameters->target().reloc_symbol_index(this->u1_.arg, 1002 this->type_); 1003 break; 1004 1005 case 0: 1006 // Relocations without symbols use a symbol index of 0. 1007 index = 0; 1008 break; 1009 1010 default: 1011 { 1012 const unsigned int lsi = this->local_sym_index_; 1013 Sized_relobj_file<size, big_endian>* relobj = 1014 this->u1_.relobj->sized_relobj(); 1015 gold_assert(relobj != NULL); 1016 if (!this->is_section_symbol_) 1017 { 1018 if (dynamic) 1019 index = relobj->dynsym_index(lsi); 1020 else 1021 index = relobj->symtab_index(lsi); 1022 } 1023 else 1024 { 1025 Output_section* os = relobj->output_section(lsi); 1026 gold_assert(os != NULL); 1027 if (dynamic) 1028 index = os->dynsym_index(); 1029 else 1030 index = os->symtab_index(); 1031 } 1032 } 1033 break; 1034 } 1035 gold_assert(index != -1U); 1036 return index; 1037 } 1038 1039 // For a local section symbol, get the address of the offset ADDEND 1040 // within the input section. 1041 1042 template<bool dynamic, int size, bool big_endian> 1043 typename elfcpp::Elf_types<size>::Elf_Addr 1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>:: 1045 local_section_offset(Addend addend) const 1046 { 1047 gold_assert(this->local_sym_index_ != GSYM_CODE 1048 && this->local_sym_index_ != SECTION_CODE 1049 && this->local_sym_index_ != TARGET_CODE 1050 && this->local_sym_index_ != INVALID_CODE 1051 && this->local_sym_index_ != 0 1052 && this->is_section_symbol_); 1053 const unsigned int lsi = this->local_sym_index_; 1054 Output_section* os = this->u1_.relobj->output_section(lsi); 1055 gold_assert(os != NULL); 1056 Address offset = this->u1_.relobj->get_output_section_offset(lsi); 1057 if (offset != invalid_address) 1058 return offset + addend; 1059 // This is a merge section. 1060 Sized_relobj_file<size, big_endian>* relobj = 1061 this->u1_.relobj->sized_relobj(); 1062 gold_assert(relobj != NULL); 1063 offset = os->output_address(relobj, lsi, addend); 1064 gold_assert(offset != invalid_address); 1065 return offset; 1066 } 1067 1068 // Get the output address of a relocation. 1069 1070 template<bool dynamic, int size, bool big_endian> 1071 typename elfcpp::Elf_types<size>::Elf_Addr 1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const 1073 { 1074 Address address = this->address_; 1075 if (this->shndx_ != INVALID_CODE) 1076 { 1077 Output_section* os = this->u2_.relobj->output_section(this->shndx_); 1078 gold_assert(os != NULL); 1079 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_); 1080 if (off != invalid_address) 1081 address += os->address() + off; 1082 else 1083 { 1084 Sized_relobj_file<size, big_endian>* relobj = 1085 this->u2_.relobj->sized_relobj(); 1086 gold_assert(relobj != NULL); 1087 address = os->output_address(relobj, this->shndx_, address); 1088 gold_assert(address != invalid_address); 1089 } 1090 } 1091 else if (this->u2_.od != NULL) 1092 address += this->u2_.od->address(); 1093 return address; 1094 } 1095 1096 // Write out the offset and info fields of a Rel or Rela relocation 1097 // entry. 1098 1099 template<bool dynamic, int size, bool big_endian> 1100 template<typename Write_rel> 1101 void 1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel( 1103 Write_rel* wr) const 1104 { 1105 wr->put_r_offset(this->get_address()); 1106 unsigned int sym_index = this->get_symbol_index(); 1107 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_)); 1108 } 1109 1110 // Write out a Rel relocation. 1111 1112 template<bool dynamic, int size, bool big_endian> 1113 void 1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write( 1115 unsigned char* pov) const 1116 { 1117 elfcpp::Rel_write<size, big_endian> orel(pov); 1118 this->write_rel(&orel); 1119 } 1120 1121 // Get the value of the symbol referred to by a Rel relocation. 1122 1123 template<bool dynamic, int size, bool big_endian> 1124 typename elfcpp::Elf_types<size>::Elf_Addr 1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value( 1126 Addend addend) const 1127 { 1128 if (this->local_sym_index_ == GSYM_CODE) 1129 { 1130 const Sized_symbol<size>* sym; 1131 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym); 1132 if (this->use_plt_offset_ && sym->has_plt_offset()) 1133 return parameters->target().plt_address_for_global(sym); 1134 else 1135 return sym->value() + addend; 1136 } 1137 if (this->local_sym_index_ == SECTION_CODE) 1138 { 1139 gold_assert(!this->use_plt_offset_); 1140 return this->u1_.os->address() + addend; 1141 } 1142 gold_assert(this->local_sym_index_ != TARGET_CODE 1143 && this->local_sym_index_ != INVALID_CODE 1144 && this->local_sym_index_ != 0 1145 && !this->is_section_symbol_); 1146 const unsigned int lsi = this->local_sym_index_; 1147 Sized_relobj_file<size, big_endian>* relobj = 1148 this->u1_.relobj->sized_relobj(); 1149 gold_assert(relobj != NULL); 1150 if (this->use_plt_offset_) 1151 return parameters->target().plt_address_for_local(relobj, lsi); 1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi); 1153 return symval->value(relobj, addend); 1154 } 1155 1156 // Reloc comparison. This function sorts the dynamic relocs for the 1157 // benefit of the dynamic linker. First we sort all relative relocs 1158 // to the front. Among relative relocs, we sort by output address. 1159 // Among non-relative relocs, we sort by symbol index, then by output 1160 // address. 1161 1162 template<bool dynamic, int size, bool big_endian> 1163 int 1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>:: 1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2) 1166 const 1167 { 1168 if (this->is_relative_) 1169 { 1170 if (!r2.is_relative_) 1171 return -1; 1172 // Otherwise sort by reloc address below. 1173 } 1174 else if (r2.is_relative_) 1175 return 1; 1176 else 1177 { 1178 unsigned int sym1 = this->get_symbol_index(); 1179 unsigned int sym2 = r2.get_symbol_index(); 1180 if (sym1 < sym2) 1181 return -1; 1182 else if (sym1 > sym2) 1183 return 1; 1184 // Otherwise sort by reloc address. 1185 } 1186 1187 section_offset_type addr1 = this->get_address(); 1188 section_offset_type addr2 = r2.get_address(); 1189 if (addr1 < addr2) 1190 return -1; 1191 else if (addr1 > addr2) 1192 return 1; 1193 1194 // Final tie breaker, in order to generate the same output on any 1195 // host: reloc type. 1196 unsigned int type1 = this->type_; 1197 unsigned int type2 = r2.type_; 1198 if (type1 < type2) 1199 return -1; 1200 else if (type1 > type2) 1201 return 1; 1202 1203 // These relocs appear to be exactly the same. 1204 return 0; 1205 } 1206 1207 // Write out a Rela relocation. 1208 1209 template<bool dynamic, int size, bool big_endian> 1210 void 1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write( 1212 unsigned char* pov) const 1213 { 1214 elfcpp::Rela_write<size, big_endian> orel(pov); 1215 this->rel_.write_rel(&orel); 1216 Addend addend = this->addend_; 1217 if (this->rel_.is_target_specific()) 1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(), 1219 this->rel_.type(), addend); 1220 else if (this->rel_.is_symbolless()) 1221 addend = this->rel_.symbol_value(addend); 1222 else if (this->rel_.is_local_section_symbol()) 1223 addend = this->rel_.local_section_offset(addend); 1224 orel.put_r_addend(addend); 1225 } 1226 1227 // Output_data_reloc_base methods. 1228 1229 // Adjust the output section. 1230 1231 template<int sh_type, bool dynamic, int size, bool big_endian> 1232 void 1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian> 1234 ::do_adjust_output_section(Output_section* os) 1235 { 1236 if (sh_type == elfcpp::SHT_REL) 1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size); 1238 else if (sh_type == elfcpp::SHT_RELA) 1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size); 1240 else 1241 gold_unreachable(); 1242 1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a 1244 // static link. The backends will generate a dynamic reloc section 1245 // to hold this. In that case we don't want to link to the dynsym 1246 // section, because there isn't one. 1247 if (!dynamic) 1248 os->set_should_link_to_symtab(); 1249 else if (parameters->doing_static_link()) 1250 ; 1251 else 1252 os->set_should_link_to_dynsym(); 1253 } 1254 1255 // Write out relocation data. 1256 1257 template<int sh_type, bool dynamic, int size, bool big_endian> 1258 void 1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write( 1260 Output_file* of) 1261 { 1262 const off_t off = this->offset(); 1263 const off_t oview_size = this->data_size(); 1264 unsigned char* const oview = of->get_output_view(off, oview_size); 1265 1266 if (this->sort_relocs()) 1267 { 1268 gold_assert(dynamic); 1269 std::sort(this->relocs_.begin(), this->relocs_.end(), 1270 Sort_relocs_comparison()); 1271 } 1272 1273 unsigned char* pov = oview; 1274 for (typename Relocs::const_iterator p = this->relocs_.begin(); 1275 p != this->relocs_.end(); 1276 ++p) 1277 { 1278 p->write(pov); 1279 pov += reloc_size; 1280 } 1281 1282 gold_assert(pov - oview == oview_size); 1283 1284 of->write_output_view(off, oview_size, oview); 1285 1286 // We no longer need the relocation entries. 1287 this->relocs_.clear(); 1288 } 1289 1290 // Class Output_relocatable_relocs. 1291 1292 template<int sh_type, int size, bool big_endian> 1293 void 1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size() 1295 { 1296 this->set_data_size(this->rr_->output_reloc_count() 1297 * Reloc_types<sh_type, size, big_endian>::reloc_size); 1298 } 1299 1300 // class Output_data_group. 1301 1302 template<int size, bool big_endian> 1303 Output_data_group<size, big_endian>::Output_data_group( 1304 Sized_relobj_file<size, big_endian>* relobj, 1305 section_size_type entry_count, 1306 elfcpp::Elf_Word flags, 1307 std::vector<unsigned int>* input_shndxes) 1308 : Output_section_data(entry_count * 4, 4, false), 1309 relobj_(relobj), 1310 flags_(flags) 1311 { 1312 this->input_shndxes_.swap(*input_shndxes); 1313 } 1314 1315 // Write out the section group, which means translating the section 1316 // indexes to apply to the output file. 1317 1318 template<int size, bool big_endian> 1319 void 1320 Output_data_group<size, big_endian>::do_write(Output_file* of) 1321 { 1322 const off_t off = this->offset(); 1323 const section_size_type oview_size = 1324 convert_to_section_size_type(this->data_size()); 1325 unsigned char* const oview = of->get_output_view(off, oview_size); 1326 1327 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview); 1328 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_); 1329 ++contents; 1330 1331 for (std::vector<unsigned int>::const_iterator p = 1332 this->input_shndxes_.begin(); 1333 p != this->input_shndxes_.end(); 1334 ++p, ++contents) 1335 { 1336 Output_section* os = this->relobj_->output_section(*p); 1337 1338 unsigned int output_shndx; 1339 if (os != NULL) 1340 output_shndx = os->out_shndx(); 1341 else 1342 { 1343 this->relobj_->error(_("section group retained but " 1344 "group element discarded")); 1345 output_shndx = 0; 1346 } 1347 1348 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx); 1349 } 1350 1351 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview; 1352 gold_assert(wrote == oview_size); 1353 1354 of->write_output_view(off, oview_size, oview); 1355 1356 // We no longer need this information. 1357 this->input_shndxes_.clear(); 1358 } 1359 1360 // Output_data_got::Got_entry methods. 1361 1362 // Write out the entry. 1363 1364 template<int got_size, bool big_endian> 1365 void 1366 Output_data_got<got_size, big_endian>::Got_entry::write( 1367 unsigned int got_indx, 1368 unsigned char* pov) const 1369 { 1370 Valtype val = 0; 1371 1372 switch (this->local_sym_index_) 1373 { 1374 case GSYM_CODE: 1375 { 1376 // If the symbol is resolved locally, we need to write out the 1377 // link-time value, which will be relocated dynamically by a 1378 // RELATIVE relocation. 1379 Symbol* gsym = this->u_.gsym; 1380 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset()) 1381 val = parameters->target().plt_address_for_global(gsym); 1382 else 1383 { 1384 switch (parameters->size_and_endianness()) 1385 { 1386 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) 1387 case Parameters::TARGET_32_LITTLE: 1388 case Parameters::TARGET_32_BIG: 1389 { 1390 // This cast is ugly. We don't want to put a 1391 // virtual method in Symbol, because we want Symbol 1392 // to be as small as possible. 1393 Sized_symbol<32>::Value_type v; 1394 v = static_cast<Sized_symbol<32>*>(gsym)->value(); 1395 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v); 1396 } 1397 break; 1398 #endif 1399 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) 1400 case Parameters::TARGET_64_LITTLE: 1401 case Parameters::TARGET_64_BIG: 1402 { 1403 Sized_symbol<64>::Value_type v; 1404 v = static_cast<Sized_symbol<64>*>(gsym)->value(); 1405 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v); 1406 } 1407 break; 1408 #endif 1409 default: 1410 gold_unreachable(); 1411 } 1412 if (this->use_plt_or_tls_offset_ 1413 && gsym->type() == elfcpp::STT_TLS) 1414 val += parameters->target().tls_offset_for_global(gsym, 1415 got_indx); 1416 } 1417 } 1418 break; 1419 1420 case CONSTANT_CODE: 1421 val = this->u_.constant; 1422 break; 1423 1424 case RESERVED_CODE: 1425 // If we're doing an incremental update, don't touch this GOT entry. 1426 if (parameters->incremental_update()) 1427 return; 1428 val = this->u_.constant; 1429 break; 1430 1431 default: 1432 { 1433 const Relobj* object = this->u_.object; 1434 const unsigned int lsi = this->local_sym_index_; 1435 bool is_tls = object->local_is_tls(lsi); 1436 if (this->use_plt_or_tls_offset_ && !is_tls) 1437 val = parameters->target().plt_address_for_local(object, lsi); 1438 else 1439 { 1440 uint64_t lval = object->local_symbol_value(lsi, 0); 1441 val = convert_types<Valtype, uint64_t>(lval); 1442 if (this->use_plt_or_tls_offset_ && is_tls) 1443 val += parameters->target().tls_offset_for_local(object, lsi, 1444 got_indx); 1445 } 1446 } 1447 break; 1448 } 1449 1450 elfcpp::Swap<got_size, big_endian>::writeval(pov, val); 1451 } 1452 1453 // Output_data_got methods. 1454 1455 // Add an entry for a global symbol to the GOT. This returns true if 1456 // this is a new GOT entry, false if the symbol already had a GOT 1457 // entry. 1458 1459 template<int got_size, bool big_endian> 1460 bool 1461 Output_data_got<got_size, big_endian>::add_global( 1462 Symbol* gsym, 1463 unsigned int got_type) 1464 { 1465 if (gsym->has_got_offset(got_type)) 1466 return false; 1467 1468 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false)); 1469 gsym->set_got_offset(got_type, got_offset); 1470 return true; 1471 } 1472 1473 // Like add_global, but use the PLT offset. 1474 1475 template<int got_size, bool big_endian> 1476 bool 1477 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym, 1478 unsigned int got_type) 1479 { 1480 if (gsym->has_got_offset(got_type)) 1481 return false; 1482 1483 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true)); 1484 gsym->set_got_offset(got_type, got_offset); 1485 return true; 1486 } 1487 1488 // Add an entry for a global symbol to the GOT, and add a dynamic 1489 // relocation of type R_TYPE for the GOT entry. 1490 1491 template<int got_size, bool big_endian> 1492 void 1493 Output_data_got<got_size, big_endian>::add_global_with_rel( 1494 Symbol* gsym, 1495 unsigned int got_type, 1496 Output_data_reloc_generic* rel_dyn, 1497 unsigned int r_type) 1498 { 1499 if (gsym->has_got_offset(got_type)) 1500 return; 1501 1502 unsigned int got_offset = this->add_got_entry(Got_entry()); 1503 gsym->set_got_offset(got_type, got_offset); 1504 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0); 1505 } 1506 1507 // Add a pair of entries for a global symbol to the GOT, and add 1508 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively. 1509 // If R_TYPE_2 == 0, add the second entry with no relocation. 1510 template<int got_size, bool big_endian> 1511 void 1512 Output_data_got<got_size, big_endian>::add_global_pair_with_rel( 1513 Symbol* gsym, 1514 unsigned int got_type, 1515 Output_data_reloc_generic* rel_dyn, 1516 unsigned int r_type_1, 1517 unsigned int r_type_2) 1518 { 1519 if (gsym->has_got_offset(got_type)) 1520 return; 1521 1522 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry()); 1523 gsym->set_got_offset(got_type, got_offset); 1524 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0); 1525 1526 if (r_type_2 != 0) 1527 rel_dyn->add_global_generic(gsym, r_type_2, this, 1528 got_offset + got_size / 8, 0); 1529 } 1530 1531 // Add an entry for a local symbol to the GOT. This returns true if 1532 // this is a new GOT entry, false if the symbol already has a GOT 1533 // entry. 1534 1535 template<int got_size, bool big_endian> 1536 bool 1537 Output_data_got<got_size, big_endian>::add_local( 1538 Relobj* object, 1539 unsigned int symndx, 1540 unsigned int got_type) 1541 { 1542 if (object->local_has_got_offset(symndx, got_type)) 1543 return false; 1544 1545 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx, 1546 false)); 1547 object->set_local_got_offset(symndx, got_type, got_offset); 1548 return true; 1549 } 1550 1551 // Like add_local, but use the PLT offset. 1552 1553 template<int got_size, bool big_endian> 1554 bool 1555 Output_data_got<got_size, big_endian>::add_local_plt( 1556 Relobj* object, 1557 unsigned int symndx, 1558 unsigned int got_type) 1559 { 1560 if (object->local_has_got_offset(symndx, got_type)) 1561 return false; 1562 1563 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx, 1564 true)); 1565 object->set_local_got_offset(symndx, got_type, got_offset); 1566 return true; 1567 } 1568 1569 // Add an entry for a local symbol to the GOT, and add a dynamic 1570 // relocation of type R_TYPE for the GOT entry. 1571 1572 template<int got_size, bool big_endian> 1573 void 1574 Output_data_got<got_size, big_endian>::add_local_with_rel( 1575 Relobj* object, 1576 unsigned int symndx, 1577 unsigned int got_type, 1578 Output_data_reloc_generic* rel_dyn, 1579 unsigned int r_type) 1580 { 1581 if (object->local_has_got_offset(symndx, got_type)) 1582 return; 1583 1584 unsigned int got_offset = this->add_got_entry(Got_entry()); 1585 object->set_local_got_offset(symndx, got_type, got_offset); 1586 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0); 1587 } 1588 1589 // Add a pair of entries for a local symbol to the GOT, and add 1590 // a dynamic relocation of type R_TYPE using the section symbol of 1591 // the output section to which input section SHNDX maps, on the first. 1592 // The first got entry will have a value of zero, the second the 1593 // value of the local symbol. 1594 template<int got_size, bool big_endian> 1595 void 1596 Output_data_got<got_size, big_endian>::add_local_pair_with_rel( 1597 Relobj* object, 1598 unsigned int symndx, 1599 unsigned int shndx, 1600 unsigned int got_type, 1601 Output_data_reloc_generic* rel_dyn, 1602 unsigned int r_type) 1603 { 1604 if (object->local_has_got_offset(symndx, got_type)) 1605 return; 1606 1607 unsigned int got_offset = 1608 this->add_got_entry_pair(Got_entry(), 1609 Got_entry(object, symndx, false)); 1610 object->set_local_got_offset(symndx, got_type, got_offset); 1611 Output_section* os = object->output_section(shndx); 1612 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0); 1613 } 1614 1615 // Add a pair of entries for a local symbol to the GOT, and add 1616 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first. 1617 // The first got entry will have a value of zero, the second the 1618 // value of the local symbol offset by Target::tls_offset_for_local. 1619 template<int got_size, bool big_endian> 1620 void 1621 Output_data_got<got_size, big_endian>::add_local_tls_pair( 1622 Relobj* object, 1623 unsigned int symndx, 1624 unsigned int got_type, 1625 Output_data_reloc_generic* rel_dyn, 1626 unsigned int r_type) 1627 { 1628 if (object->local_has_got_offset(symndx, got_type)) 1629 return; 1630 1631 unsigned int got_offset 1632 = this->add_got_entry_pair(Got_entry(), 1633 Got_entry(object, symndx, true)); 1634 object->set_local_got_offset(symndx, got_type, got_offset); 1635 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0); 1636 } 1637 1638 // Reserve a slot in the GOT for a local symbol or the second slot of a pair. 1639 1640 template<int got_size, bool big_endian> 1641 void 1642 Output_data_got<got_size, big_endian>::reserve_local( 1643 unsigned int i, 1644 Relobj* object, 1645 unsigned int sym_index, 1646 unsigned int got_type) 1647 { 1648 this->do_reserve_slot(i); 1649 object->set_local_got_offset(sym_index, got_type, this->got_offset(i)); 1650 } 1651 1652 // Reserve a slot in the GOT for a global symbol. 1653 1654 template<int got_size, bool big_endian> 1655 void 1656 Output_data_got<got_size, big_endian>::reserve_global( 1657 unsigned int i, 1658 Symbol* gsym, 1659 unsigned int got_type) 1660 { 1661 this->do_reserve_slot(i); 1662 gsym->set_got_offset(got_type, this->got_offset(i)); 1663 } 1664 1665 // Write out the GOT. 1666 1667 template<int got_size, bool big_endian> 1668 void 1669 Output_data_got<got_size, big_endian>::do_write(Output_file* of) 1670 { 1671 const int add = got_size / 8; 1672 1673 const off_t off = this->offset(); 1674 const off_t oview_size = this->data_size(); 1675 unsigned char* const oview = of->get_output_view(off, oview_size); 1676 1677 unsigned char* pov = oview; 1678 for (unsigned int i = 0; i < this->entries_.size(); ++i) 1679 { 1680 this->entries_[i].write(i, pov); 1681 pov += add; 1682 } 1683 1684 gold_assert(pov - oview == oview_size); 1685 1686 of->write_output_view(off, oview_size, oview); 1687 1688 // We no longer need the GOT entries. 1689 this->entries_.clear(); 1690 } 1691 1692 // Create a new GOT entry and return its offset. 1693 1694 template<int got_size, bool big_endian> 1695 unsigned int 1696 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry) 1697 { 1698 if (!this->is_data_size_valid()) 1699 { 1700 this->entries_.push_back(got_entry); 1701 this->set_got_size(); 1702 return this->last_got_offset(); 1703 } 1704 else 1705 { 1706 // For an incremental update, find an available slot. 1707 off_t got_offset = this->free_list_.allocate(got_size / 8, 1708 got_size / 8, 0); 1709 if (got_offset == -1) 1710 gold_fallback(_("out of patch space (GOT);" 1711 " relink with --incremental-full")); 1712 unsigned int got_index = got_offset / (got_size / 8); 1713 gold_assert(got_index < this->entries_.size()); 1714 this->entries_[got_index] = got_entry; 1715 return static_cast<unsigned int>(got_offset); 1716 } 1717 } 1718 1719 // Create a pair of new GOT entries and return the offset of the first. 1720 1721 template<int got_size, bool big_endian> 1722 unsigned int 1723 Output_data_got<got_size, big_endian>::add_got_entry_pair( 1724 Got_entry got_entry_1, 1725 Got_entry got_entry_2) 1726 { 1727 if (!this->is_data_size_valid()) 1728 { 1729 unsigned int got_offset; 1730 this->entries_.push_back(got_entry_1); 1731 got_offset = this->last_got_offset(); 1732 this->entries_.push_back(got_entry_2); 1733 this->set_got_size(); 1734 return got_offset; 1735 } 1736 else 1737 { 1738 // For an incremental update, find an available pair of slots. 1739 off_t got_offset = this->free_list_.allocate(2 * got_size / 8, 1740 got_size / 8, 0); 1741 if (got_offset == -1) 1742 gold_fallback(_("out of patch space (GOT);" 1743 " relink with --incremental-full")); 1744 unsigned int got_index = got_offset / (got_size / 8); 1745 gold_assert(got_index < this->entries_.size()); 1746 this->entries_[got_index] = got_entry_1; 1747 this->entries_[got_index + 1] = got_entry_2; 1748 return static_cast<unsigned int>(got_offset); 1749 } 1750 } 1751 1752 // Replace GOT entry I with a new value. 1753 1754 template<int got_size, bool big_endian> 1755 void 1756 Output_data_got<got_size, big_endian>::replace_got_entry( 1757 unsigned int i, 1758 Got_entry got_entry) 1759 { 1760 gold_assert(i < this->entries_.size()); 1761 this->entries_[i] = got_entry; 1762 } 1763 1764 // Output_data_dynamic::Dynamic_entry methods. 1765 1766 // Write out the entry. 1767 1768 template<int size, bool big_endian> 1769 void 1770 Output_data_dynamic::Dynamic_entry::write( 1771 unsigned char* pov, 1772 const Stringpool* pool) const 1773 { 1774 typename elfcpp::Elf_types<size>::Elf_WXword val; 1775 switch (this->offset_) 1776 { 1777 case DYNAMIC_NUMBER: 1778 val = this->u_.val; 1779 break; 1780 1781 case DYNAMIC_SECTION_SIZE: 1782 val = this->u_.od->data_size(); 1783 if (this->od2 != NULL) 1784 val += this->od2->data_size(); 1785 break; 1786 1787 case DYNAMIC_SYMBOL: 1788 { 1789 const Sized_symbol<size>* s = 1790 static_cast<const Sized_symbol<size>*>(this->u_.sym); 1791 val = s->value(); 1792 } 1793 break; 1794 1795 case DYNAMIC_STRING: 1796 val = pool->get_offset(this->u_.str); 1797 break; 1798 1799 case DYNAMIC_CUSTOM: 1800 val = parameters->target().dynamic_tag_custom_value(this->tag_); 1801 break; 1802 1803 default: 1804 val = this->u_.od->address() + this->offset_; 1805 break; 1806 } 1807 1808 elfcpp::Dyn_write<size, big_endian> dw(pov); 1809 dw.put_d_tag(this->tag_); 1810 dw.put_d_val(val); 1811 } 1812 1813 // Output_data_dynamic methods. 1814 1815 // Adjust the output section to set the entry size. 1816 1817 void 1818 Output_data_dynamic::do_adjust_output_section(Output_section* os) 1819 { 1820 if (parameters->target().get_size() == 32) 1821 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size); 1822 else if (parameters->target().get_size() == 64) 1823 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size); 1824 else 1825 gold_unreachable(); 1826 } 1827 1828 // Set the final data size. 1829 1830 void 1831 Output_data_dynamic::set_final_data_size() 1832 { 1833 // Add the terminating entry if it hasn't been added. 1834 // Because of relaxation, we can run this multiple times. 1835 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL) 1836 { 1837 int extra = parameters->options().spare_dynamic_tags(); 1838 for (int i = 0; i < extra; ++i) 1839 this->add_constant(elfcpp::DT_NULL, 0); 1840 this->add_constant(elfcpp::DT_NULL, 0); 1841 } 1842 1843 int dyn_size; 1844 if (parameters->target().get_size() == 32) 1845 dyn_size = elfcpp::Elf_sizes<32>::dyn_size; 1846 else if (parameters->target().get_size() == 64) 1847 dyn_size = elfcpp::Elf_sizes<64>::dyn_size; 1848 else 1849 gold_unreachable(); 1850 this->set_data_size(this->entries_.size() * dyn_size); 1851 } 1852 1853 // Write out the dynamic entries. 1854 1855 void 1856 Output_data_dynamic::do_write(Output_file* of) 1857 { 1858 switch (parameters->size_and_endianness()) 1859 { 1860 #ifdef HAVE_TARGET_32_LITTLE 1861 case Parameters::TARGET_32_LITTLE: 1862 this->sized_write<32, false>(of); 1863 break; 1864 #endif 1865 #ifdef HAVE_TARGET_32_BIG 1866 case Parameters::TARGET_32_BIG: 1867 this->sized_write<32, true>(of); 1868 break; 1869 #endif 1870 #ifdef HAVE_TARGET_64_LITTLE 1871 case Parameters::TARGET_64_LITTLE: 1872 this->sized_write<64, false>(of); 1873 break; 1874 #endif 1875 #ifdef HAVE_TARGET_64_BIG 1876 case Parameters::TARGET_64_BIG: 1877 this->sized_write<64, true>(of); 1878 break; 1879 #endif 1880 default: 1881 gold_unreachable(); 1882 } 1883 } 1884 1885 template<int size, bool big_endian> 1886 void 1887 Output_data_dynamic::sized_write(Output_file* of) 1888 { 1889 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size; 1890 1891 const off_t offset = this->offset(); 1892 const off_t oview_size = this->data_size(); 1893 unsigned char* const oview = of->get_output_view(offset, oview_size); 1894 1895 unsigned char* pov = oview; 1896 for (typename Dynamic_entries::const_iterator p = this->entries_.begin(); 1897 p != this->entries_.end(); 1898 ++p) 1899 { 1900 p->write<size, big_endian>(pov, this->pool_); 1901 pov += dyn_size; 1902 } 1903 1904 gold_assert(pov - oview == oview_size); 1905 1906 of->write_output_view(offset, oview_size, oview); 1907 1908 // We no longer need the dynamic entries. 1909 this->entries_.clear(); 1910 } 1911 1912 // Class Output_symtab_xindex. 1913 1914 void 1915 Output_symtab_xindex::do_write(Output_file* of) 1916 { 1917 const off_t offset = this->offset(); 1918 const off_t oview_size = this->data_size(); 1919 unsigned char* const oview = of->get_output_view(offset, oview_size); 1920 1921 memset(oview, 0, oview_size); 1922 1923 if (parameters->target().is_big_endian()) 1924 this->endian_do_write<true>(oview); 1925 else 1926 this->endian_do_write<false>(oview); 1927 1928 of->write_output_view(offset, oview_size, oview); 1929 1930 // We no longer need the data. 1931 this->entries_.clear(); 1932 } 1933 1934 template<bool big_endian> 1935 void 1936 Output_symtab_xindex::endian_do_write(unsigned char* const oview) 1937 { 1938 for (Xindex_entries::const_iterator p = this->entries_.begin(); 1939 p != this->entries_.end(); 1940 ++p) 1941 { 1942 unsigned int symndx = p->first; 1943 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size()); 1944 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second); 1945 } 1946 } 1947 1948 // Output_fill_debug_info methods. 1949 1950 // Return the minimum size needed for a dummy compilation unit header. 1951 1952 size_t 1953 Output_fill_debug_info::do_minimum_hole_size() const 1954 { 1955 // Compile unit header fields: unit_length, version, debug_abbrev_offset, 1956 // address_size. 1957 const size_t len = 4 + 2 + 4 + 1; 1958 // For type units, add type_signature, type_offset. 1959 if (this->is_debug_types_) 1960 return len + 8 + 4; 1961 return len; 1962 } 1963 1964 // Write a dummy compilation unit header to fill a hole in the 1965 // .debug_info or .debug_types section. 1966 1967 void 1968 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const 1969 { 1970 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)", 1971 static_cast<long>(off), static_cast<long>(len)); 1972 1973 gold_assert(len >= this->do_minimum_hole_size()); 1974 1975 unsigned char* const oview = of->get_output_view(off, len); 1976 unsigned char* pov = oview; 1977 1978 // Write header fields: unit_length, version, debug_abbrev_offset, 1979 // address_size. 1980 if (this->is_big_endian()) 1981 { 1982 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4); 1983 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version); 1984 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0); 1985 } 1986 else 1987 { 1988 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4); 1989 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version); 1990 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0); 1991 } 1992 pov += 4 + 2 + 4; 1993 *pov++ = 4; 1994 1995 // For type units, the additional header fields -- type_signature, 1996 // type_offset -- can be filled with zeroes. 1997 1998 // Fill the remainder of the free space with zeroes. The first 1999 // zero should tell the consumer there are no DIEs to read in this 2000 // compilation unit. 2001 if (pov < oview + len) 2002 memset(pov, 0, oview + len - pov); 2003 2004 of->write_output_view(off, len, oview); 2005 } 2006 2007 // Output_fill_debug_line methods. 2008 2009 // Return the minimum size needed for a dummy line number program header. 2010 2011 size_t 2012 Output_fill_debug_line::do_minimum_hole_size() const 2013 { 2014 // Line number program header fields: unit_length, version, header_length, 2015 // minimum_instruction_length, default_is_stmt, line_base, line_range, 2016 // opcode_base, standard_opcode_lengths[], include_directories, filenames. 2017 const size_t len = 4 + 2 + 4 + this->header_length; 2018 return len; 2019 } 2020 2021 // Write a dummy line number program header to fill a hole in the 2022 // .debug_line section. 2023 2024 void 2025 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const 2026 { 2027 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)", 2028 static_cast<long>(off), static_cast<long>(len)); 2029 2030 gold_assert(len >= this->do_minimum_hole_size()); 2031 2032 unsigned char* const oview = of->get_output_view(off, len); 2033 unsigned char* pov = oview; 2034 2035 // Write header fields: unit_length, version, header_length, 2036 // minimum_instruction_length, default_is_stmt, line_base, line_range, 2037 // opcode_base, standard_opcode_lengths[], include_directories, filenames. 2038 // We set the header_length field to cover the entire hole, so the 2039 // line number program is empty. 2040 if (this->is_big_endian()) 2041 { 2042 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4); 2043 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version); 2044 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4)); 2045 } 2046 else 2047 { 2048 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4); 2049 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version); 2050 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4)); 2051 } 2052 pov += 4 + 2 + 4; 2053 *pov++ = 1; // minimum_instruction_length 2054 *pov++ = 0; // default_is_stmt 2055 *pov++ = 0; // line_base 2056 *pov++ = 5; // line_range 2057 *pov++ = 13; // opcode_base 2058 *pov++ = 0; // standard_opcode_lengths[1] 2059 *pov++ = 1; // standard_opcode_lengths[2] 2060 *pov++ = 1; // standard_opcode_lengths[3] 2061 *pov++ = 1; // standard_opcode_lengths[4] 2062 *pov++ = 1; // standard_opcode_lengths[5] 2063 *pov++ = 0; // standard_opcode_lengths[6] 2064 *pov++ = 0; // standard_opcode_lengths[7] 2065 *pov++ = 0; // standard_opcode_lengths[8] 2066 *pov++ = 1; // standard_opcode_lengths[9] 2067 *pov++ = 0; // standard_opcode_lengths[10] 2068 *pov++ = 0; // standard_opcode_lengths[11] 2069 *pov++ = 1; // standard_opcode_lengths[12] 2070 *pov++ = 0; // include_directories (empty) 2071 *pov++ = 0; // filenames (empty) 2072 2073 // Some consumers don't check the header_length field, and simply 2074 // start reading the line number program immediately following the 2075 // header. For those consumers, we fill the remainder of the free 2076 // space with DW_LNS_set_basic_block opcodes. These are effectively 2077 // no-ops: the resulting line table program will not create any rows. 2078 if (pov < oview + len) 2079 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov); 2080 2081 of->write_output_view(off, len, oview); 2082 } 2083 2084 // Output_section::Input_section methods. 2085 2086 // Return the current data size. For an input section we store the size here. 2087 // For an Output_section_data, we have to ask it for the size. 2088 2089 off_t 2090 Output_section::Input_section::current_data_size() const 2091 { 2092 if (this->is_input_section()) 2093 return this->u1_.data_size; 2094 else 2095 { 2096 this->u2_.posd->pre_finalize_data_size(); 2097 return this->u2_.posd->current_data_size(); 2098 } 2099 } 2100 2101 // Return the data size. For an input section we store the size here. 2102 // For an Output_section_data, we have to ask it for the size. 2103 2104 off_t 2105 Output_section::Input_section::data_size() const 2106 { 2107 if (this->is_input_section()) 2108 return this->u1_.data_size; 2109 else 2110 return this->u2_.posd->data_size(); 2111 } 2112 2113 // Return the object for an input section. 2114 2115 Relobj* 2116 Output_section::Input_section::relobj() const 2117 { 2118 if (this->is_input_section()) 2119 return this->u2_.object; 2120 else if (this->is_merge_section()) 2121 { 2122 gold_assert(this->u2_.pomb->first_relobj() != NULL); 2123 return this->u2_.pomb->first_relobj(); 2124 } 2125 else if (this->is_relaxed_input_section()) 2126 return this->u2_.poris->relobj(); 2127 else 2128 gold_unreachable(); 2129 } 2130 2131 // Return the input section index for an input section. 2132 2133 unsigned int 2134 Output_section::Input_section::shndx() const 2135 { 2136 if (this->is_input_section()) 2137 return this->shndx_; 2138 else if (this->is_merge_section()) 2139 { 2140 gold_assert(this->u2_.pomb->first_relobj() != NULL); 2141 return this->u2_.pomb->first_shndx(); 2142 } 2143 else if (this->is_relaxed_input_section()) 2144 return this->u2_.poris->shndx(); 2145 else 2146 gold_unreachable(); 2147 } 2148 2149 // Set the address and file offset. 2150 2151 void 2152 Output_section::Input_section::set_address_and_file_offset( 2153 uint64_t address, 2154 off_t file_offset, 2155 off_t section_file_offset) 2156 { 2157 if (this->is_input_section()) 2158 this->u2_.object->set_section_offset(this->shndx_, 2159 file_offset - section_file_offset); 2160 else 2161 this->u2_.posd->set_address_and_file_offset(address, file_offset); 2162 } 2163 2164 // Reset the address and file offset. 2165 2166 void 2167 Output_section::Input_section::reset_address_and_file_offset() 2168 { 2169 if (!this->is_input_section()) 2170 this->u2_.posd->reset_address_and_file_offset(); 2171 } 2172 2173 // Finalize the data size. 2174 2175 void 2176 Output_section::Input_section::finalize_data_size() 2177 { 2178 if (!this->is_input_section()) 2179 this->u2_.posd->finalize_data_size(); 2180 } 2181 2182 // Try to turn an input offset into an output offset. We want to 2183 // return the output offset relative to the start of this 2184 // Input_section in the output section. 2185 2186 inline bool 2187 Output_section::Input_section::output_offset( 2188 const Relobj* object, 2189 unsigned int shndx, 2190 section_offset_type offset, 2191 section_offset_type* poutput) const 2192 { 2193 if (!this->is_input_section()) 2194 return this->u2_.posd->output_offset(object, shndx, offset, poutput); 2195 else 2196 { 2197 if (this->shndx_ != shndx || this->u2_.object != object) 2198 return false; 2199 *poutput = offset; 2200 return true; 2201 } 2202 } 2203 2204 // Return whether this is the merge section for the input section 2205 // SHNDX in OBJECT. 2206 2207 inline bool 2208 Output_section::Input_section::is_merge_section_for(const Relobj* object, 2209 unsigned int shndx) const 2210 { 2211 if (this->is_input_section()) 2212 return false; 2213 return this->u2_.posd->is_merge_section_for(object, shndx); 2214 } 2215 2216 // Write out the data. We don't have to do anything for an input 2217 // section--they are handled via Object::relocate--but this is where 2218 // we write out the data for an Output_section_data. 2219 2220 void 2221 Output_section::Input_section::write(Output_file* of) 2222 { 2223 if (!this->is_input_section()) 2224 this->u2_.posd->write(of); 2225 } 2226 2227 // Write the data to a buffer. As for write(), we don't have to do 2228 // anything for an input section. 2229 2230 void 2231 Output_section::Input_section::write_to_buffer(unsigned char* buffer) 2232 { 2233 if (!this->is_input_section()) 2234 this->u2_.posd->write_to_buffer(buffer); 2235 } 2236 2237 // Print to a map file. 2238 2239 void 2240 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const 2241 { 2242 switch (this->shndx_) 2243 { 2244 case OUTPUT_SECTION_CODE: 2245 case MERGE_DATA_SECTION_CODE: 2246 case MERGE_STRING_SECTION_CODE: 2247 this->u2_.posd->print_to_mapfile(mapfile); 2248 break; 2249 2250 case RELAXED_INPUT_SECTION_CODE: 2251 { 2252 Output_relaxed_input_section* relaxed_section = 2253 this->relaxed_input_section(); 2254 mapfile->print_input_section(relaxed_section->relobj(), 2255 relaxed_section->shndx()); 2256 } 2257 break; 2258 default: 2259 mapfile->print_input_section(this->u2_.object, this->shndx_); 2260 break; 2261 } 2262 } 2263 2264 // Output_section methods. 2265 2266 // Construct an Output_section. NAME will point into a Stringpool. 2267 2268 Output_section::Output_section(const char* name, elfcpp::Elf_Word type, 2269 elfcpp::Elf_Xword flags) 2270 : name_(name), 2271 addralign_(0), 2272 entsize_(0), 2273 load_address_(0), 2274 link_section_(NULL), 2275 link_(0), 2276 info_section_(NULL), 2277 info_symndx_(NULL), 2278 info_(0), 2279 type_(type), 2280 flags_(flags), 2281 order_(ORDER_INVALID), 2282 out_shndx_(-1U), 2283 symtab_index_(0), 2284 dynsym_index_(0), 2285 input_sections_(), 2286 first_input_offset_(0), 2287 fills_(), 2288 postprocessing_buffer_(NULL), 2289 needs_symtab_index_(false), 2290 needs_dynsym_index_(false), 2291 should_link_to_symtab_(false), 2292 should_link_to_dynsym_(false), 2293 after_input_sections_(false), 2294 requires_postprocessing_(false), 2295 found_in_sections_clause_(false), 2296 has_load_address_(false), 2297 info_uses_section_index_(false), 2298 input_section_order_specified_(false), 2299 may_sort_attached_input_sections_(false), 2300 must_sort_attached_input_sections_(false), 2301 attached_input_sections_are_sorted_(false), 2302 is_relro_(false), 2303 is_small_section_(false), 2304 is_large_section_(false), 2305 generate_code_fills_at_write_(false), 2306 is_entsize_zero_(false), 2307 section_offsets_need_adjustment_(false), 2308 is_noload_(false), 2309 always_keeps_input_sections_(false), 2310 has_fixed_layout_(false), 2311 is_patch_space_allowed_(false), 2312 is_unique_segment_(false), 2313 tls_offset_(0), 2314 extra_segment_flags_(0), 2315 segment_alignment_(0), 2316 checkpoint_(NULL), 2317 lookup_maps_(new Output_section_lookup_maps), 2318 free_list_(), 2319 free_space_fill_(NULL), 2320 patch_space_(0) 2321 { 2322 // An unallocated section has no address. Forcing this means that 2323 // we don't need special treatment for symbols defined in debug 2324 // sections. 2325 if ((flags & elfcpp::SHF_ALLOC) == 0) 2326 this->set_address(0); 2327 } 2328 2329 Output_section::~Output_section() 2330 { 2331 delete this->checkpoint_; 2332 } 2333 2334 // Set the entry size. 2335 2336 void 2337 Output_section::set_entsize(uint64_t v) 2338 { 2339 if (this->is_entsize_zero_) 2340 ; 2341 else if (this->entsize_ == 0) 2342 this->entsize_ = v; 2343 else if (this->entsize_ != v) 2344 { 2345 this->entsize_ = 0; 2346 this->is_entsize_zero_ = 1; 2347 } 2348 } 2349 2350 // Add the input section SHNDX, with header SHDR, named SECNAME, in 2351 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a 2352 // relocation section which applies to this section, or 0 if none, or 2353 // -1U if more than one. Return the offset of the input section 2354 // within the output section. Return -1 if the input section will 2355 // receive special handling. In the normal case we don't always keep 2356 // track of input sections for an Output_section. Instead, each 2357 // Object keeps track of the Output_section for each of its input 2358 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep 2359 // track of input sections here; this is used when SECTIONS appears in 2360 // a linker script. 2361 2362 template<int size, bool big_endian> 2363 off_t 2364 Output_section::add_input_section(Layout* layout, 2365 Sized_relobj_file<size, big_endian>* object, 2366 unsigned int shndx, 2367 const char* secname, 2368 const elfcpp::Shdr<size, big_endian>& shdr, 2369 unsigned int reloc_shndx, 2370 bool have_sections_script) 2371 { 2372 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign(); 2373 if ((addralign & (addralign - 1)) != 0) 2374 { 2375 object->error(_("invalid alignment %lu for section \"%s\""), 2376 static_cast<unsigned long>(addralign), secname); 2377 addralign = 1; 2378 } 2379 2380 if (addralign > this->addralign_) 2381 this->addralign_ = addralign; 2382 2383 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags(); 2384 uint64_t entsize = shdr.get_sh_entsize(); 2385 2386 // .debug_str is a mergeable string section, but is not always so 2387 // marked by compilers. Mark manually here so we can optimize. 2388 if (strcmp(secname, ".debug_str") == 0) 2389 { 2390 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS); 2391 entsize = 1; 2392 } 2393 2394 this->update_flags_for_input_section(sh_flags); 2395 this->set_entsize(entsize); 2396 2397 // If this is a SHF_MERGE section, we pass all the input sections to 2398 // a Output_data_merge. We don't try to handle relocations for such 2399 // a section. We don't try to handle empty merge sections--they 2400 // mess up the mappings, and are useless anyhow. 2401 // FIXME: Need to handle merge sections during incremental update. 2402 if ((sh_flags & elfcpp::SHF_MERGE) != 0 2403 && reloc_shndx == 0 2404 && shdr.get_sh_size() > 0 2405 && !parameters->incremental()) 2406 { 2407 // Keep information about merged input sections for rebuilding fast 2408 // lookup maps if we have sections-script or we do relaxation. 2409 bool keeps_input_sections = (this->always_keeps_input_sections_ 2410 || have_sections_script 2411 || parameters->target().may_relax()); 2412 2413 if (this->add_merge_input_section(object, shndx, sh_flags, entsize, 2414 addralign, keeps_input_sections)) 2415 { 2416 // Tell the relocation routines that they need to call the 2417 // output_offset method to determine the final address. 2418 return -1; 2419 } 2420 } 2421 2422 section_size_type input_section_size = shdr.get_sh_size(); 2423 section_size_type uncompressed_size; 2424 if (object->section_is_compressed(shndx, &uncompressed_size)) 2425 input_section_size = uncompressed_size; 2426 2427 off_t offset_in_section; 2428 2429 if (this->has_fixed_layout()) 2430 { 2431 // For incremental updates, find a chunk of unused space in the section. 2432 offset_in_section = this->free_list_.allocate(input_section_size, 2433 addralign, 0); 2434 if (offset_in_section == -1) 2435 gold_fallback(_("out of patch space in section %s; " 2436 "relink with --incremental-full"), 2437 this->name()); 2438 return offset_in_section; 2439 } 2440 2441 offset_in_section = this->current_data_size_for_child(); 2442 off_t aligned_offset_in_section = align_address(offset_in_section, 2443 addralign); 2444 this->set_current_data_size_for_child(aligned_offset_in_section 2445 + input_section_size); 2446 2447 // Determine if we want to delay code-fill generation until the output 2448 // section is written. When the target is relaxing, we want to delay fill 2449 // generating to avoid adjusting them during relaxation. Also, if we are 2450 // sorting input sections we must delay fill generation. 2451 if (!this->generate_code_fills_at_write_ 2452 && !have_sections_script 2453 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0 2454 && parameters->target().has_code_fill() 2455 && (parameters->target().may_relax() 2456 || layout->is_section_ordering_specified())) 2457 { 2458 gold_assert(this->fills_.empty()); 2459 this->generate_code_fills_at_write_ = true; 2460 } 2461 2462 if (aligned_offset_in_section > offset_in_section 2463 && !this->generate_code_fills_at_write_ 2464 && !have_sections_script 2465 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0 2466 && parameters->target().has_code_fill()) 2467 { 2468 // We need to add some fill data. Using fill_list_ when 2469 // possible is an optimization, since we will often have fill 2470 // sections without input sections. 2471 off_t fill_len = aligned_offset_in_section - offset_in_section; 2472 if (this->input_sections_.empty()) 2473 this->fills_.push_back(Fill(offset_in_section, fill_len)); 2474 else 2475 { 2476 std::string fill_data(parameters->target().code_fill(fill_len)); 2477 Output_data_const* odc = new Output_data_const(fill_data, 1); 2478 this->input_sections_.push_back(Input_section(odc)); 2479 } 2480 } 2481 2482 // We need to keep track of this section if we are already keeping 2483 // track of sections, or if we are relaxing. Also, if this is a 2484 // section which requires sorting, or which may require sorting in 2485 // the future, we keep track of the sections. If the 2486 // --section-ordering-file option is used to specify the order of 2487 // sections, we need to keep track of sections. 2488 if (this->always_keeps_input_sections_ 2489 || have_sections_script 2490 || !this->input_sections_.empty() 2491 || this->may_sort_attached_input_sections() 2492 || this->must_sort_attached_input_sections() 2493 || parameters->options().user_set_Map() 2494 || parameters->target().may_relax() 2495 || layout->is_section_ordering_specified()) 2496 { 2497 Input_section isecn(object, shndx, input_section_size, addralign); 2498 /* If section ordering is requested by specifying a ordering file, 2499 using --section-ordering-file, match the section name with 2500 a pattern. */ 2501 if (parameters->options().section_ordering_file()) 2502 { 2503 unsigned int section_order_index = 2504 layout->find_section_order_index(std::string(secname)); 2505 if (section_order_index != 0) 2506 { 2507 isecn.set_section_order_index(section_order_index); 2508 this->set_input_section_order_specified(); 2509 } 2510 } 2511 this->input_sections_.push_back(isecn); 2512 } 2513 2514 return aligned_offset_in_section; 2515 } 2516 2517 // Add arbitrary data to an output section. 2518 2519 void 2520 Output_section::add_output_section_data(Output_section_data* posd) 2521 { 2522 Input_section inp(posd); 2523 this->add_output_section_data(&inp); 2524 2525 if (posd->is_data_size_valid()) 2526 { 2527 off_t offset_in_section; 2528 if (this->has_fixed_layout()) 2529 { 2530 // For incremental updates, find a chunk of unused space. 2531 offset_in_section = this->free_list_.allocate(posd->data_size(), 2532 posd->addralign(), 0); 2533 if (offset_in_section == -1) 2534 gold_fallback(_("out of patch space in section %s; " 2535 "relink with --incremental-full"), 2536 this->name()); 2537 // Finalize the address and offset now. 2538 uint64_t addr = this->address(); 2539 off_t offset = this->offset(); 2540 posd->set_address_and_file_offset(addr + offset_in_section, 2541 offset + offset_in_section); 2542 } 2543 else 2544 { 2545 offset_in_section = this->current_data_size_for_child(); 2546 off_t aligned_offset_in_section = align_address(offset_in_section, 2547 posd->addralign()); 2548 this->set_current_data_size_for_child(aligned_offset_in_section 2549 + posd->data_size()); 2550 } 2551 } 2552 else if (this->has_fixed_layout()) 2553 { 2554 // For incremental updates, arrange for the data to have a fixed layout. 2555 // This will mean that additions to the data must be allocated from 2556 // free space within the containing output section. 2557 uint64_t addr = this->address(); 2558 posd->set_address(addr); 2559 posd->set_file_offset(0); 2560 // FIXME: This should eventually be unreachable. 2561 // gold_unreachable(); 2562 } 2563 } 2564 2565 // Add a relaxed input section. 2566 2567 void 2568 Output_section::add_relaxed_input_section(Layout* layout, 2569 Output_relaxed_input_section* poris, 2570 const std::string& name) 2571 { 2572 Input_section inp(poris); 2573 2574 // If the --section-ordering-file option is used to specify the order of 2575 // sections, we need to keep track of sections. 2576 if (layout->is_section_ordering_specified()) 2577 { 2578 unsigned int section_order_index = 2579 layout->find_section_order_index(name); 2580 if (section_order_index != 0) 2581 { 2582 inp.set_section_order_index(section_order_index); 2583 this->set_input_section_order_specified(); 2584 } 2585 } 2586 2587 this->add_output_section_data(&inp); 2588 if (this->lookup_maps_->is_valid()) 2589 this->lookup_maps_->add_relaxed_input_section(poris->relobj(), 2590 poris->shndx(), poris); 2591 2592 // For a relaxed section, we use the current data size. Linker scripts 2593 // get all the input sections, including relaxed one from an output 2594 // section and add them back to the same output section to compute the 2595 // output section size. If we do not account for sizes of relaxed input 2596 // sections, an output section would be incorrectly sized. 2597 off_t offset_in_section = this->current_data_size_for_child(); 2598 off_t aligned_offset_in_section = align_address(offset_in_section, 2599 poris->addralign()); 2600 this->set_current_data_size_for_child(aligned_offset_in_section 2601 + poris->current_data_size()); 2602 } 2603 2604 // Add arbitrary data to an output section by Input_section. 2605 2606 void 2607 Output_section::add_output_section_data(Input_section* inp) 2608 { 2609 if (this->input_sections_.empty()) 2610 this->first_input_offset_ = this->current_data_size_for_child(); 2611 2612 this->input_sections_.push_back(*inp); 2613 2614 uint64_t addralign = inp->addralign(); 2615 if (addralign > this->addralign_) 2616 this->addralign_ = addralign; 2617 2618 inp->set_output_section(this); 2619 } 2620 2621 // Add a merge section to an output section. 2622 2623 void 2624 Output_section::add_output_merge_section(Output_section_data* posd, 2625 bool is_string, uint64_t entsize) 2626 { 2627 Input_section inp(posd, is_string, entsize); 2628 this->add_output_section_data(&inp); 2629 } 2630 2631 // Add an input section to a SHF_MERGE section. 2632 2633 bool 2634 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx, 2635 uint64_t flags, uint64_t entsize, 2636 uint64_t addralign, 2637 bool keeps_input_sections) 2638 { 2639 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0; 2640 2641 // We cannot restore merged input section states. 2642 gold_assert(this->checkpoint_ == NULL); 2643 2644 // Look up merge sections by required properties. 2645 // Currently, we only invalidate the lookup maps in script processing 2646 // and relaxation. We should not have done either when we reach here. 2647 // So we assume that the lookup maps are valid to simply code. 2648 gold_assert(this->lookup_maps_->is_valid()); 2649 Merge_section_properties msp(is_string, entsize, addralign); 2650 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp); 2651 bool is_new = false; 2652 if (pomb != NULL) 2653 { 2654 gold_assert(pomb->is_string() == is_string 2655 && pomb->entsize() == entsize 2656 && pomb->addralign() == addralign); 2657 } 2658 else 2659 { 2660 // Create a new Output_merge_data or Output_merge_string_data. 2661 if (!is_string) 2662 pomb = new Output_merge_data(entsize, addralign); 2663 else 2664 { 2665 switch (entsize) 2666 { 2667 case 1: 2668 pomb = new Output_merge_string<char>(addralign); 2669 break; 2670 case 2: 2671 pomb = new Output_merge_string<uint16_t>(addralign); 2672 break; 2673 case 4: 2674 pomb = new Output_merge_string<uint32_t>(addralign); 2675 break; 2676 default: 2677 return false; 2678 } 2679 } 2680 // If we need to do script processing or relaxation, we need to keep 2681 // the original input sections to rebuild the fast lookup maps. 2682 if (keeps_input_sections) 2683 pomb->set_keeps_input_sections(); 2684 is_new = true; 2685 } 2686 2687 if (pomb->add_input_section(object, shndx)) 2688 { 2689 // Add new merge section to this output section and link merge 2690 // section properties to new merge section in map. 2691 if (is_new) 2692 { 2693 this->add_output_merge_section(pomb, is_string, entsize); 2694 this->lookup_maps_->add_merge_section(msp, pomb); 2695 } 2696 2697 // Add input section to new merge section and link input section to new 2698 // merge section in map. 2699 this->lookup_maps_->add_merge_input_section(object, shndx, pomb); 2700 return true; 2701 } 2702 else 2703 { 2704 // If add_input_section failed, delete new merge section to avoid 2705 // exporting empty merge sections in Output_section::get_input_section. 2706 if (is_new) 2707 delete pomb; 2708 return false; 2709 } 2710 } 2711 2712 // Build a relaxation map to speed up relaxation of existing input sections. 2713 // Look up to the first LIMIT elements in INPUT_SECTIONS. 2714 2715 void 2716 Output_section::build_relaxation_map( 2717 const Input_section_list& input_sections, 2718 size_t limit, 2719 Relaxation_map* relaxation_map) const 2720 { 2721 for (size_t i = 0; i < limit; ++i) 2722 { 2723 const Input_section& is(input_sections[i]); 2724 if (is.is_input_section() || is.is_relaxed_input_section()) 2725 { 2726 Section_id sid(is.relobj(), is.shndx()); 2727 (*relaxation_map)[sid] = i; 2728 } 2729 } 2730 } 2731 2732 // Convert regular input sections in INPUT_SECTIONS into relaxed input 2733 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id 2734 // indices of INPUT_SECTIONS. 2735 2736 void 2737 Output_section::convert_input_sections_in_list_to_relaxed_sections( 2738 const std::vector<Output_relaxed_input_section*>& relaxed_sections, 2739 const Relaxation_map& map, 2740 Input_section_list* input_sections) 2741 { 2742 for (size_t i = 0; i < relaxed_sections.size(); ++i) 2743 { 2744 Output_relaxed_input_section* poris = relaxed_sections[i]; 2745 Section_id sid(poris->relobj(), poris->shndx()); 2746 Relaxation_map::const_iterator p = map.find(sid); 2747 gold_assert(p != map.end()); 2748 gold_assert((*input_sections)[p->second].is_input_section()); 2749 2750 // Remember section order index of original input section 2751 // if it is set. Copy it to the relaxed input section. 2752 unsigned int soi = 2753 (*input_sections)[p->second].section_order_index(); 2754 (*input_sections)[p->second] = Input_section(poris); 2755 (*input_sections)[p->second].set_section_order_index(soi); 2756 } 2757 } 2758 2759 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS 2760 // is a vector of pointers to Output_relaxed_input_section or its derived 2761 // classes. The relaxed sections must correspond to existing input sections. 2762 2763 void 2764 Output_section::convert_input_sections_to_relaxed_sections( 2765 const std::vector<Output_relaxed_input_section*>& relaxed_sections) 2766 { 2767 gold_assert(parameters->target().may_relax()); 2768 2769 // We want to make sure that restore_states does not undo the effect of 2770 // this. If there is no checkpoint active, just search the current 2771 // input section list and replace the sections there. If there is 2772 // a checkpoint, also replace the sections there. 2773 2774 // By default, we look at the whole list. 2775 size_t limit = this->input_sections_.size(); 2776 2777 if (this->checkpoint_ != NULL) 2778 { 2779 // Replace input sections with relaxed input section in the saved 2780 // copy of the input section list. 2781 if (this->checkpoint_->input_sections_saved()) 2782 { 2783 Relaxation_map map; 2784 this->build_relaxation_map( 2785 *(this->checkpoint_->input_sections()), 2786 this->checkpoint_->input_sections()->size(), 2787 &map); 2788 this->convert_input_sections_in_list_to_relaxed_sections( 2789 relaxed_sections, 2790 map, 2791 this->checkpoint_->input_sections()); 2792 } 2793 else 2794 { 2795 // We have not copied the input section list yet. Instead, just 2796 // look at the portion that would be saved. 2797 limit = this->checkpoint_->input_sections_size(); 2798 } 2799 } 2800 2801 // Convert input sections in input_section_list. 2802 Relaxation_map map; 2803 this->build_relaxation_map(this->input_sections_, limit, &map); 2804 this->convert_input_sections_in_list_to_relaxed_sections( 2805 relaxed_sections, 2806 map, 2807 &this->input_sections_); 2808 2809 // Update fast look-up map. 2810 if (this->lookup_maps_->is_valid()) 2811 for (size_t i = 0; i < relaxed_sections.size(); ++i) 2812 { 2813 Output_relaxed_input_section* poris = relaxed_sections[i]; 2814 this->lookup_maps_->add_relaxed_input_section(poris->relobj(), 2815 poris->shndx(), poris); 2816 } 2817 } 2818 2819 // Update the output section flags based on input section flags. 2820 2821 void 2822 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags) 2823 { 2824 // If we created the section with SHF_ALLOC clear, we set the 2825 // address. If we are now setting the SHF_ALLOC flag, we need to 2826 // undo that. 2827 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0 2828 && (flags & elfcpp::SHF_ALLOC) != 0) 2829 this->mark_address_invalid(); 2830 2831 this->flags_ |= (flags 2832 & (elfcpp::SHF_WRITE 2833 | elfcpp::SHF_ALLOC 2834 | elfcpp::SHF_EXECINSTR)); 2835 2836 if ((flags & elfcpp::SHF_MERGE) == 0) 2837 this->flags_ &=~ elfcpp::SHF_MERGE; 2838 else 2839 { 2840 if (this->current_data_size_for_child() == 0) 2841 this->flags_ |= elfcpp::SHF_MERGE; 2842 } 2843 2844 if ((flags & elfcpp::SHF_STRINGS) == 0) 2845 this->flags_ &=~ elfcpp::SHF_STRINGS; 2846 else 2847 { 2848 if (this->current_data_size_for_child() == 0) 2849 this->flags_ |= elfcpp::SHF_STRINGS; 2850 } 2851 } 2852 2853 // Find the merge section into which an input section with index SHNDX in 2854 // OBJECT has been added. Return NULL if none found. 2855 2856 Output_section_data* 2857 Output_section::find_merge_section(const Relobj* object, 2858 unsigned int shndx) const 2859 { 2860 if (!this->lookup_maps_->is_valid()) 2861 this->build_lookup_maps(); 2862 return this->lookup_maps_->find_merge_section(object, shndx); 2863 } 2864 2865 // Build the lookup maps for merge and relaxed sections. This is needs 2866 // to be declared as a const methods so that it is callable with a const 2867 // Output_section pointer. The method only updates states of the maps. 2868 2869 void 2870 Output_section::build_lookup_maps() const 2871 { 2872 this->lookup_maps_->clear(); 2873 for (Input_section_list::const_iterator p = this->input_sections_.begin(); 2874 p != this->input_sections_.end(); 2875 ++p) 2876 { 2877 if (p->is_merge_section()) 2878 { 2879 Output_merge_base* pomb = p->output_merge_base(); 2880 Merge_section_properties msp(pomb->is_string(), pomb->entsize(), 2881 pomb->addralign()); 2882 this->lookup_maps_->add_merge_section(msp, pomb); 2883 for (Output_merge_base::Input_sections::const_iterator is = 2884 pomb->input_sections_begin(); 2885 is != pomb->input_sections_end(); 2886 ++is) 2887 { 2888 const Const_section_id& csid = *is; 2889 this->lookup_maps_->add_merge_input_section(csid.first, 2890 csid.second, pomb); 2891 } 2892 2893 } 2894 else if (p->is_relaxed_input_section()) 2895 { 2896 Output_relaxed_input_section* poris = p->relaxed_input_section(); 2897 this->lookup_maps_->add_relaxed_input_section(poris->relobj(), 2898 poris->shndx(), poris); 2899 } 2900 } 2901 } 2902 2903 // Find an relaxed input section corresponding to an input section 2904 // in OBJECT with index SHNDX. 2905 2906 const Output_relaxed_input_section* 2907 Output_section::find_relaxed_input_section(const Relobj* object, 2908 unsigned int shndx) const 2909 { 2910 if (!this->lookup_maps_->is_valid()) 2911 this->build_lookup_maps(); 2912 return this->lookup_maps_->find_relaxed_input_section(object, shndx); 2913 } 2914 2915 // Given an address OFFSET relative to the start of input section 2916 // SHNDX in OBJECT, return whether this address is being included in 2917 // the final link. This should only be called if SHNDX in OBJECT has 2918 // a special mapping. 2919 2920 bool 2921 Output_section::is_input_address_mapped(const Relobj* object, 2922 unsigned int shndx, 2923 off_t offset) const 2924 { 2925 // Look at the Output_section_data_maps first. 2926 const Output_section_data* posd = this->find_merge_section(object, shndx); 2927 if (posd == NULL) 2928 posd = this->find_relaxed_input_section(object, shndx); 2929 2930 if (posd != NULL) 2931 { 2932 section_offset_type output_offset; 2933 bool found = posd->output_offset(object, shndx, offset, &output_offset); 2934 gold_assert(found); 2935 return output_offset != -1; 2936 } 2937 2938 // Fall back to the slow look-up. 2939 for (Input_section_list::const_iterator p = this->input_sections_.begin(); 2940 p != this->input_sections_.end(); 2941 ++p) 2942 { 2943 section_offset_type output_offset; 2944 if (p->output_offset(object, shndx, offset, &output_offset)) 2945 return output_offset != -1; 2946 } 2947 2948 // By default we assume that the address is mapped. This should 2949 // only be called after we have passed all sections to Layout. At 2950 // that point we should know what we are discarding. 2951 return true; 2952 } 2953 2954 // Given an address OFFSET relative to the start of input section 2955 // SHNDX in object OBJECT, return the output offset relative to the 2956 // start of the input section in the output section. This should only 2957 // be called if SHNDX in OBJECT has a special mapping. 2958 2959 section_offset_type 2960 Output_section::output_offset(const Relobj* object, unsigned int shndx, 2961 section_offset_type offset) const 2962 { 2963 // This can only be called meaningfully when we know the data size 2964 // of this. 2965 gold_assert(this->is_data_size_valid()); 2966 2967 // Look at the Output_section_data_maps first. 2968 const Output_section_data* posd = this->find_merge_section(object, shndx); 2969 if (posd == NULL) 2970 posd = this->find_relaxed_input_section(object, shndx); 2971 if (posd != NULL) 2972 { 2973 section_offset_type output_offset; 2974 bool found = posd->output_offset(object, shndx, offset, &output_offset); 2975 gold_assert(found); 2976 return output_offset; 2977 } 2978 2979 // Fall back to the slow look-up. 2980 for (Input_section_list::const_iterator p = this->input_sections_.begin(); 2981 p != this->input_sections_.end(); 2982 ++p) 2983 { 2984 section_offset_type output_offset; 2985 if (p->output_offset(object, shndx, offset, &output_offset)) 2986 return output_offset; 2987 } 2988 gold_unreachable(); 2989 } 2990 2991 // Return the output virtual address of OFFSET relative to the start 2992 // of input section SHNDX in object OBJECT. 2993 2994 uint64_t 2995 Output_section::output_address(const Relobj* object, unsigned int shndx, 2996 off_t offset) const 2997 { 2998 uint64_t addr = this->address() + this->first_input_offset_; 2999 3000 // Look at the Output_section_data_maps first. 3001 const Output_section_data* posd = this->find_merge_section(object, shndx); 3002 if (posd == NULL) 3003 posd = this->find_relaxed_input_section(object, shndx); 3004 if (posd != NULL && posd->is_address_valid()) 3005 { 3006 section_offset_type output_offset; 3007 bool found = posd->output_offset(object, shndx, offset, &output_offset); 3008 gold_assert(found); 3009 return posd->address() + output_offset; 3010 } 3011 3012 // Fall back to the slow look-up. 3013 for (Input_section_list::const_iterator p = this->input_sections_.begin(); 3014 p != this->input_sections_.end(); 3015 ++p) 3016 { 3017 addr = align_address(addr, p->addralign()); 3018 section_offset_type output_offset; 3019 if (p->output_offset(object, shndx, offset, &output_offset)) 3020 { 3021 if (output_offset == -1) 3022 return -1ULL; 3023 return addr + output_offset; 3024 } 3025 addr += p->data_size(); 3026 } 3027 3028 // If we get here, it means that we don't know the mapping for this 3029 // input section. This might happen in principle if 3030 // add_input_section were called before add_output_section_data. 3031 // But it should never actually happen. 3032 3033 gold_unreachable(); 3034 } 3035 3036 // Find the output address of the start of the merged section for 3037 // input section SHNDX in object OBJECT. 3038 3039 bool 3040 Output_section::find_starting_output_address(const Relobj* object, 3041 unsigned int shndx, 3042 uint64_t* paddr) const 3043 { 3044 // FIXME: This becomes a bottle-neck if we have many relaxed sections. 3045 // Looking up the merge section map does not always work as we sometimes 3046 // find a merge section without its address set. 3047 uint64_t addr = this->address() + this->first_input_offset_; 3048 for (Input_section_list::const_iterator p = this->input_sections_.begin(); 3049 p != this->input_sections_.end(); 3050 ++p) 3051 { 3052 addr = align_address(addr, p->addralign()); 3053 3054 // It would be nice if we could use the existing output_offset 3055 // method to get the output offset of input offset 0. 3056 // Unfortunately we don't know for sure that input offset 0 is 3057 // mapped at all. 3058 if (p->is_merge_section_for(object, shndx)) 3059 { 3060 *paddr = addr; 3061 return true; 3062 } 3063 3064 addr += p->data_size(); 3065 } 3066 3067 // We couldn't find a merge output section for this input section. 3068 return false; 3069 } 3070 3071 // Update the data size of an Output_section. 3072 3073 void 3074 Output_section::update_data_size() 3075 { 3076 if (this->input_sections_.empty()) 3077 return; 3078 3079 if (this->must_sort_attached_input_sections() 3080 || this->input_section_order_specified()) 3081 this->sort_attached_input_sections(); 3082 3083 off_t off = this->first_input_offset_; 3084 for (Input_section_list::iterator p = this->input_sections_.begin(); 3085 p != this->input_sections_.end(); 3086 ++p) 3087 { 3088 off = align_address(off, p->addralign()); 3089 off += p->current_data_size(); 3090 } 3091 3092 this->set_current_data_size_for_child(off); 3093 } 3094 3095 // Set the data size of an Output_section. This is where we handle 3096 // setting the addresses of any Output_section_data objects. 3097 3098 void 3099 Output_section::set_final_data_size() 3100 { 3101 off_t data_size; 3102 3103 if (this->input_sections_.empty()) 3104 data_size = this->current_data_size_for_child(); 3105 else 3106 { 3107 if (this->must_sort_attached_input_sections() 3108 || this->input_section_order_specified()) 3109 this->sort_attached_input_sections(); 3110 3111 uint64_t address = this->address(); 3112 off_t startoff = this->offset(); 3113 off_t off = startoff + this->first_input_offset_; 3114 for (Input_section_list::iterator p = this->input_sections_.begin(); 3115 p != this->input_sections_.end(); 3116 ++p) 3117 { 3118 off = align_address(off, p->addralign()); 3119 p->set_address_and_file_offset(address + (off - startoff), off, 3120 startoff); 3121 off += p->data_size(); 3122 } 3123 data_size = off - startoff; 3124 } 3125 3126 // For full incremental links, we want to allocate some patch space 3127 // in most sections for subsequent incremental updates. 3128 if (this->is_patch_space_allowed_ && parameters->incremental_full()) 3129 { 3130 double pct = parameters->options().incremental_patch(); 3131 size_t extra = static_cast<size_t>(data_size * pct); 3132 if (this->free_space_fill_ != NULL 3133 && this->free_space_fill_->minimum_hole_size() > extra) 3134 extra = this->free_space_fill_->minimum_hole_size(); 3135 off_t new_size = align_address(data_size + extra, this->addralign()); 3136 this->patch_space_ = new_size - data_size; 3137 gold_debug(DEBUG_INCREMENTAL, 3138 "set_final_data_size: %08lx + %08lx: section %s", 3139 static_cast<long>(data_size), 3140 static_cast<long>(this->patch_space_), 3141 this->name()); 3142 data_size = new_size; 3143 } 3144 3145 this->set_data_size(data_size); 3146 } 3147 3148 // Reset the address and file offset. 3149 3150 void 3151 Output_section::do_reset_address_and_file_offset() 3152 { 3153 // An unallocated section has no address. Forcing this means that 3154 // we don't need special treatment for symbols defined in debug 3155 // sections. We do the same in the constructor. This does not 3156 // apply to NOLOAD sections though. 3157 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_) 3158 this->set_address(0); 3159 3160 for (Input_section_list::iterator p = this->input_sections_.begin(); 3161 p != this->input_sections_.end(); 3162 ++p) 3163 p->reset_address_and_file_offset(); 3164 3165 // Remove any patch space that was added in set_final_data_size. 3166 if (this->patch_space_ > 0) 3167 { 3168 this->set_current_data_size_for_child(this->current_data_size_for_child() 3169 - this->patch_space_); 3170 this->patch_space_ = 0; 3171 } 3172 } 3173 3174 // Return true if address and file offset have the values after reset. 3175 3176 bool 3177 Output_section::do_address_and_file_offset_have_reset_values() const 3178 { 3179 if (this->is_offset_valid()) 3180 return false; 3181 3182 // An unallocated section has address 0 after its construction or a reset. 3183 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0) 3184 return this->is_address_valid() && this->address() == 0; 3185 else 3186 return !this->is_address_valid(); 3187 } 3188 3189 // Set the TLS offset. Called only for SHT_TLS sections. 3190 3191 void 3192 Output_section::do_set_tls_offset(uint64_t tls_base) 3193 { 3194 this->tls_offset_ = this->address() - tls_base; 3195 } 3196 3197 // In a few cases we need to sort the input sections attached to an 3198 // output section. This is used to implement the type of constructor 3199 // priority ordering implemented by the GNU linker, in which the 3200 // priority becomes part of the section name and the sections are 3201 // sorted by name. We only do this for an output section if we see an 3202 // attached input section matching ".ctors.*", ".dtors.*", 3203 // ".init_array.*" or ".fini_array.*". 3204 3205 class Output_section::Input_section_sort_entry 3206 { 3207 public: 3208 Input_section_sort_entry() 3209 : input_section_(), index_(-1U), section_name_() 3210 { } 3211 3212 Input_section_sort_entry(const Input_section& input_section, 3213 unsigned int index, 3214 bool must_sort_attached_input_sections, 3215 const char* output_section_name) 3216 : input_section_(input_section), index_(index), section_name_() 3217 { 3218 if ((input_section.is_input_section() 3219 || input_section.is_relaxed_input_section()) 3220 && must_sort_attached_input_sections) 3221 { 3222 // This is only called single-threaded from Layout::finalize, 3223 // so it is OK to lock. Unfortunately we have no way to pass 3224 // in a Task token. 3225 const Task* dummy_task = reinterpret_cast<const Task*>(-1); 3226 Object* obj = (input_section.is_input_section() 3227 ? input_section.relobj() 3228 : input_section.relaxed_input_section()->relobj()); 3229 Task_lock_obj<Object> tl(dummy_task, obj); 3230 3231 // This is a slow operation, which should be cached in 3232 // Layout::layout if this becomes a speed problem. 3233 this->section_name_ = obj->section_name(input_section.shndx()); 3234 } 3235 else if (input_section.is_output_section_data() 3236 && must_sort_attached_input_sections) 3237 { 3238 // For linker-generated sections, use the output section name. 3239 this->section_name_.assign(output_section_name); 3240 } 3241 } 3242 3243 // Return the Input_section. 3244 const Input_section& 3245 input_section() const 3246 { 3247 gold_assert(this->index_ != -1U); 3248 return this->input_section_; 3249 } 3250 3251 // The index of this entry in the original list. This is used to 3252 // make the sort stable. 3253 unsigned int 3254 index() const 3255 { 3256 gold_assert(this->index_ != -1U); 3257 return this->index_; 3258 } 3259 3260 // The section name. 3261 const std::string& 3262 section_name() const 3263 { 3264 return this->section_name_; 3265 } 3266 3267 // Return true if the section name has a priority. This is assumed 3268 // to be true if it has a dot after the initial dot. 3269 bool 3270 has_priority() const 3271 { 3272 return this->section_name_.find('.', 1) != std::string::npos; 3273 } 3274 3275 // Return the priority. Believe it or not, gcc encodes the priority 3276 // differently for .ctors/.dtors and .init_array/.fini_array 3277 // sections. 3278 unsigned int 3279 get_priority() const 3280 { 3281 bool is_ctors; 3282 if (is_prefix_of(".ctors.", this->section_name_.c_str()) 3283 || is_prefix_of(".dtors.", this->section_name_.c_str())) 3284 is_ctors = true; 3285 else if (is_prefix_of(".init_array.", this->section_name_.c_str()) 3286 || is_prefix_of(".fini_array.", this->section_name_.c_str())) 3287 is_ctors = false; 3288 else 3289 return 0; 3290 char* end; 3291 unsigned long prio = strtoul((this->section_name_.c_str() 3292 + (is_ctors ? 7 : 12)), 3293 &end, 10); 3294 if (*end != '\0') 3295 return 0; 3296 else if (is_ctors) 3297 return 65535 - prio; 3298 else 3299 return prio; 3300 } 3301 3302 // Return true if this an input file whose base name matches 3303 // FILE_NAME. The base name must have an extension of ".o", and 3304 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o". 3305 // This is to match crtbegin.o as well as crtbeginS.o without 3306 // getting confused by other possibilities. Overall matching the 3307 // file name this way is a dreadful hack, but the GNU linker does it 3308 // in order to better support gcc, and we need to be compatible. 3309 bool 3310 match_file_name(const char* file_name) const 3311 { 3312 if (this->input_section_.is_output_section_data()) 3313 return false; 3314 return Layout::match_file_name(this->input_section_.relobj(), file_name); 3315 } 3316 3317 // Returns 1 if THIS should appear before S in section order, -1 if S 3318 // appears before THIS and 0 if they are not comparable. 3319 int 3320 compare_section_ordering(const Input_section_sort_entry& s) const 3321 { 3322 unsigned int this_secn_index = this->input_section_.section_order_index(); 3323 unsigned int s_secn_index = s.input_section().section_order_index(); 3324 if (this_secn_index > 0 && s_secn_index > 0) 3325 { 3326 if (this_secn_index < s_secn_index) 3327 return 1; 3328 else if (this_secn_index > s_secn_index) 3329 return -1; 3330 } 3331 return 0; 3332 } 3333 3334 private: 3335 // The Input_section we are sorting. 3336 Input_section input_section_; 3337 // The index of this Input_section in the original list. 3338 unsigned int index_; 3339 // The section name if there is one. 3340 std::string section_name_; 3341 }; 3342 3343 // Return true if S1 should come before S2 in the output section. 3344 3345 bool 3346 Output_section::Input_section_sort_compare::operator()( 3347 const Output_section::Input_section_sort_entry& s1, 3348 const Output_section::Input_section_sort_entry& s2) const 3349 { 3350 // crtbegin.o must come first. 3351 bool s1_begin = s1.match_file_name("crtbegin"); 3352 bool s2_begin = s2.match_file_name("crtbegin"); 3353 if (s1_begin || s2_begin) 3354 { 3355 if (!s1_begin) 3356 return false; 3357 if (!s2_begin) 3358 return true; 3359 return s1.index() < s2.index(); 3360 } 3361 3362 // crtend.o must come last. 3363 bool s1_end = s1.match_file_name("crtend"); 3364 bool s2_end = s2.match_file_name("crtend"); 3365 if (s1_end || s2_end) 3366 { 3367 if (!s1_end) 3368 return true; 3369 if (!s2_end) 3370 return false; 3371 return s1.index() < s2.index(); 3372 } 3373 3374 // A section with a priority follows a section without a priority. 3375 bool s1_has_priority = s1.has_priority(); 3376 bool s2_has_priority = s2.has_priority(); 3377 if (s1_has_priority && !s2_has_priority) 3378 return false; 3379 if (!s1_has_priority && s2_has_priority) 3380 return true; 3381 3382 // Check if a section order exists for these sections through a section 3383 // ordering file. If sequence_num is 0, an order does not exist. 3384 int sequence_num = s1.compare_section_ordering(s2); 3385 if (sequence_num != 0) 3386 return sequence_num == 1; 3387 3388 // Otherwise we sort by name. 3389 int compare = s1.section_name().compare(s2.section_name()); 3390 if (compare != 0) 3391 return compare < 0; 3392 3393 // Otherwise we keep the input order. 3394 return s1.index() < s2.index(); 3395 } 3396 3397 // Return true if S1 should come before S2 in an .init_array or .fini_array 3398 // output section. 3399 3400 bool 3401 Output_section::Input_section_sort_init_fini_compare::operator()( 3402 const Output_section::Input_section_sort_entry& s1, 3403 const Output_section::Input_section_sort_entry& s2) const 3404 { 3405 // A section without a priority follows a section with a priority. 3406 // This is the reverse of .ctors and .dtors sections. 3407 bool s1_has_priority = s1.has_priority(); 3408 bool s2_has_priority = s2.has_priority(); 3409 if (s1_has_priority && !s2_has_priority) 3410 return true; 3411 if (!s1_has_priority && s2_has_priority) 3412 return false; 3413 3414 // .ctors and .dtors sections without priority come after 3415 // .init_array and .fini_array sections without priority. 3416 if (!s1_has_priority 3417 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors") 3418 && s1.section_name() != s2.section_name()) 3419 return false; 3420 if (!s2_has_priority 3421 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors") 3422 && s2.section_name() != s1.section_name()) 3423 return true; 3424 3425 // Sort by priority if we can. 3426 if (s1_has_priority) 3427 { 3428 unsigned int s1_prio = s1.get_priority(); 3429 unsigned int s2_prio = s2.get_priority(); 3430 if (s1_prio < s2_prio) 3431 return true; 3432 else if (s1_prio > s2_prio) 3433 return false; 3434 } 3435 3436 // Check if a section order exists for these sections through a section 3437 // ordering file. If sequence_num is 0, an order does not exist. 3438 int sequence_num = s1.compare_section_ordering(s2); 3439 if (sequence_num != 0) 3440 return sequence_num == 1; 3441 3442 // Otherwise we sort by name. 3443 int compare = s1.section_name().compare(s2.section_name()); 3444 if (compare != 0) 3445 return compare < 0; 3446 3447 // Otherwise we keep the input order. 3448 return s1.index() < s2.index(); 3449 } 3450 3451 // Return true if S1 should come before S2. Sections that do not match 3452 // any pattern in the section ordering file are placed ahead of the sections 3453 // that match some pattern. 3454 3455 bool 3456 Output_section::Input_section_sort_section_order_index_compare::operator()( 3457 const Output_section::Input_section_sort_entry& s1, 3458 const Output_section::Input_section_sort_entry& s2) const 3459 { 3460 unsigned int s1_secn_index = s1.input_section().section_order_index(); 3461 unsigned int s2_secn_index = s2.input_section().section_order_index(); 3462 3463 // Keep input order if section ordering cannot determine order. 3464 if (s1_secn_index == s2_secn_index) 3465 return s1.index() < s2.index(); 3466 3467 return s1_secn_index < s2_secn_index; 3468 } 3469 3470 // Return true if S1 should come before S2. This is the sort comparison 3471 // function for .text to sort sections with prefixes 3472 // .text.{unlikely,exit,startup,hot} before other sections. 3473 3474 bool 3475 Output_section::Input_section_sort_section_prefix_special_ordering_compare 3476 ::operator()( 3477 const Output_section::Input_section_sort_entry& s1, 3478 const Output_section::Input_section_sort_entry& s2) const 3479 { 3480 // Some input section names have special ordering requirements. 3481 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str()); 3482 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str()); 3483 if (o1 != o2) 3484 { 3485 if (o1 < 0) 3486 return false; 3487 else if (o2 < 0) 3488 return true; 3489 else 3490 return o1 < o2; 3491 } 3492 3493 // Keep input order otherwise. 3494 return s1.index() < s2.index(); 3495 } 3496 3497 // Return true if S1 should come before S2. This is the sort comparison 3498 // function for sections to sort them by name. 3499 3500 bool 3501 Output_section::Input_section_sort_section_name_compare 3502 ::operator()( 3503 const Output_section::Input_section_sort_entry& s1, 3504 const Output_section::Input_section_sort_entry& s2) const 3505 { 3506 // We sort by name. 3507 int compare = s1.section_name().compare(s2.section_name()); 3508 if (compare != 0) 3509 return compare < 0; 3510 3511 // Keep input order otherwise. 3512 return s1.index() < s2.index(); 3513 } 3514 3515 // This updates the section order index of input sections according to the 3516 // the order specified in the mapping from Section id to order index. 3517 3518 void 3519 Output_section::update_section_layout( 3520 const Section_layout_order* order_map) 3521 { 3522 for (Input_section_list::iterator p = this->input_sections_.begin(); 3523 p != this->input_sections_.end(); 3524 ++p) 3525 { 3526 if (p->is_input_section() 3527 || p->is_relaxed_input_section()) 3528 { 3529 Object* obj = (p->is_input_section() 3530 ? p->relobj() 3531 : p->relaxed_input_section()->relobj()); 3532 unsigned int shndx = p->shndx(); 3533 Section_layout_order::const_iterator it 3534 = order_map->find(Section_id(obj, shndx)); 3535 if (it == order_map->end()) 3536 continue; 3537 unsigned int section_order_index = it->second; 3538 if (section_order_index != 0) 3539 { 3540 p->set_section_order_index(section_order_index); 3541 this->set_input_section_order_specified(); 3542 } 3543 } 3544 } 3545 } 3546 3547 // Sort the input sections attached to an output section. 3548 3549 void 3550 Output_section::sort_attached_input_sections() 3551 { 3552 if (this->attached_input_sections_are_sorted_) 3553 return; 3554 3555 if (this->checkpoint_ != NULL 3556 && !this->checkpoint_->input_sections_saved()) 3557 this->checkpoint_->save_input_sections(); 3558 3559 // The only thing we know about an input section is the object and 3560 // the section index. We need the section name. Recomputing this 3561 // is slow but this is an unusual case. If this becomes a speed 3562 // problem we can cache the names as required in Layout::layout. 3563 3564 // We start by building a larger vector holding a copy of each 3565 // Input_section, plus its current index in the list and its name. 3566 std::vector<Input_section_sort_entry> sort_list; 3567 3568 unsigned int i = 0; 3569 for (Input_section_list::iterator p = this->input_sections_.begin(); 3570 p != this->input_sections_.end(); 3571 ++p, ++i) 3572 sort_list.push_back(Input_section_sort_entry(*p, i, 3573 this->must_sort_attached_input_sections(), 3574 this->name())); 3575 3576 // Sort the input sections. 3577 if (this->must_sort_attached_input_sections()) 3578 { 3579 if (this->type() == elfcpp::SHT_PREINIT_ARRAY 3580 || this->type() == elfcpp::SHT_INIT_ARRAY 3581 || this->type() == elfcpp::SHT_FINI_ARRAY) 3582 std::sort(sort_list.begin(), sort_list.end(), 3583 Input_section_sort_init_fini_compare()); 3584 else if (strcmp(parameters->options().sort_section(), "name") == 0) 3585 std::sort(sort_list.begin(), sort_list.end(), 3586 Input_section_sort_section_name_compare()); 3587 else if (strcmp(this->name(), ".text") == 0) 3588 std::sort(sort_list.begin(), sort_list.end(), 3589 Input_section_sort_section_prefix_special_ordering_compare()); 3590 else 3591 std::sort(sort_list.begin(), sort_list.end(), 3592 Input_section_sort_compare()); 3593 } 3594 else 3595 { 3596 gold_assert(this->input_section_order_specified()); 3597 std::sort(sort_list.begin(), sort_list.end(), 3598 Input_section_sort_section_order_index_compare()); 3599 } 3600 3601 // Copy the sorted input sections back to our list. 3602 this->input_sections_.clear(); 3603 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin(); 3604 p != sort_list.end(); 3605 ++p) 3606 this->input_sections_.push_back(p->input_section()); 3607 sort_list.clear(); 3608 3609 // Remember that we sorted the input sections, since we might get 3610 // called again. 3611 this->attached_input_sections_are_sorted_ = true; 3612 } 3613 3614 // Write the section header to *OSHDR. 3615 3616 template<int size, bool big_endian> 3617 void 3618 Output_section::write_header(const Layout* layout, 3619 const Stringpool* secnamepool, 3620 elfcpp::Shdr_write<size, big_endian>* oshdr) const 3621 { 3622 oshdr->put_sh_name(secnamepool->get_offset(this->name_)); 3623 oshdr->put_sh_type(this->type_); 3624 3625 elfcpp::Elf_Xword flags = this->flags_; 3626 if (this->info_section_ != NULL && this->info_uses_section_index_) 3627 flags |= elfcpp::SHF_INFO_LINK; 3628 oshdr->put_sh_flags(flags); 3629 3630 oshdr->put_sh_addr(this->address()); 3631 oshdr->put_sh_offset(this->offset()); 3632 oshdr->put_sh_size(this->data_size()); 3633 if (this->link_section_ != NULL) 3634 oshdr->put_sh_link(this->link_section_->out_shndx()); 3635 else if (this->should_link_to_symtab_) 3636 oshdr->put_sh_link(layout->symtab_section_shndx()); 3637 else if (this->should_link_to_dynsym_) 3638 oshdr->put_sh_link(layout->dynsym_section()->out_shndx()); 3639 else 3640 oshdr->put_sh_link(this->link_); 3641 3642 elfcpp::Elf_Word info; 3643 if (this->info_section_ != NULL) 3644 { 3645 if (this->info_uses_section_index_) 3646 info = this->info_section_->out_shndx(); 3647 else 3648 info = this->info_section_->symtab_index(); 3649 } 3650 else if (this->info_symndx_ != NULL) 3651 info = this->info_symndx_->symtab_index(); 3652 else 3653 info = this->info_; 3654 oshdr->put_sh_info(info); 3655 3656 oshdr->put_sh_addralign(this->addralign_); 3657 oshdr->put_sh_entsize(this->entsize_); 3658 } 3659 3660 // Write out the data. For input sections the data is written out by 3661 // Object::relocate, but we have to handle Output_section_data objects 3662 // here. 3663 3664 void 3665 Output_section::do_write(Output_file* of) 3666 { 3667 gold_assert(!this->requires_postprocessing()); 3668 3669 // If the target performs relaxation, we delay filler generation until now. 3670 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty()); 3671 3672 off_t output_section_file_offset = this->offset(); 3673 for (Fill_list::iterator p = this->fills_.begin(); 3674 p != this->fills_.end(); 3675 ++p) 3676 { 3677 std::string fill_data(parameters->target().code_fill(p->length())); 3678 of->write(output_section_file_offset + p->section_offset(), 3679 fill_data.data(), fill_data.size()); 3680 } 3681 3682 off_t off = this->offset() + this->first_input_offset_; 3683 for (Input_section_list::iterator p = this->input_sections_.begin(); 3684 p != this->input_sections_.end(); 3685 ++p) 3686 { 3687 off_t aligned_off = align_address(off, p->addralign()); 3688 if (this->generate_code_fills_at_write_ && (off != aligned_off)) 3689 { 3690 size_t fill_len = aligned_off - off; 3691 std::string fill_data(parameters->target().code_fill(fill_len)); 3692 of->write(off, fill_data.data(), fill_data.size()); 3693 } 3694 3695 p->write(of); 3696 off = aligned_off + p->data_size(); 3697 } 3698 3699 // For incremental links, fill in unused chunks in debug sections 3700 // with dummy compilation unit headers. 3701 if (this->free_space_fill_ != NULL) 3702 { 3703 for (Free_list::Const_iterator p = this->free_list_.begin(); 3704 p != this->free_list_.end(); 3705 ++p) 3706 { 3707 off_t off = p->start_; 3708 size_t len = p->end_ - off; 3709 this->free_space_fill_->write(of, this->offset() + off, len); 3710 } 3711 if (this->patch_space_ > 0) 3712 { 3713 off_t off = this->current_data_size_for_child() - this->patch_space_; 3714 this->free_space_fill_->write(of, this->offset() + off, 3715 this->patch_space_); 3716 } 3717 } 3718 } 3719 3720 // If a section requires postprocessing, create the buffer to use. 3721 3722 void 3723 Output_section::create_postprocessing_buffer() 3724 { 3725 gold_assert(this->requires_postprocessing()); 3726 3727 if (this->postprocessing_buffer_ != NULL) 3728 return; 3729 3730 if (!this->input_sections_.empty()) 3731 { 3732 off_t off = this->first_input_offset_; 3733 for (Input_section_list::iterator p = this->input_sections_.begin(); 3734 p != this->input_sections_.end(); 3735 ++p) 3736 { 3737 off = align_address(off, p->addralign()); 3738 p->finalize_data_size(); 3739 off += p->data_size(); 3740 } 3741 this->set_current_data_size_for_child(off); 3742 } 3743 3744 off_t buffer_size = this->current_data_size_for_child(); 3745 this->postprocessing_buffer_ = new unsigned char[buffer_size]; 3746 } 3747 3748 // Write all the data of an Output_section into the postprocessing 3749 // buffer. This is used for sections which require postprocessing, 3750 // such as compression. Input sections are handled by 3751 // Object::Relocate. 3752 3753 void 3754 Output_section::write_to_postprocessing_buffer() 3755 { 3756 gold_assert(this->requires_postprocessing()); 3757 3758 // If the target performs relaxation, we delay filler generation until now. 3759 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty()); 3760 3761 unsigned char* buffer = this->postprocessing_buffer(); 3762 for (Fill_list::iterator p = this->fills_.begin(); 3763 p != this->fills_.end(); 3764 ++p) 3765 { 3766 std::string fill_data(parameters->target().code_fill(p->length())); 3767 memcpy(buffer + p->section_offset(), fill_data.data(), 3768 fill_data.size()); 3769 } 3770 3771 off_t off = this->first_input_offset_; 3772 for (Input_section_list::iterator p = this->input_sections_.begin(); 3773 p != this->input_sections_.end(); 3774 ++p) 3775 { 3776 off_t aligned_off = align_address(off, p->addralign()); 3777 if (this->generate_code_fills_at_write_ && (off != aligned_off)) 3778 { 3779 size_t fill_len = aligned_off - off; 3780 std::string fill_data(parameters->target().code_fill(fill_len)); 3781 memcpy(buffer + off, fill_data.data(), fill_data.size()); 3782 } 3783 3784 p->write_to_buffer(buffer + aligned_off); 3785 off = aligned_off + p->data_size(); 3786 } 3787 } 3788 3789 // Get the input sections for linker script processing. We leave 3790 // behind the Output_section_data entries. Note that this may be 3791 // slightly incorrect for merge sections. We will leave them behind, 3792 // but it is possible that the script says that they should follow 3793 // some other input sections, as in: 3794 // .rodata { *(.rodata) *(.rodata.cst*) } 3795 // For that matter, we don't handle this correctly: 3796 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) } 3797 // With luck this will never matter. 3798 3799 uint64_t 3800 Output_section::get_input_sections( 3801 uint64_t address, 3802 const std::string& fill, 3803 std::list<Input_section>* input_sections) 3804 { 3805 if (this->checkpoint_ != NULL 3806 && !this->checkpoint_->input_sections_saved()) 3807 this->checkpoint_->save_input_sections(); 3808 3809 // Invalidate fast look-up maps. 3810 this->lookup_maps_->invalidate(); 3811 3812 uint64_t orig_address = address; 3813 3814 address = align_address(address, this->addralign()); 3815 3816 Input_section_list remaining; 3817 for (Input_section_list::iterator p = this->input_sections_.begin(); 3818 p != this->input_sections_.end(); 3819 ++p) 3820 { 3821 if (p->is_input_section() 3822 || p->is_relaxed_input_section() 3823 || p->is_merge_section()) 3824 input_sections->push_back(*p); 3825 else 3826 { 3827 uint64_t aligned_address = align_address(address, p->addralign()); 3828 if (aligned_address != address && !fill.empty()) 3829 { 3830 section_size_type length = 3831 convert_to_section_size_type(aligned_address - address); 3832 std::string this_fill; 3833 this_fill.reserve(length); 3834 while (this_fill.length() + fill.length() <= length) 3835 this_fill += fill; 3836 if (this_fill.length() < length) 3837 this_fill.append(fill, 0, length - this_fill.length()); 3838 3839 Output_section_data* posd = new Output_data_const(this_fill, 0); 3840 remaining.push_back(Input_section(posd)); 3841 } 3842 address = aligned_address; 3843 3844 remaining.push_back(*p); 3845 3846 p->finalize_data_size(); 3847 address += p->data_size(); 3848 } 3849 } 3850 3851 this->input_sections_.swap(remaining); 3852 this->first_input_offset_ = 0; 3853 3854 uint64_t data_size = address - orig_address; 3855 this->set_current_data_size_for_child(data_size); 3856 return data_size; 3857 } 3858 3859 // Add a script input section. SIS is an Output_section::Input_section, 3860 // which can be either a plain input section or a special input section like 3861 // a relaxed input section. For a special input section, its size must be 3862 // finalized. 3863 3864 void 3865 Output_section::add_script_input_section(const Input_section& sis) 3866 { 3867 uint64_t data_size = sis.data_size(); 3868 uint64_t addralign = sis.addralign(); 3869 if (addralign > this->addralign_) 3870 this->addralign_ = addralign; 3871 3872 off_t offset_in_section = this->current_data_size_for_child(); 3873 off_t aligned_offset_in_section = align_address(offset_in_section, 3874 addralign); 3875 3876 this->set_current_data_size_for_child(aligned_offset_in_section 3877 + data_size); 3878 3879 this->input_sections_.push_back(sis); 3880 3881 // Update fast lookup maps if necessary. 3882 if (this->lookup_maps_->is_valid()) 3883 { 3884 if (sis.is_merge_section()) 3885 { 3886 Output_merge_base* pomb = sis.output_merge_base(); 3887 Merge_section_properties msp(pomb->is_string(), pomb->entsize(), 3888 pomb->addralign()); 3889 this->lookup_maps_->add_merge_section(msp, pomb); 3890 for (Output_merge_base::Input_sections::const_iterator p = 3891 pomb->input_sections_begin(); 3892 p != pomb->input_sections_end(); 3893 ++p) 3894 this->lookup_maps_->add_merge_input_section(p->first, p->second, 3895 pomb); 3896 } 3897 else if (sis.is_relaxed_input_section()) 3898 { 3899 Output_relaxed_input_section* poris = sis.relaxed_input_section(); 3900 this->lookup_maps_->add_relaxed_input_section(poris->relobj(), 3901 poris->shndx(), poris); 3902 } 3903 } 3904 } 3905 3906 // Save states for relaxation. 3907 3908 void 3909 Output_section::save_states() 3910 { 3911 gold_assert(this->checkpoint_ == NULL); 3912 Checkpoint_output_section* checkpoint = 3913 new Checkpoint_output_section(this->addralign_, this->flags_, 3914 this->input_sections_, 3915 this->first_input_offset_, 3916 this->attached_input_sections_are_sorted_); 3917 this->checkpoint_ = checkpoint; 3918 gold_assert(this->fills_.empty()); 3919 } 3920 3921 void 3922 Output_section::discard_states() 3923 { 3924 gold_assert(this->checkpoint_ != NULL); 3925 delete this->checkpoint_; 3926 this->checkpoint_ = NULL; 3927 gold_assert(this->fills_.empty()); 3928 3929 // Simply invalidate the fast lookup maps since we do not keep 3930 // track of them. 3931 this->lookup_maps_->invalidate(); 3932 } 3933 3934 void 3935 Output_section::restore_states() 3936 { 3937 gold_assert(this->checkpoint_ != NULL); 3938 Checkpoint_output_section* checkpoint = this->checkpoint_; 3939 3940 this->addralign_ = checkpoint->addralign(); 3941 this->flags_ = checkpoint->flags(); 3942 this->first_input_offset_ = checkpoint->first_input_offset(); 3943 3944 if (!checkpoint->input_sections_saved()) 3945 { 3946 // If we have not copied the input sections, just resize it. 3947 size_t old_size = checkpoint->input_sections_size(); 3948 gold_assert(this->input_sections_.size() >= old_size); 3949 this->input_sections_.resize(old_size); 3950 } 3951 else 3952 { 3953 // We need to copy the whole list. This is not efficient for 3954 // extremely large output with hundreads of thousands of input 3955 // objects. We may need to re-think how we should pass sections 3956 // to scripts. 3957 this->input_sections_ = *checkpoint->input_sections(); 3958 } 3959 3960 this->attached_input_sections_are_sorted_ = 3961 checkpoint->attached_input_sections_are_sorted(); 3962 3963 // Simply invalidate the fast lookup maps since we do not keep 3964 // track of them. 3965 this->lookup_maps_->invalidate(); 3966 } 3967 3968 // Update the section offsets of input sections in this. This is required if 3969 // relaxation causes some input sections to change sizes. 3970 3971 void 3972 Output_section::adjust_section_offsets() 3973 { 3974 if (!this->section_offsets_need_adjustment_) 3975 return; 3976 3977 off_t off = 0; 3978 for (Input_section_list::iterator p = this->input_sections_.begin(); 3979 p != this->input_sections_.end(); 3980 ++p) 3981 { 3982 off = align_address(off, p->addralign()); 3983 if (p->is_input_section()) 3984 p->relobj()->set_section_offset(p->shndx(), off); 3985 off += p->data_size(); 3986 } 3987 3988 this->section_offsets_need_adjustment_ = false; 3989 } 3990 3991 // Print to the map file. 3992 3993 void 3994 Output_section::do_print_to_mapfile(Mapfile* mapfile) const 3995 { 3996 mapfile->print_output_section(this); 3997 3998 for (Input_section_list::const_iterator p = this->input_sections_.begin(); 3999 p != this->input_sections_.end(); 4000 ++p) 4001 p->print_to_mapfile(mapfile); 4002 } 4003 4004 // Print stats for merge sections to stderr. 4005 4006 void 4007 Output_section::print_merge_stats() 4008 { 4009 Input_section_list::iterator p; 4010 for (p = this->input_sections_.begin(); 4011 p != this->input_sections_.end(); 4012 ++p) 4013 p->print_merge_stats(this->name_); 4014 } 4015 4016 // Set a fixed layout for the section. Used for incremental update links. 4017 4018 void 4019 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset, 4020 off_t sh_size, uint64_t sh_addralign) 4021 { 4022 this->addralign_ = sh_addralign; 4023 this->set_current_data_size(sh_size); 4024 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0) 4025 this->set_address(sh_addr); 4026 this->set_file_offset(sh_offset); 4027 this->finalize_data_size(); 4028 this->free_list_.init(sh_size, false); 4029 this->has_fixed_layout_ = true; 4030 } 4031 4032 // Reserve space within the fixed layout for the section. Used for 4033 // incremental update links. 4034 4035 void 4036 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size) 4037 { 4038 this->free_list_.remove(sh_offset, sh_offset + sh_size); 4039 } 4040 4041 // Allocate space from the free list for the section. Used for 4042 // incremental update links. 4043 4044 off_t 4045 Output_section::allocate(off_t len, uint64_t addralign) 4046 { 4047 return this->free_list_.allocate(len, addralign, 0); 4048 } 4049 4050 // Output segment methods. 4051 4052 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags) 4053 : vaddr_(0), 4054 paddr_(0), 4055 memsz_(0), 4056 max_align_(0), 4057 min_p_align_(0), 4058 offset_(0), 4059 filesz_(0), 4060 type_(type), 4061 flags_(flags), 4062 is_max_align_known_(false), 4063 are_addresses_set_(false), 4064 is_large_data_segment_(false), 4065 is_unique_segment_(false) 4066 { 4067 // The ELF ABI specifies that a PT_TLS segment always has PF_R as 4068 // the flags. 4069 if (type == elfcpp::PT_TLS) 4070 this->flags_ = elfcpp::PF_R; 4071 } 4072 4073 // Add an Output_section to a PT_LOAD Output_segment. 4074 4075 void 4076 Output_segment::add_output_section_to_load(Layout* layout, 4077 Output_section* os, 4078 elfcpp::Elf_Word seg_flags) 4079 { 4080 gold_assert(this->type() == elfcpp::PT_LOAD); 4081 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0); 4082 gold_assert(!this->is_max_align_known_); 4083 gold_assert(os->is_large_data_section() == this->is_large_data_segment()); 4084 4085 this->update_flags_for_output_section(seg_flags); 4086 4087 // We don't want to change the ordering if we have a linker script 4088 // with a SECTIONS clause. 4089 Output_section_order order = os->order(); 4090 if (layout->script_options()->saw_sections_clause()) 4091 order = static_cast<Output_section_order>(0); 4092 else 4093 gold_assert(order != ORDER_INVALID); 4094 4095 this->output_lists_[order].push_back(os); 4096 } 4097 4098 // Add an Output_section to a non-PT_LOAD Output_segment. 4099 4100 void 4101 Output_segment::add_output_section_to_nonload(Output_section* os, 4102 elfcpp::Elf_Word seg_flags) 4103 { 4104 gold_assert(this->type() != elfcpp::PT_LOAD); 4105 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0); 4106 gold_assert(!this->is_max_align_known_); 4107 4108 this->update_flags_for_output_section(seg_flags); 4109 4110 this->output_lists_[0].push_back(os); 4111 } 4112 4113 // Remove an Output_section from this segment. It is an error if it 4114 // is not present. 4115 4116 void 4117 Output_segment::remove_output_section(Output_section* os) 4118 { 4119 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) 4120 { 4121 Output_data_list* pdl = &this->output_lists_[i]; 4122 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p) 4123 { 4124 if (*p == os) 4125 { 4126 pdl->erase(p); 4127 return; 4128 } 4129 } 4130 } 4131 gold_unreachable(); 4132 } 4133 4134 // Add an Output_data (which need not be an Output_section) to the 4135 // start of a segment. 4136 4137 void 4138 Output_segment::add_initial_output_data(Output_data* od) 4139 { 4140 gold_assert(!this->is_max_align_known_); 4141 Output_data_list::iterator p = this->output_lists_[0].begin(); 4142 this->output_lists_[0].insert(p, od); 4143 } 4144 4145 // Return true if this segment has any sections which hold actual 4146 // data, rather than being a BSS section. 4147 4148 bool 4149 Output_segment::has_any_data_sections() const 4150 { 4151 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) 4152 { 4153 const Output_data_list* pdl = &this->output_lists_[i]; 4154 for (Output_data_list::const_iterator p = pdl->begin(); 4155 p != pdl->end(); 4156 ++p) 4157 { 4158 if (!(*p)->is_section()) 4159 return true; 4160 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS) 4161 return true; 4162 } 4163 } 4164 return false; 4165 } 4166 4167 // Return whether the first data section (not counting TLS sections) 4168 // is a relro section. 4169 4170 bool 4171 Output_segment::is_first_section_relro() const 4172 { 4173 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) 4174 { 4175 if (i == static_cast<int>(ORDER_TLS_DATA) 4176 || i == static_cast<int>(ORDER_TLS_BSS)) 4177 continue; 4178 const Output_data_list* pdl = &this->output_lists_[i]; 4179 if (!pdl->empty()) 4180 { 4181 Output_data* p = pdl->front(); 4182 return p->is_section() && p->output_section()->is_relro(); 4183 } 4184 } 4185 return false; 4186 } 4187 4188 // Return the maximum alignment of the Output_data in Output_segment. 4189 4190 uint64_t 4191 Output_segment::maximum_alignment() 4192 { 4193 if (!this->is_max_align_known_) 4194 { 4195 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) 4196 { 4197 const Output_data_list* pdl = &this->output_lists_[i]; 4198 uint64_t addralign = Output_segment::maximum_alignment_list(pdl); 4199 if (addralign > this->max_align_) 4200 this->max_align_ = addralign; 4201 } 4202 this->is_max_align_known_ = true; 4203 } 4204 4205 return this->max_align_; 4206 } 4207 4208 // Return the maximum alignment of a list of Output_data. 4209 4210 uint64_t 4211 Output_segment::maximum_alignment_list(const Output_data_list* pdl) 4212 { 4213 uint64_t ret = 0; 4214 for (Output_data_list::const_iterator p = pdl->begin(); 4215 p != pdl->end(); 4216 ++p) 4217 { 4218 uint64_t addralign = (*p)->addralign(); 4219 if (addralign > ret) 4220 ret = addralign; 4221 } 4222 return ret; 4223 } 4224 4225 // Return whether this segment has any dynamic relocs. 4226 4227 bool 4228 Output_segment::has_dynamic_reloc() const 4229 { 4230 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) 4231 if (this->has_dynamic_reloc_list(&this->output_lists_[i])) 4232 return true; 4233 return false; 4234 } 4235 4236 // Return whether this Output_data_list has any dynamic relocs. 4237 4238 bool 4239 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const 4240 { 4241 for (Output_data_list::const_iterator p = pdl->begin(); 4242 p != pdl->end(); 4243 ++p) 4244 if ((*p)->has_dynamic_reloc()) 4245 return true; 4246 return false; 4247 } 4248 4249 // Set the section addresses for an Output_segment. If RESET is true, 4250 // reset the addresses first. ADDR is the address and *POFF is the 4251 // file offset. Set the section indexes starting with *PSHNDX. 4252 // INCREASE_RELRO is the size of the portion of the first non-relro 4253 // section that should be included in the PT_GNU_RELRO segment. 4254 // If this segment has relro sections, and has been aligned for 4255 // that purpose, set *HAS_RELRO to TRUE. Return the address of 4256 // the immediately following segment. Update *HAS_RELRO, *POFF, 4257 // and *PSHNDX. 4258 4259 uint64_t 4260 Output_segment::set_section_addresses(const Target* target, 4261 Layout* layout, bool reset, 4262 uint64_t addr, 4263 unsigned int* increase_relro, 4264 bool* has_relro, 4265 off_t* poff, 4266 unsigned int* pshndx) 4267 { 4268 gold_assert(this->type_ == elfcpp::PT_LOAD); 4269 4270 uint64_t last_relro_pad = 0; 4271 off_t orig_off = *poff; 4272 4273 bool in_tls = false; 4274 4275 // If we have relro sections, we need to pad forward now so that the 4276 // relro sections plus INCREASE_RELRO end on an abi page boundary. 4277 if (parameters->options().relro() 4278 && this->is_first_section_relro() 4279 && (!this->are_addresses_set_ || reset)) 4280 { 4281 uint64_t relro_size = 0; 4282 off_t off = *poff; 4283 uint64_t max_align = 0; 4284 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i) 4285 { 4286 Output_data_list* pdl = &this->output_lists_[i]; 4287 Output_data_list::iterator p; 4288 for (p = pdl->begin(); p != pdl->end(); ++p) 4289 { 4290 if (!(*p)->is_section()) 4291 break; 4292 uint64_t align = (*p)->addralign(); 4293 if (align > max_align) 4294 max_align = align; 4295 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)) 4296 in_tls = true; 4297 else if (in_tls) 4298 { 4299 // Align the first non-TLS section to the alignment 4300 // of the TLS segment. 4301 align = max_align; 4302 in_tls = false; 4303 } 4304 relro_size = align_address(relro_size, align); 4305 // Ignore the size of the .tbss section. 4306 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS) 4307 && (*p)->is_section_type(elfcpp::SHT_NOBITS)) 4308 continue; 4309 if ((*p)->is_address_valid()) 4310 relro_size += (*p)->data_size(); 4311 else 4312 { 4313 // FIXME: This could be faster. 4314 (*p)->set_address_and_file_offset(relro_size, 4315 relro_size); 4316 relro_size += (*p)->data_size(); 4317 (*p)->reset_address_and_file_offset(); 4318 } 4319 } 4320 if (p != pdl->end()) 4321 break; 4322 } 4323 relro_size += *increase_relro; 4324 // Pad the total relro size to a multiple of the maximum 4325 // section alignment seen. 4326 uint64_t aligned_size = align_address(relro_size, max_align); 4327 // Note the amount of padding added after the last relro section. 4328 last_relro_pad = aligned_size - relro_size; 4329 *has_relro = true; 4330 4331 uint64_t page_align = parameters->target().abi_pagesize(); 4332 4333 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0. 4334 uint64_t desired_align = page_align - (aligned_size % page_align); 4335 if (desired_align < off % page_align) 4336 off += page_align; 4337 off += desired_align - off % page_align; 4338 addr += off - orig_off; 4339 orig_off = off; 4340 *poff = off; 4341 } 4342 4343 if (!reset && this->are_addresses_set_) 4344 { 4345 gold_assert(this->paddr_ == addr); 4346 addr = this->vaddr_; 4347 } 4348 else 4349 { 4350 this->vaddr_ = addr; 4351 this->paddr_ = addr; 4352 this->are_addresses_set_ = true; 4353 } 4354 4355 in_tls = false; 4356 4357 this->offset_ = orig_off; 4358 4359 off_t off = 0; 4360 uint64_t ret; 4361 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) 4362 { 4363 if (i == static_cast<int>(ORDER_RELRO_LAST)) 4364 { 4365 *poff += last_relro_pad; 4366 addr += last_relro_pad; 4367 if (this->output_lists_[i].empty()) 4368 { 4369 // If there is nothing in the ORDER_RELRO_LAST list, 4370 // the padding will occur at the end of the relro 4371 // segment, and we need to add it to *INCREASE_RELRO. 4372 *increase_relro += last_relro_pad; 4373 } 4374 } 4375 addr = this->set_section_list_addresses(layout, reset, 4376 &this->output_lists_[i], 4377 addr, poff, pshndx, &in_tls); 4378 if (i < static_cast<int>(ORDER_SMALL_BSS)) 4379 { 4380 this->filesz_ = *poff - orig_off; 4381 off = *poff; 4382 } 4383 4384 ret = addr; 4385 } 4386 4387 // If the last section was a TLS section, align upward to the 4388 // alignment of the TLS segment, so that the overall size of the TLS 4389 // segment is aligned. 4390 if (in_tls) 4391 { 4392 uint64_t segment_align = layout->tls_segment()->maximum_alignment(); 4393 *poff = align_address(*poff, segment_align); 4394 } 4395 4396 this->memsz_ = *poff - orig_off; 4397 4398 // Ignore the file offset adjustments made by the BSS Output_data 4399 // objects. 4400 *poff = off; 4401 4402 // If code segments must contain only code, and this code segment is 4403 // page-aligned in the file, then fill it out to a whole page with 4404 // code fill (the tail of the segment will not be within any section). 4405 // Thus the entire code segment can be mapped from the file as whole 4406 // pages and that mapping will contain only valid instructions. 4407 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0) 4408 { 4409 uint64_t abi_pagesize = target->abi_pagesize(); 4410 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0) 4411 { 4412 size_t fill_size = abi_pagesize - (off % abi_pagesize); 4413 4414 std::string fill_data; 4415 if (target->has_code_fill()) 4416 fill_data = target->code_fill(fill_size); 4417 else 4418 fill_data.resize(fill_size); // Zero fill. 4419 4420 Output_data_const* fill = new Output_data_const(fill_data, 0); 4421 fill->set_address(this->vaddr_ + this->memsz_); 4422 fill->set_file_offset(off); 4423 layout->add_relax_output(fill); 4424 4425 off += fill_size; 4426 gold_assert(off % abi_pagesize == 0); 4427 ret += fill_size; 4428 gold_assert(ret % abi_pagesize == 0); 4429 4430 gold_assert((uint64_t) this->filesz_ == this->memsz_); 4431 this->memsz_ = this->filesz_ += fill_size; 4432 4433 *poff = off; 4434 } 4435 } 4436 4437 return ret; 4438 } 4439 4440 // Set the addresses and file offsets in a list of Output_data 4441 // structures. 4442 4443 uint64_t 4444 Output_segment::set_section_list_addresses(Layout* layout, bool reset, 4445 Output_data_list* pdl, 4446 uint64_t addr, off_t* poff, 4447 unsigned int* pshndx, 4448 bool* in_tls) 4449 { 4450 off_t startoff = *poff; 4451 // For incremental updates, we may allocate non-fixed sections from 4452 // free space in the file. This keeps track of the high-water mark. 4453 off_t maxoff = startoff; 4454 4455 off_t off = startoff; 4456 for (Output_data_list::iterator p = pdl->begin(); 4457 p != pdl->end(); 4458 ++p) 4459 { 4460 if (reset) 4461 (*p)->reset_address_and_file_offset(); 4462 4463 // When doing an incremental update or when using a linker script, 4464 // the section will most likely already have an address. 4465 if (!(*p)->is_address_valid()) 4466 { 4467 uint64_t align = (*p)->addralign(); 4468 4469 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)) 4470 { 4471 // Give the first TLS section the alignment of the 4472 // entire TLS segment. Otherwise the TLS segment as a 4473 // whole may be misaligned. 4474 if (!*in_tls) 4475 { 4476 Output_segment* tls_segment = layout->tls_segment(); 4477 gold_assert(tls_segment != NULL); 4478 uint64_t segment_align = tls_segment->maximum_alignment(); 4479 gold_assert(segment_align >= align); 4480 align = segment_align; 4481 4482 *in_tls = true; 4483 } 4484 } 4485 else 4486 { 4487 // If this is the first section after the TLS segment, 4488 // align it to at least the alignment of the TLS 4489 // segment, so that the size of the overall TLS segment 4490 // is aligned. 4491 if (*in_tls) 4492 { 4493 uint64_t segment_align = 4494 layout->tls_segment()->maximum_alignment(); 4495 if (segment_align > align) 4496 align = segment_align; 4497 4498 *in_tls = false; 4499 } 4500 } 4501 4502 if (!parameters->incremental_update()) 4503 { 4504 off = align_address(off, align); 4505 (*p)->set_address_and_file_offset(addr + (off - startoff), off); 4506 } 4507 else 4508 { 4509 // Incremental update: allocate file space from free list. 4510 (*p)->pre_finalize_data_size(); 4511 off_t current_size = (*p)->current_data_size(); 4512 off = layout->allocate(current_size, align, startoff); 4513 if (off == -1) 4514 { 4515 gold_assert((*p)->output_section() != NULL); 4516 gold_fallback(_("out of patch space for section %s; " 4517 "relink with --incremental-full"), 4518 (*p)->output_section()->name()); 4519 } 4520 (*p)->set_address_and_file_offset(addr + (off - startoff), off); 4521 if ((*p)->data_size() > current_size) 4522 { 4523 gold_assert((*p)->output_section() != NULL); 4524 gold_fallback(_("%s: section changed size; " 4525 "relink with --incremental-full"), 4526 (*p)->output_section()->name()); 4527 } 4528 } 4529 } 4530 else if (parameters->incremental_update()) 4531 { 4532 // For incremental updates, use the fixed offset for the 4533 // high-water mark computation. 4534 off = (*p)->offset(); 4535 } 4536 else 4537 { 4538 // The script may have inserted a skip forward, but it 4539 // better not have moved backward. 4540 if ((*p)->address() >= addr + (off - startoff)) 4541 off += (*p)->address() - (addr + (off - startoff)); 4542 else 4543 { 4544 if (!layout->script_options()->saw_sections_clause()) 4545 gold_unreachable(); 4546 else 4547 { 4548 Output_section* os = (*p)->output_section(); 4549 4550 // Cast to unsigned long long to avoid format warnings. 4551 unsigned long long previous_dot = 4552 static_cast<unsigned long long>(addr + (off - startoff)); 4553 unsigned long long dot = 4554 static_cast<unsigned long long>((*p)->address()); 4555 4556 if (os == NULL) 4557 gold_error(_("dot moves backward in linker script " 4558 "from 0x%llx to 0x%llx"), previous_dot, dot); 4559 else 4560 gold_error(_("address of section '%s' moves backward " 4561 "from 0x%llx to 0x%llx"), 4562 os->name(), previous_dot, dot); 4563 } 4564 } 4565 (*p)->set_file_offset(off); 4566 (*p)->finalize_data_size(); 4567 } 4568 4569 if (parameters->incremental_update()) 4570 gold_debug(DEBUG_INCREMENTAL, 4571 "set_section_list_addresses: %08lx %08lx %s", 4572 static_cast<long>(off), 4573 static_cast<long>((*p)->data_size()), 4574 ((*p)->output_section() != NULL 4575 ? (*p)->output_section()->name() : "(special)")); 4576 4577 // We want to ignore the size of a SHF_TLS SHT_NOBITS 4578 // section. Such a section does not affect the size of a 4579 // PT_LOAD segment. 4580 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS) 4581 || !(*p)->is_section_type(elfcpp::SHT_NOBITS)) 4582 off += (*p)->data_size(); 4583 4584 if (off > maxoff) 4585 maxoff = off; 4586 4587 if ((*p)->is_section()) 4588 { 4589 (*p)->set_out_shndx(*pshndx); 4590 ++*pshndx; 4591 } 4592 } 4593 4594 *poff = maxoff; 4595 return addr + (maxoff - startoff); 4596 } 4597 4598 // For a non-PT_LOAD segment, set the offset from the sections, if 4599 // any. Add INCREASE to the file size and the memory size. 4600 4601 void 4602 Output_segment::set_offset(unsigned int increase) 4603 { 4604 gold_assert(this->type_ != elfcpp::PT_LOAD); 4605 4606 gold_assert(!this->are_addresses_set_); 4607 4608 // A non-load section only uses output_lists_[0]. 4609 4610 Output_data_list* pdl = &this->output_lists_[0]; 4611 4612 if (pdl->empty()) 4613 { 4614 gold_assert(increase == 0); 4615 this->vaddr_ = 0; 4616 this->paddr_ = 0; 4617 this->are_addresses_set_ = true; 4618 this->memsz_ = 0; 4619 this->min_p_align_ = 0; 4620 this->offset_ = 0; 4621 this->filesz_ = 0; 4622 return; 4623 } 4624 4625 // Find the first and last section by address. 4626 const Output_data* first = NULL; 4627 const Output_data* last_data = NULL; 4628 const Output_data* last_bss = NULL; 4629 for (Output_data_list::const_iterator p = pdl->begin(); 4630 p != pdl->end(); 4631 ++p) 4632 { 4633 if (first == NULL 4634 || (*p)->address() < first->address() 4635 || ((*p)->address() == first->address() 4636 && (*p)->data_size() < first->data_size())) 4637 first = *p; 4638 const Output_data** plast; 4639 if ((*p)->is_section() 4640 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS) 4641 plast = &last_bss; 4642 else 4643 plast = &last_data; 4644 if (*plast == NULL 4645 || (*p)->address() > (*plast)->address() 4646 || ((*p)->address() == (*plast)->address() 4647 && (*p)->data_size() > (*plast)->data_size())) 4648 *plast = *p; 4649 } 4650 4651 this->vaddr_ = first->address(); 4652 this->paddr_ = (first->has_load_address() 4653 ? first->load_address() 4654 : this->vaddr_); 4655 this->are_addresses_set_ = true; 4656 this->offset_ = first->offset(); 4657 4658 if (last_data == NULL) 4659 this->filesz_ = 0; 4660 else 4661 this->filesz_ = (last_data->address() 4662 + last_data->data_size() 4663 - this->vaddr_); 4664 4665 const Output_data* last = last_bss != NULL ? last_bss : last_data; 4666 this->memsz_ = (last->address() 4667 + last->data_size() 4668 - this->vaddr_); 4669 4670 this->filesz_ += increase; 4671 this->memsz_ += increase; 4672 4673 // If this is a RELRO segment, verify that the segment ends at a 4674 // page boundary. 4675 if (this->type_ == elfcpp::PT_GNU_RELRO) 4676 { 4677 uint64_t page_align = parameters->target().abi_pagesize(); 4678 uint64_t segment_end = this->vaddr_ + this->memsz_; 4679 if (parameters->incremental_update()) 4680 { 4681 // The INCREASE_RELRO calculation is bypassed for an incremental 4682 // update, so we need to adjust the segment size manually here. 4683 segment_end = align_address(segment_end, page_align); 4684 this->memsz_ = segment_end - this->vaddr_; 4685 } 4686 else 4687 gold_assert(segment_end == align_address(segment_end, page_align)); 4688 } 4689 4690 // If this is a TLS segment, align the memory size. The code in 4691 // set_section_list ensures that the section after the TLS segment 4692 // is aligned to give us room. 4693 if (this->type_ == elfcpp::PT_TLS) 4694 { 4695 uint64_t segment_align = this->maximum_alignment(); 4696 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align)); 4697 this->memsz_ = align_address(this->memsz_, segment_align); 4698 } 4699 } 4700 4701 // Set the TLS offsets of the sections in the PT_TLS segment. 4702 4703 void 4704 Output_segment::set_tls_offsets() 4705 { 4706 gold_assert(this->type_ == elfcpp::PT_TLS); 4707 4708 for (Output_data_list::iterator p = this->output_lists_[0].begin(); 4709 p != this->output_lists_[0].end(); 4710 ++p) 4711 (*p)->set_tls_offset(this->vaddr_); 4712 } 4713 4714 // Return the first section. 4715 4716 Output_section* 4717 Output_segment::first_section() const 4718 { 4719 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) 4720 { 4721 const Output_data_list* pdl = &this->output_lists_[i]; 4722 for (Output_data_list::const_iterator p = pdl->begin(); 4723 p != pdl->end(); 4724 ++p) 4725 { 4726 if ((*p)->is_section()) 4727 return (*p)->output_section(); 4728 } 4729 } 4730 gold_unreachable(); 4731 } 4732 4733 // Return the number of Output_sections in an Output_segment. 4734 4735 unsigned int 4736 Output_segment::output_section_count() const 4737 { 4738 unsigned int ret = 0; 4739 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) 4740 ret += this->output_section_count_list(&this->output_lists_[i]); 4741 return ret; 4742 } 4743 4744 // Return the number of Output_sections in an Output_data_list. 4745 4746 unsigned int 4747 Output_segment::output_section_count_list(const Output_data_list* pdl) const 4748 { 4749 unsigned int count = 0; 4750 for (Output_data_list::const_iterator p = pdl->begin(); 4751 p != pdl->end(); 4752 ++p) 4753 { 4754 if ((*p)->is_section()) 4755 ++count; 4756 } 4757 return count; 4758 } 4759 4760 // Return the section attached to the list segment with the lowest 4761 // load address. This is used when handling a PHDRS clause in a 4762 // linker script. 4763 4764 Output_section* 4765 Output_segment::section_with_lowest_load_address() const 4766 { 4767 Output_section* found = NULL; 4768 uint64_t found_lma = 0; 4769 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) 4770 this->lowest_load_address_in_list(&this->output_lists_[i], &found, 4771 &found_lma); 4772 return found; 4773 } 4774 4775 // Look through a list for a section with a lower load address. 4776 4777 void 4778 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl, 4779 Output_section** found, 4780 uint64_t* found_lma) const 4781 { 4782 for (Output_data_list::const_iterator p = pdl->begin(); 4783 p != pdl->end(); 4784 ++p) 4785 { 4786 if (!(*p)->is_section()) 4787 continue; 4788 Output_section* os = static_cast<Output_section*>(*p); 4789 uint64_t lma = (os->has_load_address() 4790 ? os->load_address() 4791 : os->address()); 4792 if (*found == NULL || lma < *found_lma) 4793 { 4794 *found = os; 4795 *found_lma = lma; 4796 } 4797 } 4798 } 4799 4800 // Write the segment data into *OPHDR. 4801 4802 template<int size, bool big_endian> 4803 void 4804 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr) 4805 { 4806 ophdr->put_p_type(this->type_); 4807 ophdr->put_p_offset(this->offset_); 4808 ophdr->put_p_vaddr(this->vaddr_); 4809 ophdr->put_p_paddr(this->paddr_); 4810 ophdr->put_p_filesz(this->filesz_); 4811 ophdr->put_p_memsz(this->memsz_); 4812 ophdr->put_p_flags(this->flags_); 4813 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment())); 4814 } 4815 4816 // Write the section headers into V. 4817 4818 template<int size, bool big_endian> 4819 unsigned char* 4820 Output_segment::write_section_headers(const Layout* layout, 4821 const Stringpool* secnamepool, 4822 unsigned char* v, 4823 unsigned int* pshndx) const 4824 { 4825 // Every section that is attached to a segment must be attached to a 4826 // PT_LOAD segment, so we only write out section headers for PT_LOAD 4827 // segments. 4828 if (this->type_ != elfcpp::PT_LOAD) 4829 return v; 4830 4831 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) 4832 { 4833 const Output_data_list* pdl = &this->output_lists_[i]; 4834 v = this->write_section_headers_list<size, big_endian>(layout, 4835 secnamepool, 4836 pdl, 4837 v, pshndx); 4838 } 4839 4840 return v; 4841 } 4842 4843 template<int size, bool big_endian> 4844 unsigned char* 4845 Output_segment::write_section_headers_list(const Layout* layout, 4846 const Stringpool* secnamepool, 4847 const Output_data_list* pdl, 4848 unsigned char* v, 4849 unsigned int* pshndx) const 4850 { 4851 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; 4852 for (Output_data_list::const_iterator p = pdl->begin(); 4853 p != pdl->end(); 4854 ++p) 4855 { 4856 if ((*p)->is_section()) 4857 { 4858 const Output_section* ps = static_cast<const Output_section*>(*p); 4859 gold_assert(*pshndx == ps->out_shndx()); 4860 elfcpp::Shdr_write<size, big_endian> oshdr(v); 4861 ps->write_header(layout, secnamepool, &oshdr); 4862 v += shdr_size; 4863 ++*pshndx; 4864 } 4865 } 4866 return v; 4867 } 4868 4869 // Print the output sections to the map file. 4870 4871 void 4872 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const 4873 { 4874 if (this->type() != elfcpp::PT_LOAD) 4875 return; 4876 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) 4877 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]); 4878 } 4879 4880 // Print an output section list to the map file. 4881 4882 void 4883 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile, 4884 const Output_data_list* pdl) const 4885 { 4886 for (Output_data_list::const_iterator p = pdl->begin(); 4887 p != pdl->end(); 4888 ++p) 4889 (*p)->print_to_mapfile(mapfile); 4890 } 4891 4892 // Output_file methods. 4893 4894 Output_file::Output_file(const char* name) 4895 : name_(name), 4896 o_(-1), 4897 file_size_(0), 4898 base_(NULL), 4899 map_is_anonymous_(false), 4900 map_is_allocated_(false), 4901 is_temporary_(false) 4902 { 4903 } 4904 4905 // Try to open an existing file. Returns false if the file doesn't 4906 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not 4907 // NULL, open that file as the base for incremental linking, and 4908 // copy its contents to the new output file. This routine can 4909 // be called for incremental updates, in which case WRITABLE should 4910 // be true, or by the incremental-dump utility, in which case 4911 // WRITABLE should be false. 4912 4913 bool 4914 Output_file::open_base_file(const char* base_name, bool writable) 4915 { 4916 // The name "-" means "stdout". 4917 if (strcmp(this->name_, "-") == 0) 4918 return false; 4919 4920 bool use_base_file = base_name != NULL; 4921 if (!use_base_file) 4922 base_name = this->name_; 4923 else if (strcmp(base_name, this->name_) == 0) 4924 gold_fatal(_("%s: incremental base and output file name are the same"), 4925 base_name); 4926 4927 // Don't bother opening files with a size of zero. 4928 struct stat s; 4929 if (::stat(base_name, &s) != 0) 4930 { 4931 gold_info(_("%s: stat: %s"), base_name, strerror(errno)); 4932 return false; 4933 } 4934 if (s.st_size == 0) 4935 { 4936 gold_info(_("%s: incremental base file is empty"), base_name); 4937 return false; 4938 } 4939 4940 // If we're using a base file, we want to open it read-only. 4941 if (use_base_file) 4942 writable = false; 4943 4944 int oflags = writable ? O_RDWR : O_RDONLY; 4945 int o = open_descriptor(-1, base_name, oflags, 0); 4946 if (o < 0) 4947 { 4948 gold_info(_("%s: open: %s"), base_name, strerror(errno)); 4949 return false; 4950 } 4951 4952 // If the base file and the output file are different, open a 4953 // new output file and read the contents from the base file into 4954 // the newly-mapped region. 4955 if (use_base_file) 4956 { 4957 this->open(s.st_size); 4958 ssize_t bytes_to_read = s.st_size; 4959 unsigned char* p = this->base_; 4960 while (bytes_to_read > 0) 4961 { 4962 ssize_t len = ::read(o, p, bytes_to_read); 4963 if (len < 0) 4964 { 4965 gold_info(_("%s: read failed: %s"), base_name, strerror(errno)); 4966 return false; 4967 } 4968 if (len == 0) 4969 { 4970 gold_info(_("%s: file too short: read only %lld of %lld bytes"), 4971 base_name, 4972 static_cast<long long>(s.st_size - bytes_to_read), 4973 static_cast<long long>(s.st_size)); 4974 return false; 4975 } 4976 p += len; 4977 bytes_to_read -= len; 4978 } 4979 ::close(o); 4980 return true; 4981 } 4982 4983 this->o_ = o; 4984 this->file_size_ = s.st_size; 4985 4986 if (!this->map_no_anonymous(writable)) 4987 { 4988 release_descriptor(o, true); 4989 this->o_ = -1; 4990 this->file_size_ = 0; 4991 return false; 4992 } 4993 4994 return true; 4995 } 4996 4997 // Open the output file. 4998 4999 void 5000 Output_file::open(off_t file_size) 5001 { 5002 this->file_size_ = file_size; 5003 5004 // Unlink the file first; otherwise the open() may fail if the file 5005 // is busy (e.g. it's an executable that's currently being executed). 5006 // 5007 // However, the linker may be part of a system where a zero-length 5008 // file is created for it to write to, with tight permissions (gcc 5009 // 2.95 did something like this). Unlinking the file would work 5010 // around those permission controls, so we only unlink if the file 5011 // has a non-zero size. We also unlink only regular files to avoid 5012 // trouble with directories/etc. 5013 // 5014 // If we fail, continue; this command is merely a best-effort attempt 5015 // to improve the odds for open(). 5016 5017 // We let the name "-" mean "stdout" 5018 if (!this->is_temporary_) 5019 { 5020 if (strcmp(this->name_, "-") == 0) 5021 this->o_ = STDOUT_FILENO; 5022 else 5023 { 5024 struct stat s; 5025 if (::stat(this->name_, &s) == 0 5026 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode))) 5027 { 5028 if (s.st_size != 0) 5029 ::unlink(this->name_); 5030 else if (!parameters->options().relocatable()) 5031 { 5032 // If we don't unlink the existing file, add execute 5033 // permission where read permissions already exist 5034 // and where the umask permits. 5035 int mask = ::umask(0); 5036 ::umask(mask); 5037 s.st_mode |= (s.st_mode & 0444) >> 2; 5038 ::chmod(this->name_, s.st_mode & ~mask); 5039 } 5040 } 5041 5042 int mode = parameters->options().relocatable() ? 0666 : 0777; 5043 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC, 5044 mode); 5045 if (o < 0) 5046 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno)); 5047 this->o_ = o; 5048 } 5049 } 5050 5051 this->map(); 5052 } 5053 5054 // Resize the output file. 5055 5056 void 5057 Output_file::resize(off_t file_size) 5058 { 5059 // If the mmap is mapping an anonymous memory buffer, this is easy: 5060 // just mremap to the new size. If it's mapping to a file, we want 5061 // to unmap to flush to the file, then remap after growing the file. 5062 if (this->map_is_anonymous_) 5063 { 5064 void* base; 5065 if (!this->map_is_allocated_) 5066 { 5067 base = ::mremap(this->base_, this->file_size_, file_size, 5068 MREMAP_MAYMOVE); 5069 if (base == MAP_FAILED) 5070 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno)); 5071 } 5072 else 5073 { 5074 base = realloc(this->base_, file_size); 5075 if (base == NULL) 5076 gold_nomem(); 5077 if (file_size > this->file_size_) 5078 memset(static_cast<char*>(base) + this->file_size_, 0, 5079 file_size - this->file_size_); 5080 } 5081 this->base_ = static_cast<unsigned char*>(base); 5082 this->file_size_ = file_size; 5083 } 5084 else 5085 { 5086 this->unmap(); 5087 this->file_size_ = file_size; 5088 if (!this->map_no_anonymous(true)) 5089 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno)); 5090 } 5091 } 5092 5093 // Map an anonymous block of memory which will later be written to the 5094 // file. Return whether the map succeeded. 5095 5096 bool 5097 Output_file::map_anonymous() 5098 { 5099 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE, 5100 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 5101 if (base == MAP_FAILED) 5102 { 5103 base = malloc(this->file_size_); 5104 if (base == NULL) 5105 return false; 5106 memset(base, 0, this->file_size_); 5107 this->map_is_allocated_ = true; 5108 } 5109 this->base_ = static_cast<unsigned char*>(base); 5110 this->map_is_anonymous_ = true; 5111 return true; 5112 } 5113 5114 // Map the file into memory. Return whether the mapping succeeded. 5115 // If WRITABLE is true, map with write access. 5116 5117 bool 5118 Output_file::map_no_anonymous(bool writable) 5119 { 5120 const int o = this->o_; 5121 5122 // If the output file is not a regular file, don't try to mmap it; 5123 // instead, we'll mmap a block of memory (an anonymous buffer), and 5124 // then later write the buffer to the file. 5125 void* base; 5126 struct stat statbuf; 5127 if (o == STDOUT_FILENO || o == STDERR_FILENO 5128 || ::fstat(o, &statbuf) != 0 5129 || !S_ISREG(statbuf.st_mode) 5130 || this->is_temporary_) 5131 return false; 5132 5133 // Ensure that we have disk space available for the file. If we 5134 // don't do this, it is possible that we will call munmap, close, 5135 // and exit with dirty buffers still in the cache with no assigned 5136 // disk blocks. If the disk is out of space at that point, the 5137 // output file will wind up incomplete, but we will have already 5138 // exited. The alternative to fallocate would be to use fdatasync, 5139 // but that would be a more significant performance hit. 5140 if (writable) 5141 { 5142 int err = gold_fallocate(o, 0, this->file_size_); 5143 if (err != 0) 5144 gold_fatal(_("%s: %s"), this->name_, strerror(err)); 5145 } 5146 5147 // Map the file into memory. 5148 int prot = PROT_READ; 5149 if (writable) 5150 prot |= PROT_WRITE; 5151 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0); 5152 5153 // The mmap call might fail because of file system issues: the file 5154 // system might not support mmap at all, or it might not support 5155 // mmap with PROT_WRITE. 5156 if (base == MAP_FAILED) 5157 return false; 5158 5159 this->map_is_anonymous_ = false; 5160 this->base_ = static_cast<unsigned char*>(base); 5161 return true; 5162 } 5163 5164 // Map the file into memory. 5165 5166 void 5167 Output_file::map() 5168 { 5169 if (parameters->options().mmap_output_file() 5170 && this->map_no_anonymous(true)) 5171 return; 5172 5173 // The mmap call might fail because of file system issues: the file 5174 // system might not support mmap at all, or it might not support 5175 // mmap with PROT_WRITE. I'm not sure which errno values we will 5176 // see in all cases, so if the mmap fails for any reason and we 5177 // don't care about file contents, try for an anonymous map. 5178 if (this->map_anonymous()) 5179 return; 5180 5181 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"), 5182 this->name_, static_cast<unsigned long>(this->file_size_), 5183 strerror(errno)); 5184 } 5185 5186 // Unmap the file from memory. 5187 5188 void 5189 Output_file::unmap() 5190 { 5191 if (this->map_is_anonymous_) 5192 { 5193 // We've already written out the data, so there is no reason to 5194 // waste time unmapping or freeing the memory. 5195 } 5196 else 5197 { 5198 if (::munmap(this->base_, this->file_size_) < 0) 5199 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno)); 5200 } 5201 this->base_ = NULL; 5202 } 5203 5204 // Close the output file. 5205 5206 void 5207 Output_file::close() 5208 { 5209 // If the map isn't file-backed, we need to write it now. 5210 if (this->map_is_anonymous_ && !this->is_temporary_) 5211 { 5212 size_t bytes_to_write = this->file_size_; 5213 size_t offset = 0; 5214 while (bytes_to_write > 0) 5215 { 5216 ssize_t bytes_written = ::write(this->o_, this->base_ + offset, 5217 bytes_to_write); 5218 if (bytes_written == 0) 5219 gold_error(_("%s: write: unexpected 0 return-value"), this->name_); 5220 else if (bytes_written < 0) 5221 gold_error(_("%s: write: %s"), this->name_, strerror(errno)); 5222 else 5223 { 5224 bytes_to_write -= bytes_written; 5225 offset += bytes_written; 5226 } 5227 } 5228 } 5229 this->unmap(); 5230 5231 // We don't close stdout or stderr 5232 if (this->o_ != STDOUT_FILENO 5233 && this->o_ != STDERR_FILENO 5234 && !this->is_temporary_) 5235 if (::close(this->o_) < 0) 5236 gold_error(_("%s: close: %s"), this->name_, strerror(errno)); 5237 this->o_ = -1; 5238 } 5239 5240 // Instantiate the templates we need. We could use the configure 5241 // script to restrict this to only the ones for implemented targets. 5242 5243 #ifdef HAVE_TARGET_32_LITTLE 5244 template 5245 off_t 5246 Output_section::add_input_section<32, false>( 5247 Layout* layout, 5248 Sized_relobj_file<32, false>* object, 5249 unsigned int shndx, 5250 const char* secname, 5251 const elfcpp::Shdr<32, false>& shdr, 5252 unsigned int reloc_shndx, 5253 bool have_sections_script); 5254 #endif 5255 5256 #ifdef HAVE_TARGET_32_BIG 5257 template 5258 off_t 5259 Output_section::add_input_section<32, true>( 5260 Layout* layout, 5261 Sized_relobj_file<32, true>* object, 5262 unsigned int shndx, 5263 const char* secname, 5264 const elfcpp::Shdr<32, true>& shdr, 5265 unsigned int reloc_shndx, 5266 bool have_sections_script); 5267 #endif 5268 5269 #ifdef HAVE_TARGET_64_LITTLE 5270 template 5271 off_t 5272 Output_section::add_input_section<64, false>( 5273 Layout* layout, 5274 Sized_relobj_file<64, false>* object, 5275 unsigned int shndx, 5276 const char* secname, 5277 const elfcpp::Shdr<64, false>& shdr, 5278 unsigned int reloc_shndx, 5279 bool have_sections_script); 5280 #endif 5281 5282 #ifdef HAVE_TARGET_64_BIG 5283 template 5284 off_t 5285 Output_section::add_input_section<64, true>( 5286 Layout* layout, 5287 Sized_relobj_file<64, true>* object, 5288 unsigned int shndx, 5289 const char* secname, 5290 const elfcpp::Shdr<64, true>& shdr, 5291 unsigned int reloc_shndx, 5292 bool have_sections_script); 5293 #endif 5294 5295 #ifdef HAVE_TARGET_32_LITTLE 5296 template 5297 class Output_reloc<elfcpp::SHT_REL, false, 32, false>; 5298 #endif 5299 5300 #ifdef HAVE_TARGET_32_BIG 5301 template 5302 class Output_reloc<elfcpp::SHT_REL, false, 32, true>; 5303 #endif 5304 5305 #ifdef HAVE_TARGET_64_LITTLE 5306 template 5307 class Output_reloc<elfcpp::SHT_REL, false, 64, false>; 5308 #endif 5309 5310 #ifdef HAVE_TARGET_64_BIG 5311 template 5312 class Output_reloc<elfcpp::SHT_REL, false, 64, true>; 5313 #endif 5314 5315 #ifdef HAVE_TARGET_32_LITTLE 5316 template 5317 class Output_reloc<elfcpp::SHT_REL, true, 32, false>; 5318 #endif 5319 5320 #ifdef HAVE_TARGET_32_BIG 5321 template 5322 class Output_reloc<elfcpp::SHT_REL, true, 32, true>; 5323 #endif 5324 5325 #ifdef HAVE_TARGET_64_LITTLE 5326 template 5327 class Output_reloc<elfcpp::SHT_REL, true, 64, false>; 5328 #endif 5329 5330 #ifdef HAVE_TARGET_64_BIG 5331 template 5332 class Output_reloc<elfcpp::SHT_REL, true, 64, true>; 5333 #endif 5334 5335 #ifdef HAVE_TARGET_32_LITTLE 5336 template 5337 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>; 5338 #endif 5339 5340 #ifdef HAVE_TARGET_32_BIG 5341 template 5342 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>; 5343 #endif 5344 5345 #ifdef HAVE_TARGET_64_LITTLE 5346 template 5347 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>; 5348 #endif 5349 5350 #ifdef HAVE_TARGET_64_BIG 5351 template 5352 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>; 5353 #endif 5354 5355 #ifdef HAVE_TARGET_32_LITTLE 5356 template 5357 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>; 5358 #endif 5359 5360 #ifdef HAVE_TARGET_32_BIG 5361 template 5362 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>; 5363 #endif 5364 5365 #ifdef HAVE_TARGET_64_LITTLE 5366 template 5367 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>; 5368 #endif 5369 5370 #ifdef HAVE_TARGET_64_BIG 5371 template 5372 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>; 5373 #endif 5374 5375 #ifdef HAVE_TARGET_32_LITTLE 5376 template 5377 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>; 5378 #endif 5379 5380 #ifdef HAVE_TARGET_32_BIG 5381 template 5382 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>; 5383 #endif 5384 5385 #ifdef HAVE_TARGET_64_LITTLE 5386 template 5387 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>; 5388 #endif 5389 5390 #ifdef HAVE_TARGET_64_BIG 5391 template 5392 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>; 5393 #endif 5394 5395 #ifdef HAVE_TARGET_32_LITTLE 5396 template 5397 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>; 5398 #endif 5399 5400 #ifdef HAVE_TARGET_32_BIG 5401 template 5402 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>; 5403 #endif 5404 5405 #ifdef HAVE_TARGET_64_LITTLE 5406 template 5407 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>; 5408 #endif 5409 5410 #ifdef HAVE_TARGET_64_BIG 5411 template 5412 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>; 5413 #endif 5414 5415 #ifdef HAVE_TARGET_32_LITTLE 5416 template 5417 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>; 5418 #endif 5419 5420 #ifdef HAVE_TARGET_32_BIG 5421 template 5422 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>; 5423 #endif 5424 5425 #ifdef HAVE_TARGET_64_LITTLE 5426 template 5427 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>; 5428 #endif 5429 5430 #ifdef HAVE_TARGET_64_BIG 5431 template 5432 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>; 5433 #endif 5434 5435 #ifdef HAVE_TARGET_32_LITTLE 5436 template 5437 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>; 5438 #endif 5439 5440 #ifdef HAVE_TARGET_32_BIG 5441 template 5442 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>; 5443 #endif 5444 5445 #ifdef HAVE_TARGET_64_LITTLE 5446 template 5447 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>; 5448 #endif 5449 5450 #ifdef HAVE_TARGET_64_BIG 5451 template 5452 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>; 5453 #endif 5454 5455 #ifdef HAVE_TARGET_32_LITTLE 5456 template 5457 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>; 5458 #endif 5459 5460 #ifdef HAVE_TARGET_32_BIG 5461 template 5462 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>; 5463 #endif 5464 5465 #ifdef HAVE_TARGET_64_LITTLE 5466 template 5467 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>; 5468 #endif 5469 5470 #ifdef HAVE_TARGET_64_BIG 5471 template 5472 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>; 5473 #endif 5474 5475 #ifdef HAVE_TARGET_32_LITTLE 5476 template 5477 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>; 5478 #endif 5479 5480 #ifdef HAVE_TARGET_32_BIG 5481 template 5482 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>; 5483 #endif 5484 5485 #ifdef HAVE_TARGET_64_LITTLE 5486 template 5487 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>; 5488 #endif 5489 5490 #ifdef HAVE_TARGET_64_BIG 5491 template 5492 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>; 5493 #endif 5494 5495 #ifdef HAVE_TARGET_32_LITTLE 5496 template 5497 class Output_data_group<32, false>; 5498 #endif 5499 5500 #ifdef HAVE_TARGET_32_BIG 5501 template 5502 class Output_data_group<32, true>; 5503 #endif 5504 5505 #ifdef HAVE_TARGET_64_LITTLE 5506 template 5507 class Output_data_group<64, false>; 5508 #endif 5509 5510 #ifdef HAVE_TARGET_64_BIG 5511 template 5512 class Output_data_group<64, true>; 5513 #endif 5514 5515 template 5516 class Output_data_got<32, false>; 5517 5518 template 5519 class Output_data_got<32, true>; 5520 5521 template 5522 class Output_data_got<64, false>; 5523 5524 template 5525 class Output_data_got<64, true>; 5526 5527 } // End namespace gold. 5528