1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/CodeGen/ValueTypes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Support/RWMutex.h" 32 #include "llvm/Support/StringPool.h" 33 #include "llvm/Support/Threading.h" 34 using namespace llvm; 35 36 // Explicit instantiations of SymbolTableListTraits since some of the methods 37 // are not in the public header file... 38 template class llvm::SymbolTableListTraits<Argument>; 39 template class llvm::SymbolTableListTraits<BasicBlock>; 40 41 //===----------------------------------------------------------------------===// 42 // Argument Implementation 43 //===----------------------------------------------------------------------===// 44 45 void Argument::anchor() { } 46 47 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 48 : Value(Ty, Value::ArgumentVal) { 49 Parent = nullptr; 50 51 if (Par) 52 Par->getArgumentList().push_back(this); 53 setName(Name); 54 } 55 56 void Argument::setParent(Function *parent) { 57 Parent = parent; 58 } 59 60 /// getArgNo - Return the index of this formal argument in its containing 61 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 62 unsigned Argument::getArgNo() const { 63 const Function *F = getParent(); 64 assert(F && "Argument is not in a function"); 65 66 Function::const_arg_iterator AI = F->arg_begin(); 67 unsigned ArgIdx = 0; 68 for (; &*AI != this; ++AI) 69 ++ArgIdx; 70 71 return ArgIdx; 72 } 73 74 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 75 /// it in its containing function. Also returns true if at least one byte is 76 /// known to be dereferenceable and the pointer is in addrspace(0). 77 bool Argument::hasNonNullAttr() const { 78 if (!getType()->isPointerTy()) return false; 79 if (getParent()->getAttributes(). 80 hasAttribute(getArgNo()+1, Attribute::NonNull)) 81 return true; 82 else if (getDereferenceableBytes() > 0 && 83 getType()->getPointerAddressSpace() == 0) 84 return true; 85 return false; 86 } 87 88 /// hasByValAttr - Return true if this argument has the byval attribute on it 89 /// in its containing function. 90 bool Argument::hasByValAttr() const { 91 if (!getType()->isPointerTy()) return false; 92 return getParent()->getAttributes(). 93 hasAttribute(getArgNo()+1, Attribute::ByVal); 94 } 95 96 /// \brief Return true if this argument has the inalloca attribute on it in 97 /// its containing function. 98 bool Argument::hasInAllocaAttr() const { 99 if (!getType()->isPointerTy()) return false; 100 return getParent()->getAttributes(). 101 hasAttribute(getArgNo()+1, Attribute::InAlloca); 102 } 103 104 bool Argument::hasByValOrInAllocaAttr() const { 105 if (!getType()->isPointerTy()) return false; 106 AttributeSet Attrs = getParent()->getAttributes(); 107 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 108 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 109 } 110 111 unsigned Argument::getParamAlignment() const { 112 assert(getType()->isPointerTy() && "Only pointers have alignments"); 113 return getParent()->getParamAlignment(getArgNo()+1); 114 115 } 116 117 uint64_t Argument::getDereferenceableBytes() const { 118 assert(getType()->isPointerTy() && 119 "Only pointers have dereferenceable bytes"); 120 return getParent()->getDereferenceableBytes(getArgNo()+1); 121 } 122 123 uint64_t Argument::getDereferenceableOrNullBytes() const { 124 assert(getType()->isPointerTy() && 125 "Only pointers have dereferenceable bytes"); 126 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 127 } 128 129 /// hasNestAttr - Return true if this argument has the nest attribute on 130 /// it in its containing function. 131 bool Argument::hasNestAttr() const { 132 if (!getType()->isPointerTy()) return false; 133 return getParent()->getAttributes(). 134 hasAttribute(getArgNo()+1, Attribute::Nest); 135 } 136 137 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 138 /// it in its containing function. 139 bool Argument::hasNoAliasAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return getParent()->getAttributes(). 142 hasAttribute(getArgNo()+1, Attribute::NoAlias); 143 } 144 145 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 146 /// on it in its containing function. 147 bool Argument::hasNoCaptureAttr() const { 148 if (!getType()->isPointerTy()) return false; 149 return getParent()->getAttributes(). 150 hasAttribute(getArgNo()+1, Attribute::NoCapture); 151 } 152 153 /// hasSRetAttr - Return true if this argument has the sret attribute on 154 /// it in its containing function. 155 bool Argument::hasStructRetAttr() const { 156 if (!getType()->isPointerTy()) return false; 157 return getParent()->getAttributes(). 158 hasAttribute(getArgNo()+1, Attribute::StructRet); 159 } 160 161 /// hasReturnedAttr - Return true if this argument has the returned attribute on 162 /// it in its containing function. 163 bool Argument::hasReturnedAttr() const { 164 return getParent()->getAttributes(). 165 hasAttribute(getArgNo()+1, Attribute::Returned); 166 } 167 168 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 169 /// its containing function. 170 bool Argument::hasZExtAttr() const { 171 return getParent()->getAttributes(). 172 hasAttribute(getArgNo()+1, Attribute::ZExt); 173 } 174 175 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 176 /// containing function. 177 bool Argument::hasSExtAttr() const { 178 return getParent()->getAttributes(). 179 hasAttribute(getArgNo()+1, Attribute::SExt); 180 } 181 182 /// Return true if this argument has the readonly or readnone attribute on it 183 /// in its containing function. 184 bool Argument::onlyReadsMemory() const { 185 return getParent()->getAttributes(). 186 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 187 getParent()->getAttributes(). 188 hasAttribute(getArgNo()+1, Attribute::ReadNone); 189 } 190 191 /// addAttr - Add attributes to an argument. 192 void Argument::addAttr(AttributeSet AS) { 193 assert(AS.getNumSlots() <= 1 && 194 "Trying to add more than one attribute set to an argument!"); 195 AttrBuilder B(AS, AS.getSlotIndex(0)); 196 getParent()->addAttributes(getArgNo() + 1, 197 AttributeSet::get(Parent->getContext(), 198 getArgNo() + 1, B)); 199 } 200 201 /// removeAttr - Remove attributes from an argument. 202 void Argument::removeAttr(AttributeSet AS) { 203 assert(AS.getNumSlots() <= 1 && 204 "Trying to remove more than one attribute set from an argument!"); 205 AttrBuilder B(AS, AS.getSlotIndex(0)); 206 getParent()->removeAttributes(getArgNo() + 1, 207 AttributeSet::get(Parent->getContext(), 208 getArgNo() + 1, B)); 209 } 210 211 //===----------------------------------------------------------------------===// 212 // Helper Methods in Function 213 //===----------------------------------------------------------------------===// 214 215 bool Function::isMaterializable() const { 216 return getGlobalObjectSubClassData() & IsMaterializableBit; 217 } 218 219 void Function::setIsMaterializable(bool V) { 220 setGlobalObjectBit(IsMaterializableBit, V); 221 } 222 223 LLVMContext &Function::getContext() const { 224 return getType()->getContext(); 225 } 226 227 FunctionType *Function::getFunctionType() const { return Ty; } 228 229 bool Function::isVarArg() const { 230 return getFunctionType()->isVarArg(); 231 } 232 233 Type *Function::getReturnType() const { 234 return getFunctionType()->getReturnType(); 235 } 236 237 void Function::removeFromParent() { 238 getParent()->getFunctionList().remove(getIterator()); 239 } 240 241 void Function::eraseFromParent() { 242 getParent()->getFunctionList().erase(getIterator()); 243 } 244 245 //===----------------------------------------------------------------------===// 246 // Function Implementation 247 //===----------------------------------------------------------------------===// 248 249 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 250 Module *ParentModule) 251 : GlobalObject(Ty, Value::FunctionVal, 252 OperandTraits<Function>::op_begin(this), 0, Linkage, name), 253 Ty(Ty) { 254 assert(FunctionType::isValidReturnType(getReturnType()) && 255 "invalid return type"); 256 setGlobalObjectSubClassData(0); 257 SymTab = new ValueSymbolTable(); 258 259 // If the function has arguments, mark them as lazily built. 260 if (Ty->getNumParams()) 261 setValueSubclassData(1); // Set the "has lazy arguments" bit. 262 263 if (ParentModule) 264 ParentModule->getFunctionList().push_back(this); 265 266 // Ensure intrinsics have the right parameter attributes. 267 // Note, the IntID field will have been set in Value::setName if this function 268 // name is a valid intrinsic ID. 269 if (IntID) 270 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 271 } 272 273 Function::~Function() { 274 dropAllReferences(); // After this it is safe to delete instructions. 275 276 // Delete all of the method arguments and unlink from symbol table... 277 ArgumentList.clear(); 278 delete SymTab; 279 280 // Remove the function from the on-the-side GC table. 281 clearGC(); 282 } 283 284 void Function::BuildLazyArguments() const { 285 // Create the arguments vector, all arguments start out unnamed. 286 FunctionType *FT = getFunctionType(); 287 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 288 assert(!FT->getParamType(i)->isVoidTy() && 289 "Cannot have void typed arguments!"); 290 ArgumentList.push_back(new Argument(FT->getParamType(i))); 291 } 292 293 // Clear the lazy arguments bit. 294 unsigned SDC = getSubclassDataFromValue(); 295 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 296 } 297 298 size_t Function::arg_size() const { 299 return getFunctionType()->getNumParams(); 300 } 301 bool Function::arg_empty() const { 302 return getFunctionType()->getNumParams() == 0; 303 } 304 305 void Function::setParent(Module *parent) { 306 Parent = parent; 307 } 308 309 // dropAllReferences() - This function causes all the subinstructions to "let 310 // go" of all references that they are maintaining. This allows one to 311 // 'delete' a whole class at a time, even though there may be circular 312 // references... first all references are dropped, and all use counts go to 313 // zero. Then everything is deleted for real. Note that no operations are 314 // valid on an object that has "dropped all references", except operator 315 // delete. 316 // 317 void Function::dropAllReferences() { 318 setIsMaterializable(false); 319 320 for (iterator I = begin(), E = end(); I != E; ++I) 321 I->dropAllReferences(); 322 323 // Delete all basic blocks. They are now unused, except possibly by 324 // blockaddresses, but BasicBlock's destructor takes care of those. 325 while (!BasicBlocks.empty()) 326 BasicBlocks.begin()->eraseFromParent(); 327 328 // Drop uses of any optional data (real or placeholder). 329 if (getNumOperands()) { 330 User::dropAllReferences(); 331 setNumHungOffUseOperands(0); 332 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 333 } 334 335 // Metadata is stored in a side-table. 336 clearMetadata(); 337 } 338 339 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) { 340 AttributeSet PAL = getAttributes(); 341 PAL = PAL.addAttribute(getContext(), i, attr); 342 setAttributes(PAL); 343 } 344 345 void Function::addAttributes(unsigned i, AttributeSet attrs) { 346 AttributeSet PAL = getAttributes(); 347 PAL = PAL.addAttributes(getContext(), i, attrs); 348 setAttributes(PAL); 349 } 350 351 void Function::removeAttributes(unsigned i, AttributeSet attrs) { 352 AttributeSet PAL = getAttributes(); 353 PAL = PAL.removeAttributes(getContext(), i, attrs); 354 setAttributes(PAL); 355 } 356 357 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 358 AttributeSet PAL = getAttributes(); 359 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 360 setAttributes(PAL); 361 } 362 363 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 364 AttributeSet PAL = getAttributes(); 365 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 366 setAttributes(PAL); 367 } 368 369 // Maintain the GC name for each function in an on-the-side table. This saves 370 // allocating an additional word in Function for programs which do not use GC 371 // (i.e., most programs) at the cost of increased overhead for clients which do 372 // use GC. 373 static DenseMap<const Function*,PooledStringPtr> *GCNames; 374 static StringPool *GCNamePool; 375 static ManagedStatic<sys::SmartRWMutex<true> > GCLock; 376 377 bool Function::hasGC() const { 378 sys::SmartScopedReader<true> Reader(*GCLock); 379 return GCNames && GCNames->count(this); 380 } 381 382 const char *Function::getGC() const { 383 assert(hasGC() && "Function has no collector"); 384 sys::SmartScopedReader<true> Reader(*GCLock); 385 return *(*GCNames)[this]; 386 } 387 388 void Function::setGC(const char *Str) { 389 sys::SmartScopedWriter<true> Writer(*GCLock); 390 if (!GCNamePool) 391 GCNamePool = new StringPool(); 392 if (!GCNames) 393 GCNames = new DenseMap<const Function*,PooledStringPtr>(); 394 (*GCNames)[this] = GCNamePool->intern(Str); 395 } 396 397 void Function::clearGC() { 398 sys::SmartScopedWriter<true> Writer(*GCLock); 399 if (GCNames) { 400 GCNames->erase(this); 401 if (GCNames->empty()) { 402 delete GCNames; 403 GCNames = nullptr; 404 if (GCNamePool->empty()) { 405 delete GCNamePool; 406 GCNamePool = nullptr; 407 } 408 } 409 } 410 } 411 412 /// Copy all additional attributes (those not needed to create a Function) from 413 /// the Function Src to this one. 414 void Function::copyAttributesFrom(const GlobalValue *Src) { 415 GlobalObject::copyAttributesFrom(Src); 416 const Function *SrcF = dyn_cast<Function>(Src); 417 if (!SrcF) 418 return; 419 420 setCallingConv(SrcF->getCallingConv()); 421 setAttributes(SrcF->getAttributes()); 422 if (SrcF->hasGC()) 423 setGC(SrcF->getGC()); 424 else 425 clearGC(); 426 if (SrcF->hasPersonalityFn()) 427 setPersonalityFn(SrcF->getPersonalityFn()); 428 if (SrcF->hasPrefixData()) 429 setPrefixData(SrcF->getPrefixData()); 430 if (SrcF->hasPrologueData()) 431 setPrologueData(SrcF->getPrologueData()); 432 } 433 434 /// \brief This does the actual lookup of an intrinsic ID which 435 /// matches the given function name. 436 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) { 437 unsigned Len = ValName->getKeyLength(); 438 const char *Name = ValName->getKeyData(); 439 440 #define GET_FUNCTION_RECOGNIZER 441 #include "llvm/IR/Intrinsics.gen" 442 #undef GET_FUNCTION_RECOGNIZER 443 444 return Intrinsic::not_intrinsic; 445 } 446 447 void Function::recalculateIntrinsicID() { 448 const ValueName *ValName = this->getValueName(); 449 if (!ValName || !isIntrinsic()) { 450 IntID = Intrinsic::not_intrinsic; 451 return; 452 } 453 IntID = lookupIntrinsicID(ValName); 454 } 455 456 /// Returns a stable mangling for the type specified for use in the name 457 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 458 /// of named types is simply their name. Manglings for unnamed types consist 459 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 460 /// combined with the mangling of their component types. A vararg function 461 /// type will have a suffix of 'vararg'. Since function types can contain 462 /// other function types, we close a function type mangling with suffix 'f' 463 /// which can't be confused with it's prefix. This ensures we don't have 464 /// collisions between two unrelated function types. Otherwise, you might 465 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 466 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 467 /// cases) fall back to the MVT codepath, where they could be mangled to 468 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 469 /// everything. 470 static std::string getMangledTypeStr(Type* Ty) { 471 std::string Result; 472 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 473 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 474 getMangledTypeStr(PTyp->getElementType()); 475 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 476 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 477 getMangledTypeStr(ATyp->getElementType()); 478 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 479 assert(!STyp->isLiteral() && "TODO: implement literal types"); 480 Result += STyp->getName(); 481 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 482 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 483 for (size_t i = 0; i < FT->getNumParams(); i++) 484 Result += getMangledTypeStr(FT->getParamType(i)); 485 if (FT->isVarArg()) 486 Result += "vararg"; 487 // Ensure nested function types are distinguishable. 488 Result += "f"; 489 } else if (isa<VectorType>(Ty)) 490 Result += "v" + utostr(Ty->getVectorNumElements()) + 491 getMangledTypeStr(Ty->getVectorElementType()); 492 else if (Ty) 493 Result += EVT::getEVT(Ty).getEVTString(); 494 return Result; 495 } 496 497 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 498 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 499 static const char * const Table[] = { 500 "not_intrinsic", 501 #define GET_INTRINSIC_NAME_TABLE 502 #include "llvm/IR/Intrinsics.gen" 503 #undef GET_INTRINSIC_NAME_TABLE 504 }; 505 if (Tys.empty()) 506 return Table[id]; 507 std::string Result(Table[id]); 508 for (unsigned i = 0; i < Tys.size(); ++i) { 509 Result += "." + getMangledTypeStr(Tys[i]); 510 } 511 return Result; 512 } 513 514 515 /// IIT_Info - These are enumerators that describe the entries returned by the 516 /// getIntrinsicInfoTableEntries function. 517 /// 518 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 519 enum IIT_Info { 520 // Common values should be encoded with 0-15. 521 IIT_Done = 0, 522 IIT_I1 = 1, 523 IIT_I8 = 2, 524 IIT_I16 = 3, 525 IIT_I32 = 4, 526 IIT_I64 = 5, 527 IIT_F16 = 6, 528 IIT_F32 = 7, 529 IIT_F64 = 8, 530 IIT_V2 = 9, 531 IIT_V4 = 10, 532 IIT_V8 = 11, 533 IIT_V16 = 12, 534 IIT_V32 = 13, 535 IIT_PTR = 14, 536 IIT_ARG = 15, 537 538 // Values from 16+ are only encodable with the inefficient encoding. 539 IIT_V64 = 16, 540 IIT_MMX = 17, 541 IIT_TOKEN = 18, 542 IIT_METADATA = 19, 543 IIT_EMPTYSTRUCT = 20, 544 IIT_STRUCT2 = 21, 545 IIT_STRUCT3 = 22, 546 IIT_STRUCT4 = 23, 547 IIT_STRUCT5 = 24, 548 IIT_EXTEND_ARG = 25, 549 IIT_TRUNC_ARG = 26, 550 IIT_ANYPTR = 27, 551 IIT_V1 = 28, 552 IIT_VARARG = 29, 553 IIT_HALF_VEC_ARG = 30, 554 IIT_SAME_VEC_WIDTH_ARG = 31, 555 IIT_PTR_TO_ARG = 32, 556 IIT_VEC_OF_PTRS_TO_ELT = 33, 557 IIT_I128 = 34, 558 IIT_V512 = 35, 559 IIT_V1024 = 36 560 }; 561 562 563 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 564 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 565 IIT_Info Info = IIT_Info(Infos[NextElt++]); 566 unsigned StructElts = 2; 567 using namespace Intrinsic; 568 569 switch (Info) { 570 case IIT_Done: 571 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 572 return; 573 case IIT_VARARG: 574 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 575 return; 576 case IIT_MMX: 577 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 578 return; 579 case IIT_TOKEN: 580 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 581 return; 582 case IIT_METADATA: 583 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 584 return; 585 case IIT_F16: 586 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 587 return; 588 case IIT_F32: 589 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 590 return; 591 case IIT_F64: 592 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 593 return; 594 case IIT_I1: 595 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 596 return; 597 case IIT_I8: 598 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 599 return; 600 case IIT_I16: 601 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 602 return; 603 case IIT_I32: 604 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 605 return; 606 case IIT_I64: 607 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 608 return; 609 case IIT_I128: 610 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 611 return; 612 case IIT_V1: 613 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 614 DecodeIITType(NextElt, Infos, OutputTable); 615 return; 616 case IIT_V2: 617 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 618 DecodeIITType(NextElt, Infos, OutputTable); 619 return; 620 case IIT_V4: 621 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 622 DecodeIITType(NextElt, Infos, OutputTable); 623 return; 624 case IIT_V8: 625 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 626 DecodeIITType(NextElt, Infos, OutputTable); 627 return; 628 case IIT_V16: 629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 630 DecodeIITType(NextElt, Infos, OutputTable); 631 return; 632 case IIT_V32: 633 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 634 DecodeIITType(NextElt, Infos, OutputTable); 635 return; 636 case IIT_V64: 637 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 638 DecodeIITType(NextElt, Infos, OutputTable); 639 return; 640 case IIT_V512: 641 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 642 DecodeIITType(NextElt, Infos, OutputTable); 643 return; 644 case IIT_V1024: 645 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 646 DecodeIITType(NextElt, Infos, OutputTable); 647 return; 648 case IIT_PTR: 649 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 650 DecodeIITType(NextElt, Infos, OutputTable); 651 return; 652 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 653 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 654 Infos[NextElt++])); 655 DecodeIITType(NextElt, Infos, OutputTable); 656 return; 657 } 658 case IIT_ARG: { 659 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 660 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 661 return; 662 } 663 case IIT_EXTEND_ARG: { 664 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 665 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 666 ArgInfo)); 667 return; 668 } 669 case IIT_TRUNC_ARG: { 670 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 671 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 672 ArgInfo)); 673 return; 674 } 675 case IIT_HALF_VEC_ARG: { 676 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 677 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 678 ArgInfo)); 679 return; 680 } 681 case IIT_SAME_VEC_WIDTH_ARG: { 682 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 683 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 684 ArgInfo)); 685 return; 686 } 687 case IIT_PTR_TO_ARG: { 688 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 689 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 690 ArgInfo)); 691 return; 692 } 693 case IIT_VEC_OF_PTRS_TO_ELT: { 694 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 695 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 696 ArgInfo)); 697 return; 698 } 699 case IIT_EMPTYSTRUCT: 700 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 701 return; 702 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 703 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 704 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 705 case IIT_STRUCT2: { 706 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 707 708 for (unsigned i = 0; i != StructElts; ++i) 709 DecodeIITType(NextElt, Infos, OutputTable); 710 return; 711 } 712 } 713 llvm_unreachable("unhandled"); 714 } 715 716 717 #define GET_INTRINSIC_GENERATOR_GLOBAL 718 #include "llvm/IR/Intrinsics.gen" 719 #undef GET_INTRINSIC_GENERATOR_GLOBAL 720 721 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 722 SmallVectorImpl<IITDescriptor> &T){ 723 // Check to see if the intrinsic's type was expressible by the table. 724 unsigned TableVal = IIT_Table[id-1]; 725 726 // Decode the TableVal into an array of IITValues. 727 SmallVector<unsigned char, 8> IITValues; 728 ArrayRef<unsigned char> IITEntries; 729 unsigned NextElt = 0; 730 if ((TableVal >> 31) != 0) { 731 // This is an offset into the IIT_LongEncodingTable. 732 IITEntries = IIT_LongEncodingTable; 733 734 // Strip sentinel bit. 735 NextElt = (TableVal << 1) >> 1; 736 } else { 737 // Decode the TableVal into an array of IITValues. If the entry was encoded 738 // into a single word in the table itself, decode it now. 739 do { 740 IITValues.push_back(TableVal & 0xF); 741 TableVal >>= 4; 742 } while (TableVal); 743 744 IITEntries = IITValues; 745 NextElt = 0; 746 } 747 748 // Okay, decode the table into the output vector of IITDescriptors. 749 DecodeIITType(NextElt, IITEntries, T); 750 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 751 DecodeIITType(NextElt, IITEntries, T); 752 } 753 754 755 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 756 ArrayRef<Type*> Tys, LLVMContext &Context) { 757 using namespace Intrinsic; 758 IITDescriptor D = Infos.front(); 759 Infos = Infos.slice(1); 760 761 switch (D.Kind) { 762 case IITDescriptor::Void: return Type::getVoidTy(Context); 763 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 764 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 765 case IITDescriptor::Token: return Type::getTokenTy(Context); 766 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 767 case IITDescriptor::Half: return Type::getHalfTy(Context); 768 case IITDescriptor::Float: return Type::getFloatTy(Context); 769 case IITDescriptor::Double: return Type::getDoubleTy(Context); 770 771 case IITDescriptor::Integer: 772 return IntegerType::get(Context, D.Integer_Width); 773 case IITDescriptor::Vector: 774 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 775 case IITDescriptor::Pointer: 776 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 777 D.Pointer_AddressSpace); 778 case IITDescriptor::Struct: { 779 Type *Elts[5]; 780 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 781 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 782 Elts[i] = DecodeFixedType(Infos, Tys, Context); 783 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 784 } 785 786 case IITDescriptor::Argument: 787 return Tys[D.getArgumentNumber()]; 788 case IITDescriptor::ExtendArgument: { 789 Type *Ty = Tys[D.getArgumentNumber()]; 790 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 791 return VectorType::getExtendedElementVectorType(VTy); 792 793 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 794 } 795 case IITDescriptor::TruncArgument: { 796 Type *Ty = Tys[D.getArgumentNumber()]; 797 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 798 return VectorType::getTruncatedElementVectorType(VTy); 799 800 IntegerType *ITy = cast<IntegerType>(Ty); 801 assert(ITy->getBitWidth() % 2 == 0); 802 return IntegerType::get(Context, ITy->getBitWidth() / 2); 803 } 804 case IITDescriptor::HalfVecArgument: 805 return VectorType::getHalfElementsVectorType(cast<VectorType>( 806 Tys[D.getArgumentNumber()])); 807 case IITDescriptor::SameVecWidthArgument: { 808 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 809 Type *Ty = Tys[D.getArgumentNumber()]; 810 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 811 return VectorType::get(EltTy, VTy->getNumElements()); 812 } 813 llvm_unreachable("unhandled"); 814 } 815 case IITDescriptor::PtrToArgument: { 816 Type *Ty = Tys[D.getArgumentNumber()]; 817 return PointerType::getUnqual(Ty); 818 } 819 case IITDescriptor::VecOfPtrsToElt: { 820 Type *Ty = Tys[D.getArgumentNumber()]; 821 VectorType *VTy = dyn_cast<VectorType>(Ty); 822 if (!VTy) 823 llvm_unreachable("Expected an argument of Vector Type"); 824 Type *EltTy = VTy->getVectorElementType(); 825 return VectorType::get(PointerType::getUnqual(EltTy), 826 VTy->getNumElements()); 827 } 828 } 829 llvm_unreachable("unhandled"); 830 } 831 832 833 834 FunctionType *Intrinsic::getType(LLVMContext &Context, 835 ID id, ArrayRef<Type*> Tys) { 836 SmallVector<IITDescriptor, 8> Table; 837 getIntrinsicInfoTableEntries(id, Table); 838 839 ArrayRef<IITDescriptor> TableRef = Table; 840 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 841 842 SmallVector<Type*, 8> ArgTys; 843 while (!TableRef.empty()) 844 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 845 846 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 847 // If we see void type as the type of the last argument, it is vararg intrinsic 848 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 849 ArgTys.pop_back(); 850 return FunctionType::get(ResultTy, ArgTys, true); 851 } 852 return FunctionType::get(ResultTy, ArgTys, false); 853 } 854 855 bool Intrinsic::isOverloaded(ID id) { 856 #define GET_INTRINSIC_OVERLOAD_TABLE 857 #include "llvm/IR/Intrinsics.gen" 858 #undef GET_INTRINSIC_OVERLOAD_TABLE 859 } 860 861 bool Intrinsic::isLeaf(ID id) { 862 switch (id) { 863 default: 864 return true; 865 866 case Intrinsic::experimental_gc_statepoint: 867 case Intrinsic::experimental_patchpoint_void: 868 case Intrinsic::experimental_patchpoint_i64: 869 return false; 870 } 871 } 872 873 /// This defines the "Intrinsic::getAttributes(ID id)" method. 874 #define GET_INTRINSIC_ATTRIBUTES 875 #include "llvm/IR/Intrinsics.gen" 876 #undef GET_INTRINSIC_ATTRIBUTES 877 878 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 879 // There can never be multiple globals with the same name of different types, 880 // because intrinsics must be a specific type. 881 return 882 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 883 getType(M->getContext(), id, Tys))); 884 } 885 886 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 887 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 888 #include "llvm/IR/Intrinsics.gen" 889 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 890 891 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 892 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 893 #include "llvm/IR/Intrinsics.gen" 894 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 895 896 /// hasAddressTaken - returns true if there are any uses of this function 897 /// other than direct calls or invokes to it. 898 bool Function::hasAddressTaken(const User* *PutOffender) const { 899 for (const Use &U : uses()) { 900 const User *FU = U.getUser(); 901 if (isa<BlockAddress>(FU)) 902 continue; 903 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) 904 return PutOffender ? (*PutOffender = FU, true) : true; 905 ImmutableCallSite CS(cast<Instruction>(FU)); 906 if (!CS.isCallee(&U)) 907 return PutOffender ? (*PutOffender = FU, true) : true; 908 } 909 return false; 910 } 911 912 bool Function::isDefTriviallyDead() const { 913 // Check the linkage 914 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 915 !hasAvailableExternallyLinkage()) 916 return false; 917 918 // Check if the function is used by anything other than a blockaddress. 919 for (const User *U : users()) 920 if (!isa<BlockAddress>(U)) 921 return false; 922 923 return true; 924 } 925 926 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 927 /// setjmp or other function that gcc recognizes as "returning twice". 928 bool Function::callsFunctionThatReturnsTwice() const { 929 for (const_inst_iterator 930 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 931 ImmutableCallSite CS(&*I); 932 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 933 return true; 934 } 935 936 return false; 937 } 938 939 Constant *Function::getPersonalityFn() const { 940 assert(hasPersonalityFn() && getNumOperands()); 941 return cast<Constant>(Op<0>()); 942 } 943 944 void Function::setPersonalityFn(Constant *Fn) { 945 if (Fn) 946 setHungoffOperand<0>(Fn); 947 setValueSubclassDataBit(3, Fn != nullptr); 948 } 949 950 Constant *Function::getPrefixData() const { 951 assert(hasPrefixData() && getNumOperands()); 952 return cast<Constant>(Op<1>()); 953 } 954 955 void Function::setPrefixData(Constant *PrefixData) { 956 if (PrefixData) 957 setHungoffOperand<1>(PrefixData); 958 setValueSubclassDataBit(1, PrefixData != nullptr); 959 } 960 961 Constant *Function::getPrologueData() const { 962 assert(hasPrologueData() && getNumOperands()); 963 return cast<Constant>(Op<2>()); 964 } 965 966 void Function::setPrologueData(Constant *PrologueData) { 967 if (PrologueData) 968 setHungoffOperand<2>(PrologueData); 969 setValueSubclassDataBit(2, PrologueData != nullptr); 970 } 971 972 void Function::allocHungoffUselist() { 973 // If we've already allocated a uselist, stop here. 974 if (getNumOperands()) 975 return; 976 977 allocHungoffUses(3, /*IsPhi=*/ false); 978 setNumHungOffUseOperands(3); 979 980 // Initialize the uselist with placeholder operands to allow traversal. 981 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 982 Op<0>().set(CPN); 983 Op<1>().set(CPN); 984 Op<2>().set(CPN); 985 } 986 987 template <int Idx> 988 void Function::setHungoffOperand(Constant *C) { 989 assert(C && "Cannot set hungoff operand to nullptr"); 990 allocHungoffUselist(); 991 Op<Idx>().set(C); 992 } 993 994 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 995 assert(Bit < 16 && "SubclassData contains only 16 bits"); 996 if (On) 997 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 998 else 999 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1000 } 1001 1002 void Function::setEntryCount(uint64_t Count) { 1003 MDBuilder MDB(getContext()); 1004 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1005 } 1006 1007 Optional<uint64_t> Function::getEntryCount() const { 1008 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1009 if (MD && MD->getOperand(0)) 1010 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1011 if (MDS->getString().equals("function_entry_count")) { 1012 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1013 return CI->getValue().getZExtValue(); 1014 } 1015 return None; 1016 } 1017