Home | History | Annotate | Download | only in lang
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
      4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      5  *
      6  * This code is free software; you can redistribute it and/or modify it
      7  * under the terms of the GNU General Public License version 2 only, as
      8  * published by the Free Software Foundation.  Oracle designates this
      9  * particular file as subject to the "Classpath" exception as provided
     10  * by Oracle in the LICENSE file that accompanied this code.
     11  *
     12  * This code is distributed in the hope that it will be useful, but WITHOUT
     13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     15  * version 2 for more details (a copy is included in the LICENSE file that
     16  * accompanied this code).
     17  *
     18  * You should have received a copy of the GNU General Public License version
     19  * 2 along with this work; if not, write to the Free Software Foundation,
     20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     21  *
     22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     23  * or visit www.oracle.com if you need additional information or have any
     24  * questions.
     25  */
     26 
     27 package java.lang;
     28 import java.util.Random;
     29 import sun.misc.FloatConsts;
     30 import sun.misc.DoubleConsts;
     31 
     32 /**
     33  * The class {@code Math} contains methods for performing basic
     34  * numeric operations such as the elementary exponential, logarithm,
     35  * square root, and trigonometric functions.
     36  *
     37  * <p>Unlike some of the numeric methods of class
     38  * {@code StrictMath}, all implementations of the equivalent
     39  * functions of class {@code Math} are not defined to return the
     40  * bit-for-bit same results.  This relaxation permits
     41  * better-performing implementations where strict reproducibility is
     42  * not required.
     43  *
     44  * <p>By default many of the {@code Math} methods simply call
     45  * the equivalent method in {@code StrictMath} for their
     46  * implementation.  Code generators are encouraged to use
     47  * platform-specific native libraries or microprocessor instructions,
     48  * where available, to provide higher-performance implementations of
     49  * {@code Math} methods.  Such higher-performance
     50  * implementations still must conform to the specification for
     51  * {@code Math}.
     52  *
     53  * <p>The quality of implementation specifications concern two
     54  * properties, accuracy of the returned result and monotonicity of the
     55  * method.  Accuracy of the floating-point {@code Math} methods
     56  * is measured in terms of <i>ulps</i>, units in the last place.  For
     57  * a given floating-point format, an ulp of a specific real number
     58  * value is the distance between the two floating-point values
     59  * bracketing that numerical value.  When discussing the accuracy of a
     60  * method as a whole rather than at a specific argument, the number of
     61  * ulps cited is for the worst-case error at any argument.  If a
     62  * method always has an error less than 0.5 ulps, the method always
     63  * returns the floating-point number nearest the exact result; such a
     64  * method is <i>correctly rounded</i>.  A correctly rounded method is
     65  * generally the best a floating-point approximation can be; however,
     66  * it is impractical for many floating-point methods to be correctly
     67  * rounded.  Instead, for the {@code Math} class, a larger error
     68  * bound of 1 or 2 ulps is allowed for certain methods.  Informally,
     69  * with a 1 ulp error bound, when the exact result is a representable
     70  * number, the exact result should be returned as the computed result;
     71  * otherwise, either of the two floating-point values which bracket
     72  * the exact result may be returned.  For exact results large in
     73  * magnitude, one of the endpoints of the bracket may be infinite.
     74  * Besides accuracy at individual arguments, maintaining proper
     75  * relations between the method at different arguments is also
     76  * important.  Therefore, most methods with more than 0.5 ulp errors
     77  * are required to be <i>semi-monotonic</i>: whenever the mathematical
     78  * function is non-decreasing, so is the floating-point approximation,
     79  * likewise, whenever the mathematical function is non-increasing, so
     80  * is the floating-point approximation.  Not all approximations that
     81  * have 1 ulp accuracy will automatically meet the monotonicity
     82  * requirements.
     83  *
     84  * @author  unascribed
     85  * @author  Joseph D. Darcy
     86  * @since   JDK1.0
     87  */
     88 
     89 public final class Math {
     90 
     91     /**
     92      * Don't let anyone instantiate this class.
     93      */
     94     private Math() {}
     95 
     96     /**
     97      * The {@code double} value that is closer than any other to
     98      * <i>e</i>, the base of the natural logarithms.
     99      */
    100     public static final double E = 2.7182818284590452354;
    101 
    102     /**
    103      * The {@code double} value that is closer than any other to
    104      * <i>pi</i>, the ratio of the circumference of a circle to its
    105      * diameter.
    106      */
    107     public static final double PI = 3.14159265358979323846;
    108 
    109     /**
    110      * Returns the trigonometric sine of an angle.  Special cases:
    111      * <ul><li>If the argument is NaN or an infinity, then the
    112      * result is NaN.
    113      * <li>If the argument is zero, then the result is a zero with the
    114      * same sign as the argument.</ul>
    115      *
    116      * <p>The computed result must be within 1 ulp of the exact result.
    117      * Results must be semi-monotonic.
    118      *
    119      * @param   a   an angle, in radians.
    120      * @return  the sine of the argument.
    121      */
    122     public static native double sin(double a);
    123 
    124     /**
    125      * Returns the trigonometric cosine of an angle. Special cases:
    126      * <ul><li>If the argument is NaN or an infinity, then the
    127      * result is NaN.</ul>
    128      *
    129      * <p>The computed result must be within 1 ulp of the exact result.
    130      * Results must be semi-monotonic.
    131      *
    132      * @param   a   an angle, in radians.
    133      * @return  the cosine of the argument.
    134      */
    135     public static native double cos(double a);
    136 
    137     /**
    138      * Returns the trigonometric tangent of an angle.  Special cases:
    139      * <ul><li>If the argument is NaN or an infinity, then the result
    140      * is NaN.
    141      * <li>If the argument is zero, then the result is a zero with the
    142      * same sign as the argument.</ul>
    143      *
    144      * <p>The computed result must be within 1 ulp of the exact result.
    145      * Results must be semi-monotonic.
    146      *
    147      * @param   a   an angle, in radians.
    148      * @return  the tangent of the argument.
    149      */
    150     public static native double tan(double a);
    151 
    152     /**
    153      * Returns the arc sine of a value; the returned angle is in the
    154      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
    155      * <ul><li>If the argument is NaN or its absolute value is greater
    156      * than 1, then the result is NaN.
    157      * <li>If the argument is zero, then the result is a zero with the
    158      * same sign as the argument.</ul>
    159      *
    160      * <p>The computed result must be within 1 ulp of the exact result.
    161      * Results must be semi-monotonic.
    162      *
    163      * @param   a   the value whose arc sine is to be returned.
    164      * @return  the arc sine of the argument.
    165      */
    166     public static native double asin(double a);
    167 
    168     /**
    169      * Returns the arc cosine of a value; the returned angle is in the
    170      * range 0.0 through <i>pi</i>.  Special case:
    171      * <ul><li>If the argument is NaN or its absolute value is greater
    172      * than 1, then the result is NaN.</ul>
    173      *
    174      * <p>The computed result must be within 1 ulp of the exact result.
    175      * Results must be semi-monotonic.
    176      *
    177      * @param   a   the value whose arc cosine is to be returned.
    178      * @return  the arc cosine of the argument.
    179      */
    180     public static native double acos(double a);
    181 
    182     /**
    183      * Returns the arc tangent of a value; the returned angle is in the
    184      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
    185      * <ul><li>If the argument is NaN, then the result is NaN.
    186      * <li>If the argument is zero, then the result is a zero with the
    187      * same sign as the argument.</ul>
    188      *
    189      * <p>The computed result must be within 1 ulp of the exact result.
    190      * Results must be semi-monotonic.
    191      *
    192      * @param   a   the value whose arc tangent is to be returned.
    193      * @return  the arc tangent of the argument.
    194      */
    195     public static native double atan(double a);
    196 
    197     /**
    198      * Converts an angle measured in degrees to an approximately
    199      * equivalent angle measured in radians.  The conversion from
    200      * degrees to radians is generally inexact.
    201      *
    202      * @param   angdeg   an angle, in degrees
    203      * @return  the measurement of the angle {@code angdeg}
    204      *          in radians.
    205      * @since   1.2
    206      */
    207     public static double toRadians(double angdeg) {
    208         return angdeg / 180.0 * PI;
    209     }
    210 
    211     /**
    212      * Converts an angle measured in radians to an approximately
    213      * equivalent angle measured in degrees.  The conversion from
    214      * radians to degrees is generally inexact; users should
    215      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
    216      * equal {@code 0.0}.
    217      *
    218      * @param   angrad   an angle, in radians
    219      * @return  the measurement of the angle {@code angrad}
    220      *          in degrees.
    221      * @since   1.2
    222      */
    223     public static double toDegrees(double angrad) {
    224         return angrad * 180.0 / PI;
    225     }
    226 
    227     /**
    228      * Returns Euler's number <i>e</i> raised to the power of a
    229      * {@code double} value.  Special cases:
    230      * <ul><li>If the argument is NaN, the result is NaN.
    231      * <li>If the argument is positive infinity, then the result is
    232      * positive infinity.
    233      * <li>If the argument is negative infinity, then the result is
    234      * positive zero.</ul>
    235      *
    236      * <p>The computed result must be within 1 ulp of the exact result.
    237      * Results must be semi-monotonic.
    238      *
    239      * @param   a   the exponent to raise <i>e</i> to.
    240      * @return  the value <i>e</i><sup>{@code a}</sup>,
    241      *          where <i>e</i> is the base of the natural logarithms.
    242      */
    243     public static native double exp(double a);
    244 
    245     /**
    246      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
    247      * value.  Special cases:
    248      * <ul><li>If the argument is NaN or less than zero, then the result
    249      * is NaN.
    250      * <li>If the argument is positive infinity, then the result is
    251      * positive infinity.
    252      * <li>If the argument is positive zero or negative zero, then the
    253      * result is negative infinity.</ul>
    254      *
    255      * <p>The computed result must be within 1 ulp of the exact result.
    256      * Results must be semi-monotonic.
    257      *
    258      * @param   a   a value
    259      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
    260      *          {@code a}.
    261      */
    262     public static native double log(double a);
    263 
    264     /**
    265      * Returns the base 10 logarithm of a {@code double} value.
    266      * Special cases:
    267      *
    268      * <ul><li>If the argument is NaN or less than zero, then the result
    269      * is NaN.
    270      * <li>If the argument is positive infinity, then the result is
    271      * positive infinity.
    272      * <li>If the argument is positive zero or negative zero, then the
    273      * result is negative infinity.
    274      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
    275      * integer <i>n</i>, then the result is <i>n</i>.
    276      * </ul>
    277      *
    278      * <p>The computed result must be within 1 ulp of the exact result.
    279      * Results must be semi-monotonic.
    280      *
    281      * @param   a   a value
    282      * @return  the base 10 logarithm of  {@code a}.
    283      * @since 1.5
    284      */
    285     public static native double log10(double a);
    286 
    287     /**
    288      * Returns the correctly rounded positive square root of a
    289      * {@code double} value.
    290      * Special cases:
    291      * <ul><li>If the argument is NaN or less than zero, then the result
    292      * is NaN.
    293      * <li>If the argument is positive infinity, then the result is positive
    294      * infinity.
    295      * <li>If the argument is positive zero or negative zero, then the
    296      * result is the same as the argument.</ul>
    297      * Otherwise, the result is the {@code double} value closest to
    298      * the true mathematical square root of the argument value.
    299      *
    300      * @param   a   a value.
    301      * @return  the positive square root of {@code a}.
    302      *          If the argument is NaN or less than zero, the result is NaN.
    303      */
    304     public static native double sqrt(double a);
    305 
    306 
    307     /**
    308      * Returns the cube root of a {@code double} value.  For
    309      * positive finite {@code x}, {@code cbrt(-x) ==
    310      * -cbrt(x)}; that is, the cube root of a negative value is
    311      * the negative of the cube root of that value's magnitude.
    312      *
    313      * Special cases:
    314      *
    315      * <ul>
    316      *
    317      * <li>If the argument is NaN, then the result is NaN.
    318      *
    319      * <li>If the argument is infinite, then the result is an infinity
    320      * with the same sign as the argument.
    321      *
    322      * <li>If the argument is zero, then the result is a zero with the
    323      * same sign as the argument.
    324      *
    325      * </ul>
    326      *
    327      * <p>The computed result must be within 1 ulp of the exact result.
    328      *
    329      * @param   a   a value.
    330      * @return  the cube root of {@code a}.
    331      * @since 1.5
    332      */
    333     public static native double cbrt(double a);
    334 
    335     /**
    336      * Computes the remainder operation on two arguments as prescribed
    337      * by the IEEE 754 standard.
    338      * The remainder value is mathematically equal to
    339      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
    340      * where <i>n</i> is the mathematical integer closest to the exact
    341      * mathematical value of the quotient {@code f1/f2}, and if two
    342      * mathematical integers are equally close to {@code f1/f2},
    343      * then <i>n</i> is the integer that is even. If the remainder is
    344      * zero, its sign is the same as the sign of the first argument.
    345      * Special cases:
    346      * <ul><li>If either argument is NaN, or the first argument is infinite,
    347      * or the second argument is positive zero or negative zero, then the
    348      * result is NaN.
    349      * <li>If the first argument is finite and the second argument is
    350      * infinite, then the result is the same as the first argument.</ul>
    351      *
    352      * @param   f1   the dividend.
    353      * @param   f2   the divisor.
    354      * @return  the remainder when {@code f1} is divided by
    355      *          {@code f2}.
    356      */
    357     public static native double IEEEremainder(double f1, double f2);
    358 
    359     /**
    360      * Returns the smallest (closest to negative infinity)
    361      * {@code double} value that is greater than or equal to the
    362      * argument and is equal to a mathematical integer. Special cases:
    363      * <ul><li>If the argument value is already equal to a
    364      * mathematical integer, then the result is the same as the
    365      * argument.  <li>If the argument is NaN or an infinity or
    366      * positive zero or negative zero, then the result is the same as
    367      * the argument.  <li>If the argument value is less than zero but
    368      * greater than -1.0, then the result is negative zero.</ul> Note
    369      * that the value of {@code Math.ceil(x)} is exactly the
    370      * value of {@code -Math.floor(-x)}.
    371      *
    372      *
    373      * @param   a   a value.
    374      * @return  the smallest (closest to negative infinity)
    375      *          floating-point value that is greater than or equal to
    376      *          the argument and is equal to a mathematical integer.
    377      */
    378     public static native double ceil(double a);
    379 
    380     /**
    381      * Returns the largest (closest to positive infinity)
    382      * {@code double} value that is less than or equal to the
    383      * argument and is equal to a mathematical integer. Special cases:
    384      * <ul><li>If the argument value is already equal to a
    385      * mathematical integer, then the result is the same as the
    386      * argument.  <li>If the argument is NaN or an infinity or
    387      * positive zero or negative zero, then the result is the same as
    388      * the argument.</ul>
    389      *
    390      * @param   a   a value.
    391      * @return  the largest (closest to positive infinity)
    392      *          floating-point value that less than or equal to the argument
    393      *          and is equal to a mathematical integer.
    394      */
    395     public static native double floor(double a);
    396 
    397     /**
    398      * Returns the {@code double} value that is closest in value
    399      * to the argument and is equal to a mathematical integer. If two
    400      * {@code double} values that are mathematical integers are
    401      * equally close, the result is the integer value that is
    402      * even. Special cases:
    403      * <ul><li>If the argument value is already equal to a mathematical
    404      * integer, then the result is the same as the argument.
    405      * <li>If the argument is NaN or an infinity or positive zero or negative
    406      * zero, then the result is the same as the argument.</ul>
    407      *
    408      * @param   a   a {@code double} value.
    409      * @return  the closest floating-point value to {@code a} that is
    410      *          equal to a mathematical integer.
    411      */
    412     public static native double rint(double a);
    413 
    414     /**
    415      * Returns the angle <i>theta</i> from the conversion of rectangular
    416      * coordinates ({@code x},&nbsp;{@code y}) to polar
    417      * coordinates (r,&nbsp;<i>theta</i>).
    418      * This method computes the phase <i>theta</i> by computing an arc tangent
    419      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
    420      * cases:
    421      * <ul><li>If either argument is NaN, then the result is NaN.
    422      * <li>If the first argument is positive zero and the second argument
    423      * is positive, or the first argument is positive and finite and the
    424      * second argument is positive infinity, then the result is positive
    425      * zero.
    426      * <li>If the first argument is negative zero and the second argument
    427      * is positive, or the first argument is negative and finite and the
    428      * second argument is positive infinity, then the result is negative zero.
    429      * <li>If the first argument is positive zero and the second argument
    430      * is negative, or the first argument is positive and finite and the
    431      * second argument is negative infinity, then the result is the
    432      * {@code double} value closest to <i>pi</i>.
    433      * <li>If the first argument is negative zero and the second argument
    434      * is negative, or the first argument is negative and finite and the
    435      * second argument is negative infinity, then the result is the
    436      * {@code double} value closest to -<i>pi</i>.
    437      * <li>If the first argument is positive and the second argument is
    438      * positive zero or negative zero, or the first argument is positive
    439      * infinity and the second argument is finite, then the result is the
    440      * {@code double} value closest to <i>pi</i>/2.
    441      * <li>If the first argument is negative and the second argument is
    442      * positive zero or negative zero, or the first argument is negative
    443      * infinity and the second argument is finite, then the result is the
    444      * {@code double} value closest to -<i>pi</i>/2.
    445      * <li>If both arguments are positive infinity, then the result is the
    446      * {@code double} value closest to <i>pi</i>/4.
    447      * <li>If the first argument is positive infinity and the second argument
    448      * is negative infinity, then the result is the {@code double}
    449      * value closest to 3*<i>pi</i>/4.
    450      * <li>If the first argument is negative infinity and the second argument
    451      * is positive infinity, then the result is the {@code double} value
    452      * closest to -<i>pi</i>/4.
    453      * <li>If both arguments are negative infinity, then the result is the
    454      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
    455      *
    456      * <p>The computed result must be within 2 ulps of the exact result.
    457      * Results must be semi-monotonic.
    458      *
    459      * @param   y   the ordinate coordinate
    460      * @param   x   the abscissa coordinate
    461      * @return  the <i>theta</i> component of the point
    462      *          (<i>r</i>,&nbsp;<i>theta</i>)
    463      *          in polar coordinates that corresponds to the point
    464      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
    465      */
    466     public static native double atan2(double y, double x);
    467 
    468     /**
    469      * Returns the value of the first argument raised to the power of the
    470      * second argument. Special cases:
    471      *
    472      * <ul><li>If the second argument is positive or negative zero, then the
    473      * result is 1.0.
    474      * <li>If the second argument is 1.0, then the result is the same as the
    475      * first argument.
    476      * <li>If the second argument is NaN, then the result is NaN.
    477      * <li>If the first argument is NaN and the second argument is nonzero,
    478      * then the result is NaN.
    479      *
    480      * <li>If
    481      * <ul>
    482      * <li>the absolute value of the first argument is greater than 1
    483      * and the second argument is positive infinity, or
    484      * <li>the absolute value of the first argument is less than 1 and
    485      * the second argument is negative infinity,
    486      * </ul>
    487      * then the result is positive infinity.
    488      *
    489      * <li>If
    490      * <ul>
    491      * <li>the absolute value of the first argument is greater than 1 and
    492      * the second argument is negative infinity, or
    493      * <li>the absolute value of the
    494      * first argument is less than 1 and the second argument is positive
    495      * infinity,
    496      * </ul>
    497      * then the result is positive zero.
    498      *
    499      * <li>If the absolute value of the first argument equals 1 and the
    500      * second argument is infinite, then the result is NaN.
    501      *
    502      * <li>If
    503      * <ul>
    504      * <li>the first argument is positive zero and the second argument
    505      * is greater than zero, or
    506      * <li>the first argument is positive infinity and the second
    507      * argument is less than zero,
    508      * </ul>
    509      * then the result is positive zero.
    510      *
    511      * <li>If
    512      * <ul>
    513      * <li>the first argument is positive zero and the second argument
    514      * is less than zero, or
    515      * <li>the first argument is positive infinity and the second
    516      * argument is greater than zero,
    517      * </ul>
    518      * then the result is positive infinity.
    519      *
    520      * <li>If
    521      * <ul>
    522      * <li>the first argument is negative zero and the second argument
    523      * is greater than zero but not a finite odd integer, or
    524      * <li>the first argument is negative infinity and the second
    525      * argument is less than zero but not a finite odd integer,
    526      * </ul>
    527      * then the result is positive zero.
    528      *
    529      * <li>If
    530      * <ul>
    531      * <li>the first argument is negative zero and the second argument
    532      * is a positive finite odd integer, or
    533      * <li>the first argument is negative infinity and the second
    534      * argument is a negative finite odd integer,
    535      * </ul>
    536      * then the result is negative zero.
    537      *
    538      * <li>If
    539      * <ul>
    540      * <li>the first argument is negative zero and the second argument
    541      * is less than zero but not a finite odd integer, or
    542      * <li>the first argument is negative infinity and the second
    543      * argument is greater than zero but not a finite odd integer,
    544      * </ul>
    545      * then the result is positive infinity.
    546      *
    547      * <li>If
    548      * <ul>
    549      * <li>the first argument is negative zero and the second argument
    550      * is a negative finite odd integer, or
    551      * <li>the first argument is negative infinity and the second
    552      * argument is a positive finite odd integer,
    553      * </ul>
    554      * then the result is negative infinity.
    555      *
    556      * <li>If the first argument is finite and less than zero
    557      * <ul>
    558      * <li> if the second argument is a finite even integer, the
    559      * result is equal to the result of raising the absolute value of
    560      * the first argument to the power of the second argument
    561      *
    562      * <li>if the second argument is a finite odd integer, the result
    563      * is equal to the negative of the result of raising the absolute
    564      * value of the first argument to the power of the second
    565      * argument
    566      *
    567      * <li>if the second argument is finite and not an integer, then
    568      * the result is NaN.
    569      * </ul>
    570      *
    571      * <li>If both arguments are integers, then the result is exactly equal
    572      * to the mathematical result of raising the first argument to the power
    573      * of the second argument if that result can in fact be represented
    574      * exactly as a {@code double} value.</ul>
    575      *
    576      * <p>(In the foregoing descriptions, a floating-point value is
    577      * considered to be an integer if and only if it is finite and a
    578      * fixed point of the method {@link #ceil ceil} or,
    579      * equivalently, a fixed point of the method {@link #floor
    580      * floor}. A value is a fixed point of a one-argument
    581      * method if and only if the result of applying the method to the
    582      * value is equal to the value.)
    583      *
    584      * <p>The computed result must be within 1 ulp of the exact result.
    585      * Results must be semi-monotonic.
    586      *
    587      * @param   a   the base.
    588      * @param   b   the exponent.
    589      * @return  the value {@code a}<sup>{@code b}</sup>.
    590      */
    591     public static native double pow(double a, double b);
    592 
    593     /**
    594      * Returns the closest {@code int} to the argument, with ties
    595      * rounding to positive infinity.
    596      *
    597      * <p>
    598      * Special cases:
    599      * <ul><li>If the argument is NaN, the result is 0.
    600      * <li>If the argument is negative infinity or any value less than or
    601      * equal to the value of {@code Integer.MIN_VALUE}, the result is
    602      * equal to the value of {@code Integer.MIN_VALUE}.
    603      * <li>If the argument is positive infinity or any value greater than or
    604      * equal to the value of {@code Integer.MAX_VALUE}, the result is
    605      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
    606      *
    607      * @param   a   a floating-point value to be rounded to an integer.
    608      * @return  the value of the argument rounded to the nearest
    609      *          {@code int} value.
    610      * @see     java.lang.Integer#MAX_VALUE
    611      * @see     java.lang.Integer#MIN_VALUE
    612      */
    613     public static int round(float a) {
    614         int intBits = Float.floatToRawIntBits(a);
    615         int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK)
    616                 >> (FloatConsts.SIGNIFICAND_WIDTH - 1);
    617         int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2
    618                 + FloatConsts.EXP_BIAS) - biasedExp;
    619         if ((shift & -32) == 0) { // shift >= 0 && shift < 32
    620             // a is a finite number such that pow(2,-32) <= ulp(a) < 1
    621             int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK)
    622                     | (FloatConsts.SIGNIF_BIT_MASK + 1));
    623             if (intBits < 0) {
    624                 r = -r;
    625             }
    626             // In the comments below each Java expression evaluates to the value
    627             // the corresponding mathematical expression:
    628             // (r) evaluates to a / ulp(a)
    629             // (r >> shift) evaluates to floor(a * 2)
    630             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
    631             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
    632             return ((r >> shift) + 1) >> 1;
    633         } else {
    634             // a is either
    635             // - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2
    636             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
    637             // - an infinity or NaN
    638             return (int) a;
    639         }
    640     }
    641 
    642     /**
    643      * Returns the closest {@code long} to the argument, with ties
    644      * rounding to positive infinity.
    645      *
    646      * <p>Special cases:
    647      * <ul><li>If the argument is NaN, the result is 0.
    648      * <li>If the argument is negative infinity or any value less than or
    649      * equal to the value of {@code Long.MIN_VALUE}, the result is
    650      * equal to the value of {@code Long.MIN_VALUE}.
    651      * <li>If the argument is positive infinity or any value greater than or
    652      * equal to the value of {@code Long.MAX_VALUE}, the result is
    653      * equal to the value of {@code Long.MAX_VALUE}.</ul>
    654      *
    655      * @param   a   a floating-point value to be rounded to a
    656      *          {@code long}.
    657      * @return  the value of the argument rounded to the nearest
    658      *          {@code long} value.
    659      * @see     java.lang.Long#MAX_VALUE
    660      * @see     java.lang.Long#MIN_VALUE
    661      */
    662     public static long round(double a) {
    663         long longBits = Double.doubleToRawLongBits(a);
    664         long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK)
    665                 >> (DoubleConsts.SIGNIFICAND_WIDTH - 1);
    666         long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2
    667                 + DoubleConsts.EXP_BIAS) - biasedExp;
    668         if ((shift & -64) == 0) { // shift >= 0 && shift < 64
    669             // a is a finite number such that pow(2,-64) <= ulp(a) < 1
    670             long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK)
    671                     | (DoubleConsts.SIGNIF_BIT_MASK + 1));
    672             if (longBits < 0) {
    673                 r = -r;
    674             }
    675             // In the comments below each Java expression evaluates to the value
    676             // the corresponding mathematical expression:
    677             // (r) evaluates to a / ulp(a)
    678             // (r >> shift) evaluates to floor(a * 2)
    679             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
    680             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
    681             return ((r >> shift) + 1) >> 1;
    682         } else {
    683             // a is either
    684             // - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2
    685             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
    686             // - an infinity or NaN
    687             return (long) a;
    688         }
    689     }
    690 
    691     private static class NoImagePreloadHolder {
    692         private static final Random INSTANCE = new Random();
    693     }
    694 
    695     /**
    696      * Returns a {@code double} value with a positive sign, greater
    697      * than or equal to {@code 0.0} and less than {@code 1.0}.
    698      * Returned values are chosen pseudorandomly with (approximately)
    699      * uniform distribution from that range.
    700      *
    701      * <p>When this method is first called, it creates a single new
    702      * pseudorandom-number generator, exactly as if by the expression
    703      *
    704      * <blockquote>{@code new java.util.Random()}</blockquote>
    705      *
    706      * This new pseudorandom-number generator is used thereafter for
    707      * all calls to this method and is used nowhere else.
    708      *
    709      * <p>This method is properly synchronized to allow correct use by
    710      * more than one thread. However, if many threads need to generate
    711      * pseudorandom numbers at a great rate, it may reduce contention
    712      * for each thread to have its own pseudorandom-number generator.
    713      *
    714      * @return  a pseudorandom {@code double} greater than or equal
    715      * to {@code 0.0} and less than {@code 1.0}.
    716      * @see Random#nextDouble()
    717      */
    718     public static double random() {
    719         return NoImagePreloadHolder.INSTANCE.nextDouble();
    720     }
    721 
    722     /**
    723      * Set the seed for the pseudo random generator used by {@link #random()}
    724      * and {@link #randomIntInternal()}.
    725      *
    726      * @hide for internal use only.
    727      */
    728     public static void setRandomSeedInternal(long seed) {
    729         NoImagePreloadHolder.INSTANCE.setSeed(seed);
    730     }
    731 
    732     /**
    733      * @hide for internal use only.
    734      */
    735     public static int randomIntInternal() {
    736         return NoImagePreloadHolder.INSTANCE.nextInt();
    737     }
    738 
    739     /**
    740      * Returns the sum of its arguments,
    741      * throwing an exception if the result overflows an {@code int}.
    742      *
    743      * @param x the first value
    744      * @param y the second value
    745      * @return the result
    746      * @throws ArithmeticException if the result overflows an int
    747      * @since 1.8
    748      */
    749     public static int addExact(int x, int y) {
    750         int r = x + y;
    751         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
    752         if (((x ^ r) & (y ^ r)) < 0) {
    753             throw new ArithmeticException("integer overflow");
    754         }
    755         return r;
    756     }
    757 
    758     /**
    759      * Returns the sum of its arguments,
    760      * throwing an exception if the result overflows a {@code long}.
    761      *
    762      * @param x the first value
    763      * @param y the second value
    764      * @return the result
    765      * @throws ArithmeticException if the result overflows a long
    766      * @since 1.8
    767      */
    768     public static long addExact(long x, long y) {
    769         long r = x + y;
    770         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
    771         if (((x ^ r) & (y ^ r)) < 0) {
    772             throw new ArithmeticException("long overflow");
    773         }
    774         return r;
    775     }
    776 
    777     /**
    778      * Returns the difference of the arguments,
    779      * throwing an exception if the result overflows an {@code int}.
    780      *
    781      * @param x the first value
    782      * @param y the second value to subtract from the first
    783      * @return the result
    784      * @throws ArithmeticException if the result overflows an int
    785      * @since 1.8
    786      */
    787     public static int subtractExact(int x, int y) {
    788         int r = x - y;
    789         // HD 2-12 Overflow iff the arguments have different signs and
    790         // the sign of the result is different than the sign of x
    791         if (((x ^ y) & (x ^ r)) < 0) {
    792             throw new ArithmeticException("integer overflow");
    793         }
    794         return r;
    795     }
    796 
    797     /**
    798      * Returns the difference of the arguments,
    799      * throwing an exception if the result overflows a {@code long}.
    800      *
    801      * @param x the first value
    802      * @param y the second value to subtract from the first
    803      * @return the result
    804      * @throws ArithmeticException if the result overflows a long
    805      * @since 1.8
    806      */
    807     public static long subtractExact(long x, long y) {
    808         long r = x - y;
    809         // HD 2-12 Overflow iff the arguments have different signs and
    810         // the sign of the result is different than the sign of x
    811         if (((x ^ y) & (x ^ r)) < 0) {
    812             throw new ArithmeticException("long overflow");
    813         }
    814         return r;
    815     }
    816 
    817     /**
    818      * Returns the product of the arguments,
    819      * throwing an exception if the result overflows an {@code int}.
    820      *
    821      * @param x the first value
    822      * @param y the second value
    823      * @return the result
    824      * @throws ArithmeticException if the result overflows an int
    825      * @since 1.8
    826      */
    827     public static int multiplyExact(int x, int y) {
    828         long r = (long)x * (long)y;
    829         if ((int)r != r) {
    830             throw new ArithmeticException("integer overflow");
    831         }
    832         return (int)r;
    833     }
    834 
    835     /**
    836      * Returns the product of the arguments,
    837      * throwing an exception if the result overflows a {@code long}.
    838      *
    839      * @param x the first value
    840      * @param y the second value
    841      * @return the result
    842      * @throws ArithmeticException if the result overflows a long
    843      * @since 1.8
    844      */
    845     public static long multiplyExact(long x, long y) {
    846         long r = x * y;
    847         long ax = Math.abs(x);
    848         long ay = Math.abs(y);
    849         if (((ax | ay) >>> 31 != 0)) {
    850             // Some bits greater than 2^31 that might cause overflow
    851             // Check the result using the divide operator
    852             // and check for the special case of Long.MIN_VALUE * -1
    853            if (((y != 0) && (r / y != x)) ||
    854                (x == Long.MIN_VALUE && y == -1)) {
    855                 throw new ArithmeticException("long overflow");
    856             }
    857         }
    858         return r;
    859     }
    860 
    861     /**
    862      * Returns the argument incremented by one, throwing an exception if the
    863      * result overflows an {@code int}.
    864      *
    865      * @param a the value to increment
    866      * @return the result
    867      * @throws ArithmeticException if the result overflows an int
    868      * @since 1.8
    869      */
    870     public static int incrementExact(int a) {
    871         if (a == Integer.MAX_VALUE) {
    872             throw new ArithmeticException("integer overflow");
    873         }
    874 
    875         return a + 1;
    876     }
    877 
    878     /**
    879      * Returns the argument incremented by one, throwing an exception if the
    880      * result overflows a {@code long}.
    881      *
    882      * @param a the value to increment
    883      * @return the result
    884      * @throws ArithmeticException if the result overflows a long
    885      * @since 1.8
    886      */
    887     public static long incrementExact(long a) {
    888         if (a == Long.MAX_VALUE) {
    889             throw new ArithmeticException("long overflow");
    890         }
    891 
    892         return a + 1L;
    893     }
    894 
    895     /**
    896      * Returns the argument decremented by one, throwing an exception if the
    897      * result overflows an {@code int}.
    898      *
    899      * @param a the value to decrement
    900      * @return the result
    901      * @throws ArithmeticException if the result overflows an int
    902      * @since 1.8
    903      */
    904     public static int decrementExact(int a) {
    905         if (a == Integer.MIN_VALUE) {
    906             throw new ArithmeticException("integer overflow");
    907         }
    908 
    909         return a - 1;
    910     }
    911 
    912     /**
    913      * Returns the argument decremented by one, throwing an exception if the
    914      * result overflows a {@code long}.
    915      *
    916      * @param a the value to decrement
    917      * @return the result
    918      * @throws ArithmeticException if the result overflows a long
    919      * @since 1.8
    920      */
    921     public static long decrementExact(long a) {
    922         if (a == Long.MIN_VALUE) {
    923             throw new ArithmeticException("long overflow");
    924         }
    925 
    926         return a - 1L;
    927     }
    928 
    929     /**
    930      * Returns the negation of the argument, throwing an exception if the
    931      * result overflows an {@code int}.
    932      *
    933      * @param a the value to negate
    934      * @return the result
    935      * @throws ArithmeticException if the result overflows an int
    936      * @since 1.8
    937      */
    938     public static int negateExact(int a) {
    939         if (a == Integer.MIN_VALUE) {
    940             throw new ArithmeticException("integer overflow");
    941         }
    942 
    943         return -a;
    944     }
    945 
    946     /**
    947      * Returns the negation of the argument, throwing an exception if the
    948      * result overflows a {@code long}.
    949      *
    950      * @param a the value to negate
    951      * @return the result
    952      * @throws ArithmeticException if the result overflows a long
    953      * @since 1.8
    954      */
    955     public static long negateExact(long a) {
    956         if (a == Long.MIN_VALUE) {
    957             throw new ArithmeticException("long overflow");
    958         }
    959 
    960         return -a;
    961     }
    962 
    963     /**
    964      * Returns the value of the {@code long} argument;
    965      * throwing an exception if the value overflows an {@code int}.
    966      *
    967      * @param value the long value
    968      * @return the argument as an int
    969      * @throws ArithmeticException if the {@code argument} overflows an int
    970      * @since 1.8
    971      */
    972     public static int toIntExact(long value) {
    973         if ((int)value != value) {
    974             throw new ArithmeticException("integer overflow");
    975         }
    976         return (int)value;
    977     }
    978 
    979     /**
    980      * Returns the largest (closest to positive infinity)
    981      * {@code int} value that is less than or equal to the algebraic quotient.
    982      * There is one special case, if the dividend is the
    983      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
    984      * then integer overflow occurs and
    985      * the result is equal to the {@code Integer.MIN_VALUE}.
    986      * <p>
    987      * Normal integer division operates under the round to zero rounding mode
    988      * (truncation).  This operation instead acts under the round toward
    989      * negative infinity (floor) rounding mode.
    990      * The floor rounding mode gives different results than truncation
    991      * when the exact result is negative.
    992      * <ul>
    993      *   <li>If the signs of the arguments are the same, the results of
    994      *       {@code floorDiv} and the {@code /} operator are the same.  <br>
    995      *       For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li>
    996      *   <li>If the signs of the arguments are different,  the quotient is negative and
    997      *       {@code floorDiv} returns the integer less than or equal to the quotient
    998      *       and the {@code /} operator returns the integer closest to zero.<br>
    999      *       For example, {@code floorDiv(-4, 3) == -2},
   1000      *       whereas {@code (-4 / 3) == -1}.
   1001      *   </li>
   1002      * </ul>
   1003      * <p>
   1004      *
   1005      * @param x the dividend
   1006      * @param y the divisor
   1007      * @return the largest (closest to positive infinity)
   1008      * {@code int} value that is less than or equal to the algebraic quotient.
   1009      * @throws ArithmeticException if the divisor {@code y} is zero
   1010      * @see #floorMod(int, int)
   1011      * @see #floor(double)
   1012      * @since 1.8
   1013      */
   1014     public static int floorDiv(int x, int y) {
   1015         int r = x / y;
   1016         // if the signs are different and modulo not zero, round down
   1017         if ((x ^ y) < 0 && (r * y != x)) {
   1018             r--;
   1019         }
   1020         return r;
   1021     }
   1022 
   1023     /**
   1024      * Returns the largest (closest to positive infinity)
   1025      * {@code long} value that is less than or equal to the algebraic quotient.
   1026      * There is one special case, if the dividend is the
   1027      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
   1028      * then integer overflow occurs and
   1029      * the result is equal to the {@code Long.MIN_VALUE}.
   1030      * <p>
   1031      * Normal integer division operates under the round to zero rounding mode
   1032      * (truncation).  This operation instead acts under the round toward
   1033      * negative infinity (floor) rounding mode.
   1034      * The floor rounding mode gives different results than truncation
   1035      * when the exact result is negative.
   1036      * <p>
   1037      * For examples, see {@link #floorDiv(int, int)}.
   1038      *
   1039      * @param x the dividend
   1040      * @param y the divisor
   1041      * @return the largest (closest to positive infinity)
   1042      * {@code long} value that is less than or equal to the algebraic quotient.
   1043      * @throws ArithmeticException if the divisor {@code y} is zero
   1044      * @see #floorMod(long, long)
   1045      * @see #floor(double)
   1046      * @since 1.8
   1047      */
   1048     public static long floorDiv(long x, long y) {
   1049         long r = x / y;
   1050         // if the signs are different and modulo not zero, round down
   1051         if ((x ^ y) < 0 && (r * y != x)) {
   1052             r--;
   1053         }
   1054         return r;
   1055     }
   1056 
   1057     /**
   1058      * Returns the floor modulus of the {@code int} arguments.
   1059      * <p>
   1060      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
   1061      * has the same sign as the divisor {@code y}, and
   1062      * is in the range of {@code -abs(y) < r < +abs(y)}.
   1063      *
   1064      * <p>
   1065      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
   1066      * <ul>
   1067      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
   1068      * </ul>
   1069      * <p>
   1070      * The difference in values between {@code floorMod} and
   1071      * the {@code %} operator is due to the difference between
   1072      * {@code floorDiv} that returns the integer less than or equal to the quotient
   1073      * and the {@code /} operator that returns the integer closest to zero.
   1074      * <p>
   1075      * Examples:
   1076      * <ul>
   1077      *   <li>If the signs of the arguments are the same, the results
   1078      *       of {@code floorMod} and the {@code %} operator are the same.  <br>
   1079      *       <ul>
   1080      *       <li>{@code floorMod(4, 3) == 1}; &nbsp; and {@code (4 % 3) == 1}</li>
   1081      *       </ul>
   1082      *   <li>If the signs of the arguments are different, the results differ from the {@code %} operator.<br>
   1083      *      <ul>
   1084      *      <li>{@code floorMod(+4, -3) == -2}; &nbsp; and {@code (+4 % -3) == +1} </li>
   1085      *      <li>{@code floorMod(-4, +3) == +2}; &nbsp; and {@code (-4 % +3) == -1} </li>
   1086      *      <li>{@code floorMod(-4, -3) == -1}; &nbsp; and {@code (-4 % -3) == -1 } </li>
   1087      *      </ul>
   1088      *   </li>
   1089      * </ul>
   1090      * <p>
   1091      * If the signs of arguments are unknown and a positive modulus
   1092      * is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}.
   1093      *
   1094      * @param x the dividend
   1095      * @param y the divisor
   1096      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
   1097      * @throws ArithmeticException if the divisor {@code y} is zero
   1098      * @see #floorDiv(int, int)
   1099      * @since 1.8
   1100      */
   1101     public static int floorMod(int x, int y) {
   1102         int r = x - floorDiv(x, y) * y;
   1103         return r;
   1104     }
   1105 
   1106     /**
   1107      * Returns the floor modulus of the {@code long} arguments.
   1108      * <p>
   1109      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
   1110      * has the same sign as the divisor {@code y}, and
   1111      * is in the range of {@code -abs(y) < r < +abs(y)}.
   1112      *
   1113      * <p>
   1114      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
   1115      * <ul>
   1116      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
   1117      * </ul>
   1118      * <p>
   1119      * For examples, see {@link #floorMod(int, int)}.
   1120      *
   1121      * @param x the dividend
   1122      * @param y the divisor
   1123      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
   1124      * @throws ArithmeticException if the divisor {@code y} is zero
   1125      * @see #floorDiv(long, long)
   1126      * @since 1.8
   1127      */
   1128     public static long floorMod(long x, long y) {
   1129         return x - floorDiv(x, y) * y;
   1130     }
   1131 
   1132     /**
   1133      * Returns the absolute value of an {@code int} value.
   1134      * If the argument is not negative, the argument is returned.
   1135      * If the argument is negative, the negation of the argument is returned.
   1136      *
   1137      * <p>Note that if the argument is equal to the value of
   1138      * {@link Integer#MIN_VALUE}, the most negative representable
   1139      * {@code int} value, the result is that same value, which is
   1140      * negative.
   1141      *
   1142      * @param   a   the argument whose absolute value is to be determined
   1143      * @return  the absolute value of the argument.
   1144      */
   1145     public static int abs(int a) {
   1146         return (a < 0) ? -a : a;
   1147     }
   1148 
   1149     /**
   1150      * Returns the absolute value of a {@code long} value.
   1151      * If the argument is not negative, the argument is returned.
   1152      * If the argument is negative, the negation of the argument is returned.
   1153      *
   1154      * <p>Note that if the argument is equal to the value of
   1155      * {@link Long#MIN_VALUE}, the most negative representable
   1156      * {@code long} value, the result is that same value, which
   1157      * is negative.
   1158      *
   1159      * @param   a   the argument whose absolute value is to be determined
   1160      * @return  the absolute value of the argument.
   1161      */
   1162     public static long abs(long a) {
   1163         return (a < 0) ? -a : a;
   1164     }
   1165 
   1166     /**
   1167      * Returns the absolute value of a {@code float} value.
   1168      * If the argument is not negative, the argument is returned.
   1169      * If the argument is negative, the negation of the argument is returned.
   1170      * Special cases:
   1171      * <ul><li>If the argument is positive zero or negative zero, the
   1172      * result is positive zero.
   1173      * <li>If the argument is infinite, the result is positive infinity.
   1174      * <li>If the argument is NaN, the result is NaN.</ul>
   1175      * In other words, the result is the same as the value of the expression:
   1176      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
   1177      *
   1178      * @param   a   the argument whose absolute value is to be determined
   1179      * @return  the absolute value of the argument.
   1180      */
   1181     public static float abs(float a) {
   1182         return (a <= 0.0F) ? 0.0F - a : a;
   1183     }
   1184 
   1185     /**
   1186      * Returns the absolute value of a {@code double} value.
   1187      * If the argument is not negative, the argument is returned.
   1188      * If the argument is negative, the negation of the argument is returned.
   1189      * Special cases:
   1190      * <ul><li>If the argument is positive zero or negative zero, the result
   1191      * is positive zero.
   1192      * <li>If the argument is infinite, the result is positive infinity.
   1193      * <li>If the argument is NaN, the result is NaN.</ul>
   1194      * In other words, the result is the same as the value of the expression:
   1195      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
   1196      *
   1197      * @param   a   the argument whose absolute value is to be determined
   1198      * @return  the absolute value of the argument.
   1199      */
   1200     public static double abs(double a) {
   1201         return (a <= 0.0D) ? 0.0D - a : a;
   1202     }
   1203 
   1204     /**
   1205      * Returns the greater of two {@code int} values. That is, the
   1206      * result is the argument closer to the value of
   1207      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
   1208      * the result is that same value.
   1209      *
   1210      * @param   a   an argument.
   1211      * @param   b   another argument.
   1212      * @return  the larger of {@code a} and {@code b}.
   1213      */
   1214     public static int max(int a, int b) {
   1215         return (a >= b) ? a : b;
   1216     }
   1217 
   1218     /**
   1219      * Returns the greater of two {@code long} values. That is, the
   1220      * result is the argument closer to the value of
   1221      * {@link Long#MAX_VALUE}. If the arguments have the same value,
   1222      * the result is that same value.
   1223      *
   1224      * @param   a   an argument.
   1225      * @param   b   another argument.
   1226      * @return  the larger of {@code a} and {@code b}.
   1227      */
   1228     public static long max(long a, long b) {
   1229         return (a >= b) ? a : b;
   1230     }
   1231 
   1232     private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f);
   1233     private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d);
   1234 
   1235     /**
   1236      * Returns the greater of two {@code float} values.  That is,
   1237      * the result is the argument closer to positive infinity. If the
   1238      * arguments have the same value, the result is that same
   1239      * value. If either value is NaN, then the result is NaN.  Unlike
   1240      * the numerical comparison operators, this method considers
   1241      * negative zero to be strictly smaller than positive zero. If one
   1242      * argument is positive zero and the other negative zero, the
   1243      * result is positive zero.
   1244      *
   1245      * @param   a   an argument.
   1246      * @param   b   another argument.
   1247      * @return  the larger of {@code a} and {@code b}.
   1248      */
   1249     public static float max(float a, float b) {
   1250         if (a != a) return a;   // a is NaN
   1251         if ((a == 0.0f) && (b == 0.0f)
   1252             && (Float.floatToIntBits(a) == negativeZeroFloatBits)) {
   1253             return b;
   1254         }
   1255         return (a >= b) ? a : b;
   1256     }
   1257 
   1258     /**
   1259      * Returns the greater of two {@code double} values.  That
   1260      * is, the result is the argument closer to positive infinity. If
   1261      * the arguments have the same value, the result is that same
   1262      * value. If either value is NaN, then the result is NaN.  Unlike
   1263      * the numerical comparison operators, this method considers
   1264      * negative zero to be strictly smaller than positive zero. If one
   1265      * argument is positive zero and the other negative zero, the
   1266      * result is positive zero.
   1267      *
   1268      * @param   a   an argument.
   1269      * @param   b   another argument.
   1270      * @return  the larger of {@code a} and {@code b}.
   1271      */
   1272     public static double max(double a, double b) {
   1273         if (a != a) return a;   // a is NaN
   1274         if ((a == 0.0d) && (b == 0.0d)
   1275             && (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) {
   1276             return b;
   1277         }
   1278         return (a >= b) ? a : b;
   1279     }
   1280 
   1281     /**
   1282      * Returns the smaller of two {@code int} values. That is,
   1283      * the result the argument closer to the value of
   1284      * {@link Integer#MIN_VALUE}.  If the arguments have the same
   1285      * value, the result is that same value.
   1286      *
   1287      * @param   a   an argument.
   1288      * @param   b   another argument.
   1289      * @return  the smaller of {@code a} and {@code b}.
   1290      */
   1291     public static int min(int a, int b) {
   1292         return (a <= b) ? a : b;
   1293     }
   1294 
   1295     /**
   1296      * Returns the smaller of two {@code long} values. That is,
   1297      * the result is the argument closer to the value of
   1298      * {@link Long#MIN_VALUE}. If the arguments have the same
   1299      * value, the result is that same value.
   1300      *
   1301      * @param   a   an argument.
   1302      * @param   b   another argument.
   1303      * @return  the smaller of {@code a} and {@code b}.
   1304      */
   1305     public static long min(long a, long b) {
   1306         return (a <= b) ? a : b;
   1307     }
   1308 
   1309     /**
   1310      * Returns the smaller of two {@code float} values.  That is,
   1311      * the result is the value closer to negative infinity. If the
   1312      * arguments have the same value, the result is that same
   1313      * value. If either value is NaN, then the result is NaN.  Unlike
   1314      * the numerical comparison operators, this method considers
   1315      * negative zero to be strictly smaller than positive zero.  If
   1316      * one argument is positive zero and the other is negative zero,
   1317      * the result is negative zero.
   1318      *
   1319      * @param   a   an argument.
   1320      * @param   b   another argument.
   1321      * @return  the smaller of {@code a} and {@code b}.
   1322      */
   1323     public static float min(float a, float b) {
   1324         if (a != a) return a;   // a is NaN
   1325         if ((a == 0.0f) && (b == 0.0f)
   1326             && (Float.floatToIntBits(b) == negativeZeroFloatBits)) {
   1327             return b;
   1328         }
   1329         return (a <= b) ? a : b;
   1330     }
   1331 
   1332     /**
   1333      * Returns the smaller of two {@code double} values.  That
   1334      * is, the result is the value closer to negative infinity. If the
   1335      * arguments have the same value, the result is that same
   1336      * value. If either value is NaN, then the result is NaN.  Unlike
   1337      * the numerical comparison operators, this method considers
   1338      * negative zero to be strictly smaller than positive zero. If one
   1339      * argument is positive zero and the other is negative zero, the
   1340      * result is negative zero.
   1341      *
   1342      * @param   a   an argument.
   1343      * @param   b   another argument.
   1344      * @return  the smaller of {@code a} and {@code b}.
   1345      */
   1346     public static double min(double a, double b) {
   1347         if (a != a) return a;   // a is NaN
   1348         if ((a == 0.0d) && (b == 0.0d)
   1349             && (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) {
   1350             return b;
   1351         }
   1352         return (a <= b) ? a : b;
   1353     }
   1354 
   1355     /**
   1356      * Returns the size of an ulp of the argument.  An ulp of a
   1357      * {@code double} value is the positive distance between this
   1358      * floating-point value and the {@code double} value next
   1359      * larger in magnitude.  Note that for non-NaN <i>x</i>,
   1360      * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
   1361      *
   1362      * <p>Special Cases:
   1363      * <ul>
   1364      * <li> If the argument is NaN, then the result is NaN.
   1365      * <li> If the argument is positive or negative infinity, then the
   1366      * result is positive infinity.
   1367      * <li> If the argument is positive or negative zero, then the result is
   1368      * {@code Double.MIN_VALUE}.
   1369      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
   1370      * the result is equal to 2<sup>971</sup>.
   1371      * </ul>
   1372      *
   1373      * @param d the floating-point value whose ulp is to be returned
   1374      * @return the size of an ulp of the argument
   1375      * @author Joseph D. Darcy
   1376      * @since 1.5
   1377      */
   1378     public static double ulp(double d) {
   1379         return sun.misc.FpUtils.ulp(d);
   1380     }
   1381 
   1382     /**
   1383      * Returns the size of an ulp of the argument.  An ulp of a
   1384      * {@code float} value is the positive distance between this
   1385      * floating-point value and the {@code float} value next
   1386      * larger in magnitude.  Note that for non-NaN <i>x</i>,
   1387      * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
   1388      *
   1389      * <p>Special Cases:
   1390      * <ul>
   1391      * <li> If the argument is NaN, then the result is NaN.
   1392      * <li> If the argument is positive or negative infinity, then the
   1393      * result is positive infinity.
   1394      * <li> If the argument is positive or negative zero, then the result is
   1395      * {@code Float.MIN_VALUE}.
   1396      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
   1397      * the result is equal to 2<sup>104</sup>.
   1398      * </ul>
   1399      *
   1400      * @param f the floating-point value whose ulp is to be returned
   1401      * @return the size of an ulp of the argument
   1402      * @author Joseph D. Darcy
   1403      * @since 1.5
   1404      */
   1405     public static float ulp(float f) {
   1406         return sun.misc.FpUtils.ulp(f);
   1407     }
   1408 
   1409     /**
   1410      * Returns the signum function of the argument; zero if the argument
   1411      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
   1412      * argument is less than zero.
   1413      *
   1414      * <p>Special Cases:
   1415      * <ul>
   1416      * <li> If the argument is NaN, then the result is NaN.
   1417      * <li> If the argument is positive zero or negative zero, then the
   1418      *      result is the same as the argument.
   1419      * </ul>
   1420      *
   1421      * @param d the floating-point value whose signum is to be returned
   1422      * @return the signum function of the argument
   1423      * @author Joseph D. Darcy
   1424      * @since 1.5
   1425      */
   1426     public static double signum(double d) {
   1427         return sun.misc.FpUtils.signum(d);
   1428     }
   1429 
   1430     /**
   1431      * Returns the signum function of the argument; zero if the argument
   1432      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
   1433      * argument is less than zero.
   1434      *
   1435      * <p>Special Cases:
   1436      * <ul>
   1437      * <li> If the argument is NaN, then the result is NaN.
   1438      * <li> If the argument is positive zero or negative zero, then the
   1439      *      result is the same as the argument.
   1440      * </ul>
   1441      *
   1442      * @param f the floating-point value whose signum is to be returned
   1443      * @return the signum function of the argument
   1444      * @author Joseph D. Darcy
   1445      * @since 1.5
   1446      */
   1447     public static float signum(float f) {
   1448         return sun.misc.FpUtils.signum(f);
   1449     }
   1450 
   1451     /**
   1452      * Returns the hyperbolic sine of a {@code double} value.
   1453      * The hyperbolic sine of <i>x</i> is defined to be
   1454      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
   1455      * where <i>e</i> is {@linkplain Math#E Euler's number}.
   1456      *
   1457      * <p>Special cases:
   1458      * <ul>
   1459      *
   1460      * <li>If the argument is NaN, then the result is NaN.
   1461      *
   1462      * <li>If the argument is infinite, then the result is an infinity
   1463      * with the same sign as the argument.
   1464      *
   1465      * <li>If the argument is zero, then the result is a zero with the
   1466      * same sign as the argument.
   1467      *
   1468      * </ul>
   1469      *
   1470      * <p>The computed result must be within 2.5 ulps of the exact result.
   1471      *
   1472      * @param   x The number whose hyperbolic sine is to be returned.
   1473      * @return  The hyperbolic sine of {@code x}.
   1474      * @since 1.5
   1475      */
   1476     public static native double sinh(double x);
   1477 
   1478     /**
   1479      * Returns the hyperbolic cosine of a {@code double} value.
   1480      * The hyperbolic cosine of <i>x</i> is defined to be
   1481      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
   1482      * where <i>e</i> is {@linkplain Math#E Euler's number}.
   1483      *
   1484      * <p>Special cases:
   1485      * <ul>
   1486      *
   1487      * <li>If the argument is NaN, then the result is NaN.
   1488      *
   1489      * <li>If the argument is infinite, then the result is positive
   1490      * infinity.
   1491      *
   1492      * <li>If the argument is zero, then the result is {@code 1.0}.
   1493      *
   1494      * </ul>
   1495      *
   1496      * <p>The computed result must be within 2.5 ulps of the exact result.
   1497      *
   1498      * @param   x The number whose hyperbolic cosine is to be returned.
   1499      * @return  The hyperbolic cosine of {@code x}.
   1500      * @since 1.5
   1501      */
   1502     public static native double cosh(double x);
   1503 
   1504     /**
   1505      * Returns the hyperbolic tangent of a {@code double} value.
   1506      * The hyperbolic tangent of <i>x</i> is defined to be
   1507      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
   1508      * in other words, {@linkplain Math#sinh
   1509      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
   1510      * that the absolute value of the exact tanh is always less than
   1511      * 1.
   1512      *
   1513      * <p>Special cases:
   1514      * <ul>
   1515      *
   1516      * <li>If the argument is NaN, then the result is NaN.
   1517      *
   1518      * <li>If the argument is zero, then the result is a zero with the
   1519      * same sign as the argument.
   1520      *
   1521      * <li>If the argument is positive infinity, then the result is
   1522      * {@code +1.0}.
   1523      *
   1524      * <li>If the argument is negative infinity, then the result is
   1525      * {@code -1.0}.
   1526      *
   1527      * </ul>
   1528      *
   1529      * <p>The computed result must be within 2.5 ulps of the exact result.
   1530      * The result of {@code tanh} for any finite input must have
   1531      * an absolute value less than or equal to 1.  Note that once the
   1532      * exact result of tanh is within 1/2 of an ulp of the limit value
   1533      * of &plusmn;1, correctly signed &plusmn;{@code 1.0} should
   1534      * be returned.
   1535      *
   1536      * @param   x The number whose hyperbolic tangent is to be returned.
   1537      * @return  The hyperbolic tangent of {@code x}.
   1538      * @since 1.5
   1539      */
   1540     public static native double tanh(double x);
   1541 
   1542     /**
   1543      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
   1544      * without intermediate overflow or underflow.
   1545      *
   1546      * <p>Special cases:
   1547      * <ul>
   1548      *
   1549      * <li> If either argument is infinite, then the result
   1550      * is positive infinity.
   1551      *
   1552      * <li> If either argument is NaN and neither argument is infinite,
   1553      * then the result is NaN.
   1554      *
   1555      * </ul>
   1556      *
   1557      * <p>The computed result must be within 1 ulp of the exact
   1558      * result.  If one parameter is held constant, the results must be
   1559      * semi-monotonic in the other parameter.
   1560      *
   1561      * @param x a value
   1562      * @param y a value
   1563      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
   1564      * without intermediate overflow or underflow
   1565      * @since 1.5
   1566      */
   1567     public static native double hypot(double x, double y);
   1568 
   1569     /**
   1570      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
   1571      * <i>x</i> near 0, the exact sum of
   1572      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
   1573      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
   1574      *
   1575      * <p>Special cases:
   1576      * <ul>
   1577      * <li>If the argument is NaN, the result is NaN.
   1578      *
   1579      * <li>If the argument is positive infinity, then the result is
   1580      * positive infinity.
   1581      *
   1582      * <li>If the argument is negative infinity, then the result is
   1583      * -1.0.
   1584      *
   1585      * <li>If the argument is zero, then the result is a zero with the
   1586      * same sign as the argument.
   1587      *
   1588      * </ul>
   1589      *
   1590      * <p>The computed result must be within 1 ulp of the exact result.
   1591      * Results must be semi-monotonic.  The result of
   1592      * {@code expm1} for any finite input must be greater than or
   1593      * equal to {@code -1.0}.  Note that once the exact result of
   1594      * <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1 is within 1/2
   1595      * ulp of the limit value -1, {@code -1.0} should be
   1596      * returned.
   1597      *
   1598      * @param   x   the exponent to raise <i>e</i> to in the computation of
   1599      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
   1600      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
   1601      * @since 1.5
   1602      */
   1603     public static native double expm1(double x);
   1604 
   1605     /**
   1606      * Returns the natural logarithm of the sum of the argument and 1.
   1607      * Note that for small values {@code x}, the result of
   1608      * {@code log1p(x)} is much closer to the true result of ln(1
   1609      * + {@code x}) than the floating-point evaluation of
   1610      * {@code log(1.0+x)}.
   1611      *
   1612      * <p>Special cases:
   1613      *
   1614      * <ul>
   1615      *
   1616      * <li>If the argument is NaN or less than -1, then the result is
   1617      * NaN.
   1618      *
   1619      * <li>If the argument is positive infinity, then the result is
   1620      * positive infinity.
   1621      *
   1622      * <li>If the argument is negative one, then the result is
   1623      * negative infinity.
   1624      *
   1625      * <li>If the argument is zero, then the result is a zero with the
   1626      * same sign as the argument.
   1627      *
   1628      * </ul>
   1629      *
   1630      * <p>The computed result must be within 1 ulp of the exact result.
   1631      * Results must be semi-monotonic.
   1632      *
   1633      * @param   x   a value
   1634      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
   1635      * log of {@code x}&nbsp;+&nbsp;1
   1636      * @since 1.5
   1637      */
   1638     public static native double log1p(double x);
   1639 
   1640     /**
   1641      * Returns the first floating-point argument with the sign of the
   1642      * second floating-point argument.  Note that unlike the {@link
   1643      * StrictMath#copySign(double, double) StrictMath.copySign}
   1644      * method, this method does not require NaN {@code sign}
   1645      * arguments to be treated as positive values; implementations are
   1646      * permitted to treat some NaN arguments as positive and other NaN
   1647      * arguments as negative to allow greater performance.
   1648      *
   1649      * @param magnitude  the parameter providing the magnitude of the result
   1650      * @param sign   the parameter providing the sign of the result
   1651      * @return a value with the magnitude of {@code magnitude}
   1652      * and the sign of {@code sign}.
   1653      * @since 1.6
   1654      */
   1655     public static double copySign(double magnitude, double sign) {
   1656         return sun.misc.FpUtils.rawCopySign(magnitude, sign);
   1657     }
   1658 
   1659     /**
   1660      * Returns the first floating-point argument with the sign of the
   1661      * second floating-point argument.  Note that unlike the {@link
   1662      * StrictMath#copySign(float, float) StrictMath.copySign}
   1663      * method, this method does not require NaN {@code sign}
   1664      * arguments to be treated as positive values; implementations are
   1665      * permitted to treat some NaN arguments as positive and other NaN
   1666      * arguments as negative to allow greater performance.
   1667      *
   1668      * @param magnitude  the parameter providing the magnitude of the result
   1669      * @param sign   the parameter providing the sign of the result
   1670      * @return a value with the magnitude of {@code magnitude}
   1671      * and the sign of {@code sign}.
   1672      * @since 1.6
   1673      */
   1674     public static float copySign(float magnitude, float sign) {
   1675         return sun.misc.FpUtils.rawCopySign(magnitude, sign);
   1676     }
   1677 
   1678     /**
   1679      * Returns the unbiased exponent used in the representation of a
   1680      * {@code float}.  Special cases:
   1681      *
   1682      * <ul>
   1683      * <li>If the argument is NaN or infinite, then the result is
   1684      * {@link Float#MAX_EXPONENT} + 1.
   1685      * <li>If the argument is zero or subnormal, then the result is
   1686      * {@link Float#MIN_EXPONENT} -1.
   1687      * </ul>
   1688      * @param f a {@code float} value
   1689      * @return the unbiased exponent of the argument
   1690      * @since 1.6
   1691      */
   1692     public static int getExponent(float f) {
   1693         return sun.misc.FpUtils.getExponent(f);
   1694     }
   1695 
   1696     /**
   1697      * Returns the unbiased exponent used in the representation of a
   1698      * {@code double}.  Special cases:
   1699      *
   1700      * <ul>
   1701      * <li>If the argument is NaN or infinite, then the result is
   1702      * {@link Double#MAX_EXPONENT} + 1.
   1703      * <li>If the argument is zero or subnormal, then the result is
   1704      * {@link Double#MIN_EXPONENT} -1.
   1705      * </ul>
   1706      * @param d a {@code double} value
   1707      * @return the unbiased exponent of the argument
   1708      * @since 1.6
   1709      */
   1710     public static int getExponent(double d) {
   1711         return sun.misc.FpUtils.getExponent(d);
   1712     }
   1713 
   1714     /**
   1715      * Returns the floating-point number adjacent to the first
   1716      * argument in the direction of the second argument.  If both
   1717      * arguments compare as equal the second argument is returned.
   1718      *
   1719      * <p>
   1720      * Special cases:
   1721      * <ul>
   1722      * <li> If either argument is a NaN, then NaN is returned.
   1723      *
   1724      * <li> If both arguments are signed zeros, {@code direction}
   1725      * is returned unchanged (as implied by the requirement of
   1726      * returning the second argument if the arguments compare as
   1727      * equal).
   1728      *
   1729      * <li> If {@code start} is
   1730      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
   1731      * has a value such that the result should have a smaller
   1732      * magnitude, then a zero with the same sign as {@code start}
   1733      * is returned.
   1734      *
   1735      * <li> If {@code start} is infinite and
   1736      * {@code direction} has a value such that the result should
   1737      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
   1738      * same sign as {@code start} is returned.
   1739      *
   1740      * <li> If {@code start} is equal to &plusmn;
   1741      * {@link Double#MAX_VALUE} and {@code direction} has a
   1742      * value such that the result should have a larger magnitude, an
   1743      * infinity with same sign as {@code start} is returned.
   1744      * </ul>
   1745      *
   1746      * @param start  starting floating-point value
   1747      * @param direction value indicating which of
   1748      * {@code start}'s neighbors or {@code start} should
   1749      * be returned
   1750      * @return The floating-point number adjacent to {@code start} in the
   1751      * direction of {@code direction}.
   1752      * @since 1.6
   1753      */
   1754     public static double nextAfter(double start, double direction) {
   1755         return sun.misc.FpUtils.nextAfter(start, direction);
   1756     }
   1757 
   1758     /**
   1759      * Returns the floating-point number adjacent to the first
   1760      * argument in the direction of the second argument.  If both
   1761      * arguments compare as equal a value equivalent to the second argument
   1762      * is returned.
   1763      *
   1764      * <p>
   1765      * Special cases:
   1766      * <ul>
   1767      * <li> If either argument is a NaN, then NaN is returned.
   1768      *
   1769      * <li> If both arguments are signed zeros, a value equivalent
   1770      * to {@code direction} is returned.
   1771      *
   1772      * <li> If {@code start} is
   1773      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
   1774      * has a value such that the result should have a smaller
   1775      * magnitude, then a zero with the same sign as {@code start}
   1776      * is returned.
   1777      *
   1778      * <li> If {@code start} is infinite and
   1779      * {@code direction} has a value such that the result should
   1780      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
   1781      * same sign as {@code start} is returned.
   1782      *
   1783      * <li> If {@code start} is equal to &plusmn;
   1784      * {@link Float#MAX_VALUE} and {@code direction} has a
   1785      * value such that the result should have a larger magnitude, an
   1786      * infinity with same sign as {@code start} is returned.
   1787      * </ul>
   1788      *
   1789      * @param start  starting floating-point value
   1790      * @param direction value indicating which of
   1791      * {@code start}'s neighbors or {@code start} should
   1792      * be returned
   1793      * @return The floating-point number adjacent to {@code start} in the
   1794      * direction of {@code direction}.
   1795      * @since 1.6
   1796      */
   1797     public static float nextAfter(float start, double direction) {
   1798         return sun.misc.FpUtils.nextAfter(start, direction);
   1799     }
   1800 
   1801     /**
   1802      * Returns the floating-point value adjacent to {@code d} in
   1803      * the direction of positive infinity.  This method is
   1804      * semantically equivalent to {@code nextAfter(d,
   1805      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
   1806      * implementation may run faster than its equivalent
   1807      * {@code nextAfter} call.
   1808      *
   1809      * <p>Special Cases:
   1810      * <ul>
   1811      * <li> If the argument is NaN, the result is NaN.
   1812      *
   1813      * <li> If the argument is positive infinity, the result is
   1814      * positive infinity.
   1815      *
   1816      * <li> If the argument is zero, the result is
   1817      * {@link Double#MIN_VALUE}
   1818      *
   1819      * </ul>
   1820      *
   1821      * @param d starting floating-point value
   1822      * @return The adjacent floating-point value closer to positive
   1823      * infinity.
   1824      * @since 1.6
   1825      */
   1826     public static double nextUp(double d) {
   1827         return sun.misc.FpUtils.nextUp(d);
   1828     }
   1829 
   1830     /**
   1831      * Returns the floating-point value adjacent to {@code f} in
   1832      * the direction of positive infinity.  This method is
   1833      * semantically equivalent to {@code nextAfter(f,
   1834      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
   1835      * implementation may run faster than its equivalent
   1836      * {@code nextAfter} call.
   1837      *
   1838      * <p>Special Cases:
   1839      * <ul>
   1840      * <li> If the argument is NaN, the result is NaN.
   1841      *
   1842      * <li> If the argument is positive infinity, the result is
   1843      * positive infinity.
   1844      *
   1845      * <li> If the argument is zero, the result is
   1846      * {@link Float#MIN_VALUE}
   1847      *
   1848      * </ul>
   1849      *
   1850      * @param f starting floating-point value
   1851      * @return The adjacent floating-point value closer to positive
   1852      * infinity.
   1853      * @since 1.6
   1854      */
   1855     public static float nextUp(float f) {
   1856         return sun.misc.FpUtils.nextUp(f);
   1857     }
   1858     /**
   1859      * Returns the floating-point value adjacent to {@code d} in
   1860      * the direction of negative infinity.  This method is
   1861      * semantically equivalent to {@code nextAfter(d,
   1862      * Double.NEGATIVE_INFINITY)}; however, a
   1863      * {@code nextDown} implementation may run faster than its
   1864      * equivalent {@code nextAfter} call.
   1865      *
   1866      * <p>Special Cases:
   1867      * <ul>
   1868      * <li> If the argument is NaN, the result is NaN.
   1869      *
   1870      * <li> If the argument is negative infinity, the result is
   1871      * negative infinity.
   1872      *
   1873      * <li> If the argument is zero, the result is
   1874      * {@code -Double.MIN_VALUE}
   1875      *
   1876      * </ul>
   1877      *
   1878      * @param d  starting floating-point value
   1879      * @return The adjacent floating-point value closer to negative
   1880      * infinity.
   1881      * @since 1.8
   1882      */
   1883     public static double nextDown(double d) {
   1884         if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY)
   1885             return d;
   1886         else {
   1887             if (d == 0.0)
   1888                 return -Double.MIN_VALUE;
   1889             else
   1890                 return Double.longBitsToDouble(Double.doubleToRawLongBits(d) +
   1891                                                ((d > 0.0d)?-1L:+1L));
   1892         }
   1893     }
   1894 
   1895     /**
   1896      * Returns the floating-point value adjacent to {@code f} in
   1897      * the direction of negative infinity.  This method is
   1898      * semantically equivalent to {@code nextAfter(f,
   1899      * Float.NEGATIVE_INFINITY)}; however, a
   1900      * {@code nextDown} implementation may run faster than its
   1901      * equivalent {@code nextAfter} call.
   1902      *
   1903      * <p>Special Cases:
   1904      * <ul>
   1905      * <li> If the argument is NaN, the result is NaN.
   1906      *
   1907      * <li> If the argument is negative infinity, the result is
   1908      * negative infinity.
   1909      *
   1910      * <li> If the argument is zero, the result is
   1911      * {@code -Float.MIN_VALUE}
   1912      *
   1913      * </ul>
   1914      *
   1915      * @param f  starting floating-point value
   1916      * @return The adjacent floating-point value closer to negative
   1917      * infinity.
   1918      * @since 1.8
   1919      */
   1920     public static float nextDown(float f) {
   1921         if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY)
   1922             return f;
   1923         else {
   1924             if (f == 0.0f)
   1925                 return -Float.MIN_VALUE;
   1926             else
   1927                 return Float.intBitsToFloat(Float.floatToRawIntBits(f) +
   1928                                             ((f > 0.0f)?-1:+1));
   1929         }
   1930     }
   1931 
   1932     /**
   1933      * Return {@code d} &times;
   1934      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
   1935      * by a single correctly rounded floating-point multiply to a
   1936      * member of the double value set.  See the Java
   1937      * Language Specification for a discussion of floating-point
   1938      * value sets.  If the exponent of the result is between {@link
   1939      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
   1940      * answer is calculated exactly.  If the exponent of the result
   1941      * would be larger than {@code Double.MAX_EXPONENT}, an
   1942      * infinity is returned.  Note that if the result is subnormal,
   1943      * precision may be lost; that is, when {@code scalb(x, n)}
   1944      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
   1945      * <i>x</i>.  When the result is non-NaN, the result has the same
   1946      * sign as {@code d}.
   1947      *
   1948      * <p>Special cases:
   1949      * <ul>
   1950      * <li> If the first argument is NaN, NaN is returned.
   1951      * <li> If the first argument is infinite, then an infinity of the
   1952      * same sign is returned.
   1953      * <li> If the first argument is zero, then a zero of the same
   1954      * sign is returned.
   1955      * </ul>
   1956      *
   1957      * @param d number to be scaled by a power of two.
   1958      * @param scaleFactor power of 2 used to scale {@code d}
   1959      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
   1960      * @since 1.6
   1961      */
   1962     public static double scalb(double d, int scaleFactor) {
   1963         return sun.misc.FpUtils.scalb(d, scaleFactor);
   1964     }
   1965 
   1966     /**
   1967      * Return {@code f} &times;
   1968      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
   1969      * by a single correctly rounded floating-point multiply to a
   1970      * member of the float value set.  See the Java
   1971      * Language Specification for a discussion of floating-point
   1972      * value sets.  If the exponent of the result is between {@link
   1973      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
   1974      * answer is calculated exactly.  If the exponent of the result
   1975      * would be larger than {@code Float.MAX_EXPONENT}, an
   1976      * infinity is returned.  Note that if the result is subnormal,
   1977      * precision may be lost; that is, when {@code scalb(x, n)}
   1978      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
   1979      * <i>x</i>.  When the result is non-NaN, the result has the same
   1980      * sign as {@code f}.
   1981      *
   1982      * <p>Special cases:
   1983      * <ul>
   1984      * <li> If the first argument is NaN, NaN is returned.
   1985      * <li> If the first argument is infinite, then an infinity of the
   1986      * same sign is returned.
   1987      * <li> If the first argument is zero, then a zero of the same
   1988      * sign is returned.
   1989      * </ul>
   1990      *
   1991      * @param f number to be scaled by a power of two.
   1992      * @param scaleFactor power of 2 used to scale {@code f}
   1993      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
   1994      * @since 1.6
   1995      */
   1996     public static float scalb(float f, int scaleFactor) {
   1997         return sun.misc.FpUtils.scalb(f, scaleFactor);
   1998     }
   1999 }
   2000