1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_ZONE_H_ 6 #define V8_ZONE_H_ 7 8 #include <limits> 9 10 #include "src/allocation.h" 11 #include "src/base/logging.h" 12 #include "src/globals.h" 13 #include "src/hashmap.h" 14 #include "src/list.h" 15 #include "src/splay-tree.h" 16 17 namespace v8 { 18 namespace internal { 19 20 // Forward declarations. 21 class Segment; 22 23 24 // The Zone supports very fast allocation of small chunks of 25 // memory. The chunks cannot be deallocated individually, but instead 26 // the Zone supports deallocating all chunks in one fast 27 // operation. The Zone is used to hold temporary data structures like 28 // the abstract syntax tree, which is deallocated after compilation. 29 // 30 // Note: There is no need to initialize the Zone; the first time an 31 // allocation is attempted, a segment of memory will be requested 32 // through a call to malloc(). 33 // 34 // Note: The implementation is inherently not thread safe. Do not use 35 // from multi-threaded code. 36 class Zone final { 37 public: 38 Zone(); 39 ~Zone(); 40 41 // Allocate 'size' bytes of memory in the Zone; expands the Zone by 42 // allocating new segments of memory on demand using malloc(). 43 void* New(size_t size); 44 45 template <typename T> 46 T* NewArray(size_t length) { 47 DCHECK_LT(length, std::numeric_limits<size_t>::max() / sizeof(T)); 48 return static_cast<T*>(New(length * sizeof(T))); 49 } 50 51 // Deletes all objects and free all memory allocated in the Zone. Keeps one 52 // small (size <= kMaximumKeptSegmentSize) segment around if it finds one. 53 void DeleteAll(); 54 55 // Deletes the last small segment kept around by DeleteAll(). You 56 // may no longer allocate in the Zone after a call to this method. 57 void DeleteKeptSegment(); 58 59 // Returns true if more memory has been allocated in zones than 60 // the limit allows. 61 bool excess_allocation() const { 62 return segment_bytes_allocated_ > kExcessLimit; 63 } 64 65 size_t allocation_size() const { return allocation_size_; } 66 67 private: 68 // All pointers returned from New() have this alignment. In addition, if the 69 // object being allocated has a size that is divisible by 8 then its alignment 70 // will be 8. ASan requires 8-byte alignment. 71 #ifdef V8_USE_ADDRESS_SANITIZER 72 static const size_t kAlignment = 8; 73 STATIC_ASSERT(kPointerSize <= 8); 74 #else 75 static const size_t kAlignment = kPointerSize; 76 #endif 77 78 // Never allocate segments smaller than this size in bytes. 79 static const size_t kMinimumSegmentSize = 8 * KB; 80 81 // Never allocate segments larger than this size in bytes. 82 static const size_t kMaximumSegmentSize = 1 * MB; 83 84 // Never keep segments larger than this size in bytes around. 85 static const size_t kMaximumKeptSegmentSize = 64 * KB; 86 87 // Report zone excess when allocation exceeds this limit. 88 static const size_t kExcessLimit = 256 * MB; 89 90 // The number of bytes allocated in this zone so far. 91 size_t allocation_size_; 92 93 // The number of bytes allocated in segments. Note that this number 94 // includes memory allocated from the OS but not yet allocated from 95 // the zone. 96 size_t segment_bytes_allocated_; 97 98 // Expand the Zone to hold at least 'size' more bytes and allocate 99 // the bytes. Returns the address of the newly allocated chunk of 100 // memory in the Zone. Should only be called if there isn't enough 101 // room in the Zone already. 102 Address NewExpand(size_t size); 103 104 // Creates a new segment, sets it size, and pushes it to the front 105 // of the segment chain. Returns the new segment. 106 inline Segment* NewSegment(size_t size); 107 108 // Deletes the given segment. Does not touch the segment chain. 109 inline void DeleteSegment(Segment* segment, size_t size); 110 111 // The free region in the current (front) segment is represented as 112 // the half-open interval [position, limit). The 'position' variable 113 // is guaranteed to be aligned as dictated by kAlignment. 114 Address position_; 115 Address limit_; 116 117 Segment* segment_head_; 118 }; 119 120 121 // ZoneObject is an abstraction that helps define classes of objects 122 // allocated in the Zone. Use it as a base class; see ast.h. 123 class ZoneObject { 124 public: 125 // Allocate a new ZoneObject of 'size' bytes in the Zone. 126 void* operator new(size_t size, Zone* zone) { return zone->New(size); } 127 128 // Ideally, the delete operator should be private instead of 129 // public, but unfortunately the compiler sometimes synthesizes 130 // (unused) destructors for classes derived from ZoneObject, which 131 // require the operator to be visible. MSVC requires the delete 132 // operator to be public. 133 134 // ZoneObjects should never be deleted individually; use 135 // Zone::DeleteAll() to delete all zone objects in one go. 136 void operator delete(void*, size_t) { UNREACHABLE(); } 137 void operator delete(void* pointer, Zone* zone) { UNREACHABLE(); } 138 }; 139 140 141 // The ZoneScope is used to automatically call DeleteAll() on a 142 // Zone when the ZoneScope is destroyed (i.e. goes out of scope) 143 class ZoneScope final { 144 public: 145 explicit ZoneScope(Zone* zone) : zone_(zone) { } 146 ~ZoneScope() { zone_->DeleteAll(); } 147 148 Zone* zone() const { return zone_; } 149 150 private: 151 Zone* zone_; 152 }; 153 154 155 // The ZoneAllocationPolicy is used to specialize generic data 156 // structures to allocate themselves and their elements in the Zone. 157 class ZoneAllocationPolicy final { 158 public: 159 explicit ZoneAllocationPolicy(Zone* zone) : zone_(zone) { } 160 void* New(size_t size) { return zone()->New(size); } 161 static void Delete(void* pointer) {} 162 Zone* zone() const { return zone_; } 163 164 private: 165 Zone* zone_; 166 }; 167 168 169 // ZoneLists are growable lists with constant-time access to the 170 // elements. The list itself and all its elements are allocated in the 171 // Zone. ZoneLists cannot be deleted individually; you can delete all 172 // objects in the Zone by calling Zone::DeleteAll(). 173 template <typename T> 174 class ZoneList final : public List<T, ZoneAllocationPolicy> { 175 public: 176 // Construct a new ZoneList with the given capacity; the length is 177 // always zero. The capacity must be non-negative. 178 ZoneList(int capacity, Zone* zone) 179 : List<T, ZoneAllocationPolicy>(capacity, ZoneAllocationPolicy(zone)) { } 180 181 void* operator new(size_t size, Zone* zone) { return zone->New(size); } 182 183 // Construct a new ZoneList by copying the elements of the given ZoneList. 184 ZoneList(const ZoneList<T>& other, Zone* zone) 185 : List<T, ZoneAllocationPolicy>(other.length(), 186 ZoneAllocationPolicy(zone)) { 187 AddAll(other, zone); 188 } 189 190 // We add some convenience wrappers so that we can pass in a Zone 191 // instead of a (less convenient) ZoneAllocationPolicy. 192 void Add(const T& element, Zone* zone) { 193 List<T, ZoneAllocationPolicy>::Add(element, ZoneAllocationPolicy(zone)); 194 } 195 void AddAll(const List<T, ZoneAllocationPolicy>& other, Zone* zone) { 196 List<T, ZoneAllocationPolicy>::AddAll(other, ZoneAllocationPolicy(zone)); 197 } 198 void AddAll(const Vector<T>& other, Zone* zone) { 199 List<T, ZoneAllocationPolicy>::AddAll(other, ZoneAllocationPolicy(zone)); 200 } 201 void InsertAt(int index, const T& element, Zone* zone) { 202 List<T, ZoneAllocationPolicy>::InsertAt(index, element, 203 ZoneAllocationPolicy(zone)); 204 } 205 Vector<T> AddBlock(T value, int count, Zone* zone) { 206 return List<T, ZoneAllocationPolicy>::AddBlock(value, count, 207 ZoneAllocationPolicy(zone)); 208 } 209 void Allocate(int length, Zone* zone) { 210 List<T, ZoneAllocationPolicy>::Allocate(length, ZoneAllocationPolicy(zone)); 211 } 212 void Initialize(int capacity, Zone* zone) { 213 List<T, ZoneAllocationPolicy>::Initialize(capacity, 214 ZoneAllocationPolicy(zone)); 215 } 216 217 void operator delete(void* pointer) { UNREACHABLE(); } 218 void operator delete(void* pointer, Zone* zone) { UNREACHABLE(); } 219 }; 220 221 222 // A zone splay tree. The config type parameter encapsulates the 223 // different configurations of a concrete splay tree (see splay-tree.h). 224 // The tree itself and all its elements are allocated in the Zone. 225 template <typename Config> 226 class ZoneSplayTree final : public SplayTree<Config, ZoneAllocationPolicy> { 227 public: 228 explicit ZoneSplayTree(Zone* zone) 229 : SplayTree<Config, ZoneAllocationPolicy>(ZoneAllocationPolicy(zone)) {} 230 ~ZoneSplayTree() { 231 // Reset the root to avoid unneeded iteration over all tree nodes 232 // in the destructor. For a zone-allocated tree, nodes will be 233 // freed by the Zone. 234 SplayTree<Config, ZoneAllocationPolicy>::ResetRoot(); 235 } 236 237 void* operator new(size_t size, Zone* zone) { return zone->New(size); } 238 239 void operator delete(void* pointer) { UNREACHABLE(); } 240 void operator delete(void* pointer, Zone* zone) { UNREACHABLE(); } 241 }; 242 243 244 typedef TemplateHashMapImpl<ZoneAllocationPolicy> ZoneHashMap; 245 246 } // namespace internal 247 } // namespace v8 248 249 #endif // V8_ZONE_H_ 250