Home | History | Annotate | Download | only in vixl
      1 // Copyright 2015, ARM Limited
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are met:
      6 //
      7 //   * Redistributions of source code must retain the above copyright notice,
      8 //     this list of conditions and the following disclaimer.
      9 //   * Redistributions in binary form must reproduce the above copyright notice,
     10 //     this list of conditions and the following disclaimer in the documentation
     11 //     and/or other materials provided with the distribution.
     12 //   * Neither the name of ARM Limited nor the names of its contributors may be
     13 //     used to endorse or promote products derived from this software without
     14 //     specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
     17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
     20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26 
     27 #ifndef VIXL_UTILS_H
     28 #define VIXL_UTILS_H
     29 
     30 #include <string.h>
     31 #include <cmath>
     32 #include "vixl/globals.h"
     33 #include "vixl/compiler-intrinsics.h"
     34 
     35 namespace vixl {
     36 
     37 // Macros for compile-time format checking.
     38 #if GCC_VERSION_OR_NEWER(4, 4, 0)
     39 #define PRINTF_CHECK(format_index, varargs_index) \
     40   __attribute__((format(gnu_printf, format_index, varargs_index)))
     41 #else
     42 #define PRINTF_CHECK(format_index, varargs_index)
     43 #endif
     44 
     45 // Check number width.
     46 inline bool is_intn(unsigned n, int64_t x) {
     47   VIXL_ASSERT((0 < n) && (n < 64));
     48   int64_t limit = INT64_C(1) << (n - 1);
     49   return (-limit <= x) && (x < limit);
     50 }
     51 
     52 inline bool is_uintn(unsigned n, int64_t x) {
     53   VIXL_ASSERT((0 < n) && (n < 64));
     54   return !(x >> n);
     55 }
     56 
     57 inline uint32_t truncate_to_intn(unsigned n, int64_t x) {
     58   VIXL_ASSERT((0 < n) && (n < 64));
     59   return static_cast<uint32_t>(x & ((INT64_C(1) << n) - 1));
     60 }
     61 
     62 #define INT_1_TO_63_LIST(V)                                                    \
     63 V(1)  V(2)  V(3)  V(4)  V(5)  V(6)  V(7)  V(8)                                 \
     64 V(9)  V(10) V(11) V(12) V(13) V(14) V(15) V(16)                                \
     65 V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24)                                \
     66 V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)                                \
     67 V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40)                                \
     68 V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48)                                \
     69 V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56)                                \
     70 V(57) V(58) V(59) V(60) V(61) V(62) V(63)
     71 
     72 #define DECLARE_IS_INT_N(N)                                                    \
     73 inline bool is_int##N(int64_t x) { return is_intn(N, x); }
     74 #define DECLARE_IS_UINT_N(N)                                                   \
     75 inline bool is_uint##N(int64_t x) { return is_uintn(N, x); }
     76 #define DECLARE_TRUNCATE_TO_INT_N(N)                                           \
     77 inline uint32_t truncate_to_int##N(int x) { return truncate_to_intn(N, x); }
     78 INT_1_TO_63_LIST(DECLARE_IS_INT_N)
     79 INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
     80 INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
     81 #undef DECLARE_IS_INT_N
     82 #undef DECLARE_IS_UINT_N
     83 #undef DECLARE_TRUNCATE_TO_INT_N
     84 
     85 // Bit field extraction.
     86 inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
     87   return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
     88 }
     89 
     90 inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
     91   return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
     92 }
     93 
     94 inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) {
     95   return (x << (31 - msb)) >> (lsb + 31 - msb);
     96 }
     97 
     98 inline int64_t signed_bitextract_64(int msb, int lsb, int64_t x) {
     99   return (x << (63 - msb)) >> (lsb + 63 - msb);
    100 }
    101 
    102 // Floating point representation.
    103 uint32_t float_to_rawbits(float value);
    104 uint64_t double_to_rawbits(double value);
    105 float rawbits_to_float(uint32_t bits);
    106 double rawbits_to_double(uint64_t bits);
    107 
    108 uint32_t float_sign(float val);
    109 uint32_t float_exp(float val);
    110 uint32_t float_mantissa(float val);
    111 uint32_t double_sign(double val);
    112 uint32_t double_exp(double val);
    113 uint64_t double_mantissa(double val);
    114 
    115 float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa);
    116 double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa);
    117 
    118 // An fpclassify() function for 16-bit half-precision floats.
    119 int float16classify(float16 value);
    120 
    121 // NaN tests.
    122 inline bool IsSignallingNaN(double num) {
    123   const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
    124   uint64_t raw = double_to_rawbits(num);
    125   if (std::isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
    126     return true;
    127   }
    128   return false;
    129 }
    130 
    131 
    132 inline bool IsSignallingNaN(float num) {
    133   const uint32_t kFP32QuietNaNMask = 0x00400000;
    134   uint32_t raw = float_to_rawbits(num);
    135   if (std::isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
    136     return true;
    137   }
    138   return false;
    139 }
    140 
    141 
    142 inline bool IsSignallingNaN(float16 num) {
    143   const uint16_t kFP16QuietNaNMask = 0x0200;
    144   return (float16classify(num) == FP_NAN) &&
    145          ((num & kFP16QuietNaNMask) == 0);
    146 }
    147 
    148 
    149 template <typename T>
    150 inline bool IsQuietNaN(T num) {
    151   return std::isnan(num) && !IsSignallingNaN(num);
    152 }
    153 
    154 
    155 // Convert the NaN in 'num' to a quiet NaN.
    156 inline double ToQuietNaN(double num) {
    157   const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
    158   VIXL_ASSERT(std::isnan(num));
    159   return rawbits_to_double(double_to_rawbits(num) | kFP64QuietNaNMask);
    160 }
    161 
    162 
    163 inline float ToQuietNaN(float num) {
    164   const uint32_t kFP32QuietNaNMask = 0x00400000;
    165   VIXL_ASSERT(std::isnan(num));
    166   return rawbits_to_float(float_to_rawbits(num) | kFP32QuietNaNMask);
    167 }
    168 
    169 
    170 // Fused multiply-add.
    171 inline double FusedMultiplyAdd(double op1, double op2, double a) {
    172   return fma(op1, op2, a);
    173 }
    174 
    175 
    176 inline float FusedMultiplyAdd(float op1, float op2, float a) {
    177   return fmaf(op1, op2, a);
    178 }
    179 
    180 
    181 inline uint64_t LowestSetBit(uint64_t value) {
    182   return value & -value;
    183 }
    184 
    185 
    186 template<typename T>
    187 inline int HighestSetBitPosition(T value) {
    188   VIXL_ASSERT(value != 0);
    189   return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
    190 }
    191 
    192 
    193 template<typename V>
    194 inline int WhichPowerOf2(V value) {
    195   VIXL_ASSERT(IsPowerOf2(value));
    196   return CountTrailingZeros(value);
    197 }
    198 
    199 
    200 unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
    201 
    202 
    203 template <typename T>
    204 T ReverseBits(T value) {
    205   VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
    206               (sizeof(value) == 4) || (sizeof(value) == 8));
    207   T result = 0;
    208   for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
    209     result = (result << 1) | (value & 1);
    210     value >>= 1;
    211   }
    212   return result;
    213 }
    214 
    215 
    216 template <typename T>
    217 T ReverseBytes(T value, int block_bytes_log2) {
    218   VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
    219   VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
    220   // Split the 64-bit value into an 8-bit array, where b[0] is the least
    221   // significant byte, and b[7] is the most significant.
    222   uint8_t bytes[8];
    223   uint64_t mask = UINT64_C(0xff00000000000000);
    224   for (int i = 7; i >= 0; i--) {
    225     bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
    226     mask >>= 8;
    227   }
    228 
    229   // Permutation tables for REV instructions.
    230   //  permute_table[0] is used by REV16_x, REV16_w
    231   //  permute_table[1] is used by REV32_x, REV_w
    232   //  permute_table[2] is used by REV_x
    233   VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
    234   static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1},
    235                                                {4, 5, 6, 7, 0, 1, 2, 3},
    236                                                {0, 1, 2, 3, 4, 5, 6, 7} };
    237   T result = 0;
    238   for (int i = 0; i < 8; i++) {
    239     result <<= 8;
    240     result |= bytes[permute_table[block_bytes_log2 - 1][i]];
    241   }
    242   return result;
    243 }
    244 
    245 
    246 // Pointer alignment
    247 // TODO: rename/refactor to make it specific to instructions.
    248 template<typename T>
    249 bool IsWordAligned(T pointer) {
    250   VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t));   // NOLINT(runtime/sizeof)
    251   return ((intptr_t)(pointer) & 3) == 0;
    252 }
    253 
    254 // Increment a pointer (up to 64 bits) until it has the specified alignment.
    255 template<class T>
    256 T AlignUp(T pointer, size_t alignment) {
    257   // Use C-style casts to get static_cast behaviour for integral types (T), and
    258   // reinterpret_cast behaviour for other types.
    259 
    260   uint64_t pointer_raw = (uint64_t)pointer;
    261   VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
    262 
    263   size_t align_step = (alignment - pointer_raw) % alignment;
    264   VIXL_ASSERT((pointer_raw + align_step) % alignment == 0);
    265 
    266   return (T)(pointer_raw + align_step);
    267 }
    268 
    269 // Decrement a pointer (up to 64 bits) until it has the specified alignment.
    270 template<class T>
    271 T AlignDown(T pointer, size_t alignment) {
    272   // Use C-style casts to get static_cast behaviour for integral types (T), and
    273   // reinterpret_cast behaviour for other types.
    274 
    275   uint64_t pointer_raw = (uint64_t)pointer;
    276   VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
    277 
    278   size_t align_step = pointer_raw % alignment;
    279   VIXL_ASSERT((pointer_raw - align_step) % alignment == 0);
    280 
    281   return (T)(pointer_raw - align_step);
    282 }
    283 
    284 }  // namespace vixl
    285 
    286 #endif  // VIXL_UTILS_H
    287