Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2008 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include "SkMathPriv.h"
     11 #include "SkPoint.h"
     12 
     13 void SkIPoint::rotateCW(SkIPoint* dst) const {
     14     SkASSERT(dst);
     15 
     16     // use a tmp in case this == dst
     17     int32_t tmp = fX;
     18     dst->fX = -fY;
     19     dst->fY = tmp;
     20 }
     21 
     22 void SkIPoint::rotateCCW(SkIPoint* dst) const {
     23     SkASSERT(dst);
     24 
     25     // use a tmp in case this == dst
     26     int32_t tmp = fX;
     27     dst->fX = fY;
     28     dst->fY = -tmp;
     29 }
     30 
     31 ///////////////////////////////////////////////////////////////////////////////
     32 
     33 void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) {
     34     SkASSERT(stride >= sizeof(SkPoint));
     35 
     36     ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l),
     37                                                    SkIntToScalar(t));
     38     ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l),
     39                                                    SkIntToScalar(b));
     40     ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r),
     41                                                    SkIntToScalar(b));
     42     ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r),
     43                                                    SkIntToScalar(t));
     44 }
     45 
     46 void SkPoint::rotateCW(SkPoint* dst) const {
     47     SkASSERT(dst);
     48 
     49     // use a tmp in case this == dst
     50     SkScalar tmp = fX;
     51     dst->fX = -fY;
     52     dst->fY = tmp;
     53 }
     54 
     55 void SkPoint::rotateCCW(SkPoint* dst) const {
     56     SkASSERT(dst);
     57 
     58     // use a tmp in case this == dst
     59     SkScalar tmp = fX;
     60     dst->fX = fY;
     61     dst->fY = -tmp;
     62 }
     63 
     64 void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
     65     SkASSERT(dst);
     66     dst->set(SkScalarMul(fX, scale), SkScalarMul(fY, scale));
     67 }
     68 
     69 bool SkPoint::normalize() {
     70     return this->setLength(fX, fY, SK_Scalar1);
     71 }
     72 
     73 bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
     74     return this->setLength(x, y, SK_Scalar1);
     75 }
     76 
     77 bool SkPoint::setLength(SkScalar length) {
     78     return this->setLength(fX, fY, length);
     79 }
     80 
     81 // Returns the square of the Euclidian distance to (dx,dy).
     82 static inline float getLengthSquared(float dx, float dy) {
     83     return dx * dx + dy * dy;
     84 }
     85 
     86 // Calculates the square of the Euclidian distance to (dx,dy) and stores it in
     87 // *lengthSquared.  Returns true if the distance is judged to be "nearly zero".
     88 //
     89 // This logic is encapsulated in a helper method to make it explicit that we
     90 // always perform this check in the same manner, to avoid inconsistencies
     91 // (see http://code.google.com/p/skia/issues/detail?id=560 ).
     92 static inline bool isLengthNearlyZero(float dx, float dy,
     93                                       float *lengthSquared) {
     94     *lengthSquared = getLengthSquared(dx, dy);
     95     return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
     96 }
     97 
     98 SkScalar SkPoint::Normalize(SkPoint* pt) {
     99     float x = pt->fX;
    100     float y = pt->fY;
    101     float mag2;
    102     if (isLengthNearlyZero(x, y, &mag2)) {
    103         pt->set(0, 0);
    104         return 0;
    105     }
    106 
    107     float mag, scale;
    108     if (SkScalarIsFinite(mag2)) {
    109         mag = sk_float_sqrt(mag2);
    110         scale = 1 / mag;
    111     } else {
    112         // our mag2 step overflowed to infinity, so use doubles instead.
    113         // much slower, but needed when x or y are very large, other wise we
    114         // divide by inf. and return (0,0) vector.
    115         double xx = x;
    116         double yy = y;
    117         double magmag = sqrt(xx * xx + yy * yy);
    118         mag = (float)magmag;
    119         // we perform the divide with the double magmag, to stay exactly the
    120         // same as setLength. It would be faster to perform the divide with
    121         // mag, but it is possible that mag has overflowed to inf. but still
    122         // have a non-zero value for scale (thanks to denormalized numbers).
    123         scale = (float)(1 / magmag);
    124     }
    125     pt->set(x * scale, y * scale);
    126     return mag;
    127 }
    128 
    129 SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
    130     float mag2 = dx * dx + dy * dy;
    131     if (SkScalarIsFinite(mag2)) {
    132         return sk_float_sqrt(mag2);
    133     } else {
    134         double xx = dx;
    135         double yy = dy;
    136         return (float)sqrt(xx * xx + yy * yy);
    137     }
    138 }
    139 
    140 /*
    141  *  We have to worry about 2 tricky conditions:
    142  *  1. underflow of mag2 (compared against nearlyzero^2)
    143  *  2. overflow of mag2 (compared w/ isfinite)
    144  *
    145  *  If we underflow, we return false. If we overflow, we compute again using
    146  *  doubles, which is much slower (3x in a desktop test) but will not overflow.
    147  */
    148 bool SkPoint::setLength(float x, float y, float length) {
    149     float mag2;
    150     if (isLengthNearlyZero(x, y, &mag2)) {
    151         this->set(0, 0);
    152         return false;
    153     }
    154 
    155     float scale;
    156     if (SkScalarIsFinite(mag2)) {
    157         scale = length / sk_float_sqrt(mag2);
    158     } else {
    159         // our mag2 step overflowed to infinity, so use doubles instead.
    160         // much slower, but needed when x or y are very large, other wise we
    161         // divide by inf. and return (0,0) vector.
    162         double xx = x;
    163         double yy = y;
    164     #ifdef SK_CPU_FLUSH_TO_ZERO
    165         // The iOS ARM processor discards small denormalized numbers to go faster.
    166         // Casting this to a float would cause the scale to go to zero. Keeping it
    167         // as a double for the multiply keeps the scale non-zero.
    168         double dscale = length / sqrt(xx * xx + yy * yy);
    169         fX = x * dscale;
    170         fY = y * dscale;
    171         return true;
    172     #else
    173         scale = (float)(length / sqrt(xx * xx + yy * yy));
    174     #endif
    175     }
    176     fX = x * scale;
    177     fY = y * scale;
    178     return true;
    179 }
    180 
    181 bool SkPoint::setLengthFast(float length) {
    182     return this->setLengthFast(fX, fY, length);
    183 }
    184 
    185 bool SkPoint::setLengthFast(float x, float y, float length) {
    186     float mag2;
    187     if (isLengthNearlyZero(x, y, &mag2)) {
    188         this->set(0, 0);
    189         return false;
    190     }
    191 
    192     float scale;
    193     if (SkScalarIsFinite(mag2)) {
    194         scale = length * sk_float_rsqrt(mag2);  // <--- this is the difference
    195     } else {
    196         // our mag2 step overflowed to infinity, so use doubles instead.
    197         // much slower, but needed when x or y are very large, other wise we
    198         // divide by inf. and return (0,0) vector.
    199         double xx = x;
    200         double yy = y;
    201         scale = (float)(length / sqrt(xx * xx + yy * yy));
    202     }
    203     fX = x * scale;
    204     fY = y * scale;
    205     return true;
    206 }
    207 
    208 
    209 ///////////////////////////////////////////////////////////////////////////////
    210 
    211 SkScalar SkPoint::distanceToLineBetweenSqd(const SkPoint& a,
    212                                            const SkPoint& b,
    213                                            Side* side) const {
    214 
    215     SkVector u = b - a;
    216     SkVector v = *this - a;
    217 
    218     SkScalar uLengthSqd = u.lengthSqd();
    219     SkScalar det = u.cross(v);
    220     if (side) {
    221         SkASSERT(-1 == SkPoint::kLeft_Side &&
    222                   0 == SkPoint::kOn_Side &&
    223                   1 == kRight_Side);
    224         *side = (Side) SkScalarSignAsInt(det);
    225     }
    226     SkScalar temp = det / uLengthSqd;
    227     temp *= det;
    228     return temp;
    229 }
    230 
    231 SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a,
    232                                                   const SkPoint& b) const {
    233     // See comments to distanceToLineBetweenSqd. If the projection of c onto
    234     // u is between a and b then this returns the same result as that
    235     // function. Otherwise, it returns the distance to the closer of a and
    236     // b. Let the projection of v onto u be v'.  There are three cases:
    237     //    1. v' points opposite to u. c is not between a and b and is closer
    238     //       to a than b.
    239     //    2. v' points along u and has magnitude less than y. c is between
    240     //       a and b and the distance to the segment is the same as distance
    241     //       to the line ab.
    242     //    3. v' points along u and has greater magnitude than u. c is not
    243     //       not between a and b and is closer to b than a.
    244     // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
    245     // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
    246     // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
    247     // avoid a sqrt to compute |u|.
    248 
    249     SkVector u = b - a;
    250     SkVector v = *this - a;
    251 
    252     SkScalar uLengthSqd = u.lengthSqd();
    253     SkScalar uDotV = SkPoint::DotProduct(u, v);
    254 
    255     if (uDotV <= 0) {
    256         return v.lengthSqd();
    257     } else if (uDotV > uLengthSqd) {
    258         return b.distanceToSqd(*this);
    259     } else {
    260         SkScalar det = u.cross(v);
    261         SkScalar temp = det / uLengthSqd;
    262         temp *= det;
    263         return temp;
    264     }
    265 }
    266