1 /* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 #include <errno.h> 17 #include <string.h> 18 #include <stdint.h> 19 20 #include <keystore/keystore.h> 21 #include <keymaster/softkeymaster.h> 22 23 #include <hardware/hardware.h> 24 #include <hardware/keymaster0.h> 25 26 #include <openssl/evp.h> 27 #include <openssl/bio.h> 28 #include <openssl/rsa.h> 29 #include <openssl/err.h> 30 #include <openssl/x509.h> 31 32 #include <UniquePtr.h> 33 34 // For debugging 35 // #define LOG_NDEBUG 0 36 37 #define LOG_TAG "OpenSSLKeyMaster" 38 #include <cutils/log.h> 39 40 struct BIGNUM_Delete { 41 void operator()(BIGNUM* p) const { BN_free(p); } 42 }; 43 typedef UniquePtr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM; 44 45 struct EVP_PKEY_Delete { 46 void operator()(EVP_PKEY* p) const { EVP_PKEY_free(p); } 47 }; 48 typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY; 49 50 struct PKCS8_PRIV_KEY_INFO_Delete { 51 void operator()(PKCS8_PRIV_KEY_INFO* p) const { PKCS8_PRIV_KEY_INFO_free(p); } 52 }; 53 typedef UniquePtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO; 54 55 struct DSA_Delete { 56 void operator()(DSA* p) const { DSA_free(p); } 57 }; 58 typedef UniquePtr<DSA, DSA_Delete> Unique_DSA; 59 60 struct EC_KEY_Delete { 61 void operator()(EC_KEY* p) const { EC_KEY_free(p); } 62 }; 63 typedef UniquePtr<EC_KEY, EC_KEY_Delete> Unique_EC_KEY; 64 65 struct EC_GROUP_Delete { 66 void operator()(EC_GROUP* p) const { EC_GROUP_free(p); } 67 }; 68 typedef UniquePtr<EC_GROUP, EC_GROUP_Delete> Unique_EC_GROUP; 69 70 struct RSA_Delete { 71 void operator()(RSA* p) const { RSA_free(p); } 72 }; 73 typedef UniquePtr<RSA, RSA_Delete> Unique_RSA; 74 75 struct Malloc_Free { 76 void operator()(void* p) const { free(p); } 77 }; 78 79 typedef UniquePtr<keymaster0_device_t> Unique_keymaster_device_t; 80 81 /** 82 * Many OpenSSL APIs take ownership of an argument on success but 83 * don't free the argument on failure. This means we need to tell our 84 * scoped pointers when we've transferred ownership, without 85 * triggering a warning by not using the result of release(). 86 */ 87 template <typename T, typename Delete_T> 88 inline void release_because_ownership_transferred(UniquePtr<T, Delete_T>& p) { 89 T* val __attribute__((unused)) = p.release(); 90 } 91 92 /* 93 * Checks this thread's OpenSSL error queue and logs if 94 * necessary. 95 */ 96 static void logOpenSSLError(const char* location) { 97 int error = ERR_get_error(); 98 99 if (error != 0) { 100 char message[256]; 101 ERR_error_string_n(error, message, sizeof(message)); 102 ALOGE("OpenSSL error in %s %d: %s", location, error, message); 103 } 104 105 ERR_clear_error(); 106 ERR_remove_thread_state(NULL); 107 } 108 109 static int wrap_key(EVP_PKEY* pkey, int type, uint8_t** keyBlob, size_t* keyBlobLength) { 110 /* 111 * Find the length of each size. Public key is not needed anymore 112 * but must be kept for alignment purposes. 113 */ 114 int publicLen = 0; 115 int privateLen = i2d_PrivateKey(pkey, NULL); 116 117 if (privateLen <= 0) { 118 ALOGE("private key size was too big"); 119 return -1; 120 } 121 122 /* int type + int size + private key data + int size + public key data */ 123 *keyBlobLength = get_softkey_header_size() + sizeof(type) + sizeof(publicLen) + privateLen + 124 sizeof(privateLen) + publicLen; 125 126 // derData will be returned to the caller, so allocate it with malloc. 127 UniquePtr<unsigned char, Malloc_Free> derData( 128 static_cast<unsigned char*>(malloc(*keyBlobLength))); 129 if (derData.get() == NULL) { 130 ALOGE("could not allocate memory for key blob"); 131 return -1; 132 } 133 unsigned char* p = derData.get(); 134 135 /* Write the magic value for software keys. */ 136 p = add_softkey_header(p, *keyBlobLength); 137 138 /* Write key type to allocated buffer */ 139 for (int i = sizeof(type) - 1; i >= 0; i--) { 140 *p++ = (type >> (8 * i)) & 0xFF; 141 } 142 143 /* Write public key to allocated buffer */ 144 for (int i = sizeof(publicLen) - 1; i >= 0; i--) { 145 *p++ = (publicLen >> (8 * i)) & 0xFF; 146 } 147 148 /* Write private key to allocated buffer */ 149 for (int i = sizeof(privateLen) - 1; i >= 0; i--) { 150 *p++ = (privateLen >> (8 * i)) & 0xFF; 151 } 152 if (i2d_PrivateKey(pkey, &p) != privateLen) { 153 logOpenSSLError("wrap_key"); 154 return -1; 155 } 156 157 *keyBlob = derData.release(); 158 159 return 0; 160 } 161 162 static EVP_PKEY* unwrap_key(const uint8_t* keyBlob, const size_t keyBlobLength) { 163 long publicLen = 0; 164 long privateLen = 0; 165 const uint8_t* p = keyBlob; 166 const uint8_t* const end = keyBlob + keyBlobLength; 167 168 if (keyBlob == NULL) { 169 ALOGE("supplied key blob was NULL"); 170 return NULL; 171 } 172 173 int type = 0; 174 if (keyBlobLength < (get_softkey_header_size() + sizeof(type) + sizeof(publicLen) + 1 + 175 sizeof(privateLen) + 1)) { 176 ALOGE("key blob appears to be truncated"); 177 return NULL; 178 } 179 180 if (!is_softkey(p, keyBlobLength)) { 181 ALOGE("cannot read key; it was not made by this keymaster"); 182 return NULL; 183 } 184 p += get_softkey_header_size(); 185 186 for (size_t i = 0; i < sizeof(type); i++) { 187 type = (type << 8) | *p++; 188 } 189 190 for (size_t i = 0; i < sizeof(type); i++) { 191 publicLen = (publicLen << 8) | *p++; 192 } 193 if (p + publicLen > end) { 194 ALOGE("public key length encoding error: size=%ld, end=%td", publicLen, end - p); 195 return NULL; 196 } 197 198 p += publicLen; 199 if (end - p < 2) { 200 ALOGE("private key truncated"); 201 return NULL; 202 } 203 for (size_t i = 0; i < sizeof(type); i++) { 204 privateLen = (privateLen << 8) | *p++; 205 } 206 if (p + privateLen > end) { 207 ALOGE("private key length encoding error: size=%ld, end=%td", privateLen, end - p); 208 return NULL; 209 } 210 211 Unique_EVP_PKEY pkey(EVP_PKEY_new()); 212 if (pkey.get() == NULL) { 213 logOpenSSLError("unwrap_key"); 214 return NULL; 215 } 216 EVP_PKEY* tmp = pkey.get(); 217 218 if (d2i_PrivateKey(type, &tmp, &p, privateLen) == NULL) { 219 logOpenSSLError("unwrap_key"); 220 return NULL; 221 } 222 223 return pkey.release(); 224 } 225 226 static int generate_dsa_keypair(EVP_PKEY* pkey, const keymaster_dsa_keygen_params_t* dsa_params) { 227 if (dsa_params->key_size < 512) { 228 ALOGI("Requested DSA key size is too small (<512)"); 229 return -1; 230 } 231 232 Unique_DSA dsa(DSA_new()); 233 234 if (dsa_params->generator_len == 0 || dsa_params->prime_p_len == 0 || 235 dsa_params->prime_q_len == 0 || dsa_params->generator == NULL || 236 dsa_params->prime_p == NULL || dsa_params->prime_q == NULL) { 237 if (DSA_generate_parameters_ex(dsa.get(), dsa_params->key_size, NULL, 0, NULL, NULL, 238 NULL) != 1) { 239 logOpenSSLError("generate_dsa_keypair"); 240 return -1; 241 } 242 } else { 243 dsa->g = BN_bin2bn(dsa_params->generator, dsa_params->generator_len, NULL); 244 if (dsa->g == NULL) { 245 logOpenSSLError("generate_dsa_keypair"); 246 return -1; 247 } 248 249 dsa->p = BN_bin2bn(dsa_params->prime_p, dsa_params->prime_p_len, NULL); 250 if (dsa->p == NULL) { 251 logOpenSSLError("generate_dsa_keypair"); 252 return -1; 253 } 254 255 dsa->q = BN_bin2bn(dsa_params->prime_q, dsa_params->prime_q_len, NULL); 256 if (dsa->q == NULL) { 257 logOpenSSLError("generate_dsa_keypair"); 258 return -1; 259 } 260 } 261 262 if (DSA_generate_key(dsa.get()) != 1) { 263 logOpenSSLError("generate_dsa_keypair"); 264 return -1; 265 } 266 267 if (EVP_PKEY_assign_DSA(pkey, dsa.get()) == 0) { 268 logOpenSSLError("generate_dsa_keypair"); 269 return -1; 270 } 271 release_because_ownership_transferred(dsa); 272 273 return 0; 274 } 275 276 static int generate_ec_keypair(EVP_PKEY* pkey, const keymaster_ec_keygen_params_t* ec_params) { 277 Unique_EC_GROUP group; 278 switch (ec_params->field_size) { 279 case 224: 280 group.reset(EC_GROUP_new_by_curve_name(NID_secp224r1)); 281 break; 282 case 256: 283 group.reset(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); 284 break; 285 case 384: 286 group.reset(EC_GROUP_new_by_curve_name(NID_secp384r1)); 287 break; 288 case 521: 289 group.reset(EC_GROUP_new_by_curve_name(NID_secp521r1)); 290 break; 291 default: 292 break; 293 } 294 295 if (group.get() == NULL) { 296 logOpenSSLError("generate_ec_keypair"); 297 return -1; 298 } 299 300 #if !defined(OPENSSL_IS_BORINGSSL) 301 EC_GROUP_set_point_conversion_form(group.get(), POINT_CONVERSION_UNCOMPRESSED); 302 EC_GROUP_set_asn1_flag(group.get(), OPENSSL_EC_NAMED_CURVE); 303 #endif 304 305 /* initialize EC key */ 306 Unique_EC_KEY eckey(EC_KEY_new()); 307 if (eckey.get() == NULL) { 308 logOpenSSLError("generate_ec_keypair"); 309 return -1; 310 } 311 312 if (EC_KEY_set_group(eckey.get(), group.get()) != 1) { 313 logOpenSSLError("generate_ec_keypair"); 314 return -1; 315 } 316 317 if (EC_KEY_generate_key(eckey.get()) != 1 || EC_KEY_check_key(eckey.get()) < 0) { 318 logOpenSSLError("generate_ec_keypair"); 319 return -1; 320 } 321 322 if (EVP_PKEY_assign_EC_KEY(pkey, eckey.get()) == 0) { 323 logOpenSSLError("generate_ec_keypair"); 324 return -1; 325 } 326 release_because_ownership_transferred(eckey); 327 328 return 0; 329 } 330 331 static int generate_rsa_keypair(EVP_PKEY* pkey, const keymaster_rsa_keygen_params_t* rsa_params) { 332 Unique_BIGNUM bn(BN_new()); 333 if (bn.get() == NULL) { 334 logOpenSSLError("generate_rsa_keypair"); 335 return -1; 336 } 337 338 if (BN_set_word(bn.get(), rsa_params->public_exponent) == 0) { 339 logOpenSSLError("generate_rsa_keypair"); 340 return -1; 341 } 342 343 /* initialize RSA */ 344 Unique_RSA rsa(RSA_new()); 345 if (rsa.get() == NULL) { 346 logOpenSSLError("generate_rsa_keypair"); 347 return -1; 348 } 349 350 if (!RSA_generate_key_ex(rsa.get(), rsa_params->modulus_size, bn.get(), NULL) || 351 RSA_check_key(rsa.get()) < 0) { 352 logOpenSSLError("generate_rsa_keypair"); 353 return -1; 354 } 355 356 if (EVP_PKEY_assign_RSA(pkey, rsa.get()) == 0) { 357 logOpenSSLError("generate_rsa_keypair"); 358 return -1; 359 } 360 release_because_ownership_transferred(rsa); 361 362 return 0; 363 } 364 365 __attribute__((visibility("default"))) int openssl_generate_keypair( 366 const keymaster0_device_t*, const keymaster_keypair_t key_type, const void* key_params, 367 uint8_t** keyBlob, size_t* keyBlobLength) { 368 Unique_EVP_PKEY pkey(EVP_PKEY_new()); 369 if (pkey.get() == NULL) { 370 logOpenSSLError("openssl_generate_keypair"); 371 return -1; 372 } 373 374 if (key_params == NULL) { 375 ALOGW("key_params == null"); 376 return -1; 377 } else if (key_type == TYPE_DSA) { 378 const keymaster_dsa_keygen_params_t* dsa_params = 379 (const keymaster_dsa_keygen_params_t*)key_params; 380 generate_dsa_keypair(pkey.get(), dsa_params); 381 } else if (key_type == TYPE_EC) { 382 const keymaster_ec_keygen_params_t* ec_params = 383 (const keymaster_ec_keygen_params_t*)key_params; 384 generate_ec_keypair(pkey.get(), ec_params); 385 } else if (key_type == TYPE_RSA) { 386 const keymaster_rsa_keygen_params_t* rsa_params = 387 (const keymaster_rsa_keygen_params_t*)key_params; 388 generate_rsa_keypair(pkey.get(), rsa_params); 389 } else { 390 ALOGW("Unsupported key type %d", key_type); 391 return -1; 392 } 393 394 if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), keyBlob, keyBlobLength)) { 395 return -1; 396 } 397 398 return 0; 399 } 400 401 __attribute__((visibility("default"))) int openssl_import_keypair(const keymaster0_device_t*, 402 const uint8_t* key, 403 const size_t key_length, 404 uint8_t** key_blob, 405 size_t* key_blob_length) { 406 if (key == NULL) { 407 ALOGW("input key == NULL"); 408 return -1; 409 } else if (key_blob == NULL || key_blob_length == NULL) { 410 ALOGW("output key blob or length == NULL"); 411 return -1; 412 } 413 414 Unique_PKCS8_PRIV_KEY_INFO pkcs8(d2i_PKCS8_PRIV_KEY_INFO(NULL, &key, key_length)); 415 if (pkcs8.get() == NULL) { 416 logOpenSSLError("openssl_import_keypair"); 417 return -1; 418 } 419 420 /* assign to EVP */ 421 Unique_EVP_PKEY pkey(EVP_PKCS82PKEY(pkcs8.get())); 422 if (pkey.get() == NULL) { 423 logOpenSSLError("openssl_import_keypair"); 424 return -1; 425 } 426 427 if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), key_blob, key_blob_length)) { 428 return -1; 429 } 430 431 return 0; 432 } 433 434 __attribute__((visibility("default"))) int openssl_get_keypair_public(const keymaster0_device_t*, 435 const uint8_t* key_blob, 436 const size_t key_blob_length, 437 uint8_t** x509_data, 438 size_t* x509_data_length) { 439 if (x509_data == NULL || x509_data_length == NULL) { 440 ALOGW("output public key buffer == NULL"); 441 return -1; 442 } 443 444 Unique_EVP_PKEY pkey(unwrap_key(key_blob, key_blob_length)); 445 if (pkey.get() == NULL) { 446 return -1; 447 } 448 449 int len = i2d_PUBKEY(pkey.get(), NULL); 450 if (len <= 0) { 451 logOpenSSLError("openssl_get_keypair_public"); 452 return -1; 453 } 454 455 UniquePtr<uint8_t, Malloc_Free> key(static_cast<uint8_t*>(malloc(len))); 456 if (key.get() == NULL) { 457 ALOGE("Could not allocate memory for public key data"); 458 return -1; 459 } 460 461 unsigned char* tmp = reinterpret_cast<unsigned char*>(key.get()); 462 if (i2d_PUBKEY(pkey.get(), &tmp) != len) { 463 logOpenSSLError("openssl_get_keypair_public"); 464 return -1; 465 } 466 467 ALOGV("Length of x509 data is %d", len); 468 *x509_data_length = len; 469 *x509_data = key.release(); 470 471 return 0; 472 } 473 474 static int sign_dsa(EVP_PKEY* pkey, keymaster_dsa_sign_params_t* sign_params, const uint8_t* data, 475 const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) { 476 if (sign_params->digest_type != DIGEST_NONE) { 477 ALOGW("Cannot handle digest type %d", sign_params->digest_type); 478 return -1; 479 } 480 481 Unique_DSA dsa(EVP_PKEY_get1_DSA(pkey)); 482 if (dsa.get() == NULL) { 483 logOpenSSLError("openssl_sign_dsa"); 484 return -1; 485 } 486 487 unsigned int dsaSize = DSA_size(dsa.get()); 488 UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dsaSize))); 489 if (signedDataPtr.get() == NULL) { 490 logOpenSSLError("openssl_sign_dsa"); 491 return -1; 492 } 493 494 unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); 495 if (DSA_sign(0, data, dataLength, tmp, &dsaSize, dsa.get()) <= 0) { 496 logOpenSSLError("openssl_sign_dsa"); 497 return -1; 498 } 499 500 *signedDataLength = dsaSize; 501 *signedData = signedDataPtr.release(); 502 503 return 0; 504 } 505 506 static int sign_ec(EVP_PKEY* pkey, keymaster_ec_sign_params_t* sign_params, const uint8_t* data, 507 const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) { 508 if (sign_params->digest_type != DIGEST_NONE) { 509 ALOGW("Cannot handle digest type %d", sign_params->digest_type); 510 return -1; 511 } 512 513 Unique_EC_KEY eckey(EVP_PKEY_get1_EC_KEY(pkey)); 514 if (eckey.get() == NULL) { 515 logOpenSSLError("openssl_sign_ec"); 516 return -1; 517 } 518 519 unsigned int ecdsaSize = ECDSA_size(eckey.get()); 520 UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(ecdsaSize))); 521 if (signedDataPtr.get() == NULL) { 522 logOpenSSLError("openssl_sign_ec"); 523 return -1; 524 } 525 526 unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); 527 if (ECDSA_sign(0, data, dataLength, tmp, &ecdsaSize, eckey.get()) <= 0) { 528 logOpenSSLError("openssl_sign_ec"); 529 return -1; 530 } 531 532 *signedDataLength = ecdsaSize; 533 *signedData = signedDataPtr.release(); 534 535 return 0; 536 } 537 538 static int sign_rsa(EVP_PKEY* pkey, keymaster_rsa_sign_params_t* sign_params, const uint8_t* data, 539 const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) { 540 if (sign_params->digest_type != DIGEST_NONE) { 541 ALOGW("Cannot handle digest type %d", sign_params->digest_type); 542 return -1; 543 } else if (sign_params->padding_type != PADDING_NONE) { 544 ALOGW("Cannot handle padding type %d", sign_params->padding_type); 545 return -1; 546 } 547 548 Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey)); 549 if (rsa.get() == NULL) { 550 logOpenSSLError("openssl_sign_rsa"); 551 return -1; 552 } 553 554 UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dataLength))); 555 if (signedDataPtr.get() == NULL) { 556 logOpenSSLError("openssl_sign_rsa"); 557 return -1; 558 } 559 560 unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); 561 if (RSA_private_encrypt(dataLength, data, tmp, rsa.get(), RSA_NO_PADDING) <= 0) { 562 logOpenSSLError("openssl_sign_rsa"); 563 return -1; 564 } 565 566 *signedDataLength = dataLength; 567 *signedData = signedDataPtr.release(); 568 569 return 0; 570 } 571 572 __attribute__((visibility("default"))) int openssl_sign_data( 573 const keymaster0_device_t*, const void* params, const uint8_t* keyBlob, 574 const size_t keyBlobLength, const uint8_t* data, const size_t dataLength, uint8_t** signedData, 575 size_t* signedDataLength) { 576 if (data == NULL) { 577 ALOGW("input data to sign == NULL"); 578 return -1; 579 } else if (signedData == NULL || signedDataLength == NULL) { 580 ALOGW("output signature buffer == NULL"); 581 return -1; 582 } 583 584 Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); 585 if (pkey.get() == NULL) { 586 return -1; 587 } 588 589 int type = EVP_PKEY_type(pkey->type); 590 if (type == EVP_PKEY_DSA) { 591 const keymaster_dsa_sign_params_t* sign_params = 592 reinterpret_cast<const keymaster_dsa_sign_params_t*>(params); 593 return sign_dsa(pkey.get(), const_cast<keymaster_dsa_sign_params_t*>(sign_params), data, 594 dataLength, signedData, signedDataLength); 595 } else if (type == EVP_PKEY_EC) { 596 const keymaster_ec_sign_params_t* sign_params = 597 reinterpret_cast<const keymaster_ec_sign_params_t*>(params); 598 return sign_ec(pkey.get(), const_cast<keymaster_ec_sign_params_t*>(sign_params), data, 599 dataLength, signedData, signedDataLength); 600 } else if (type == EVP_PKEY_RSA) { 601 const keymaster_rsa_sign_params_t* sign_params = 602 reinterpret_cast<const keymaster_rsa_sign_params_t*>(params); 603 return sign_rsa(pkey.get(), const_cast<keymaster_rsa_sign_params_t*>(sign_params), data, 604 dataLength, signedData, signedDataLength); 605 } else { 606 ALOGW("Unsupported key type"); 607 return -1; 608 } 609 } 610 611 static int verify_dsa(EVP_PKEY* pkey, keymaster_dsa_sign_params_t* sign_params, 612 const uint8_t* signedData, const size_t signedDataLength, 613 const uint8_t* signature, const size_t signatureLength) { 614 if (sign_params->digest_type != DIGEST_NONE) { 615 ALOGW("Cannot handle digest type %d", sign_params->digest_type); 616 return -1; 617 } 618 619 Unique_DSA dsa(EVP_PKEY_get1_DSA(pkey)); 620 if (dsa.get() == NULL) { 621 logOpenSSLError("openssl_verify_dsa"); 622 return -1; 623 } 624 625 if (DSA_verify(0, signedData, signedDataLength, signature, signatureLength, dsa.get()) <= 0) { 626 logOpenSSLError("openssl_verify_dsa"); 627 return -1; 628 } 629 630 return 0; 631 } 632 633 static int verify_ec(EVP_PKEY* pkey, keymaster_ec_sign_params_t* sign_params, 634 const uint8_t* signedData, const size_t signedDataLength, 635 const uint8_t* signature, const size_t signatureLength) { 636 if (sign_params->digest_type != DIGEST_NONE) { 637 ALOGW("Cannot handle digest type %d", sign_params->digest_type); 638 return -1; 639 } 640 641 Unique_EC_KEY eckey(EVP_PKEY_get1_EC_KEY(pkey)); 642 if (eckey.get() == NULL) { 643 logOpenSSLError("openssl_verify_ec"); 644 return -1; 645 } 646 647 if (ECDSA_verify(0, signedData, signedDataLength, signature, signatureLength, eckey.get()) <= 648 0) { 649 logOpenSSLError("openssl_verify_ec"); 650 return -1; 651 } 652 653 return 0; 654 } 655 656 static int verify_rsa(EVP_PKEY* pkey, keymaster_rsa_sign_params_t* sign_params, 657 const uint8_t* signedData, const size_t signedDataLength, 658 const uint8_t* signature, const size_t signatureLength) { 659 if (sign_params->digest_type != DIGEST_NONE) { 660 ALOGW("Cannot handle digest type %d", sign_params->digest_type); 661 return -1; 662 } else if (sign_params->padding_type != PADDING_NONE) { 663 ALOGW("Cannot handle padding type %d", sign_params->padding_type); 664 return -1; 665 } else if (signatureLength != signedDataLength) { 666 ALOGW("signed data length must be signature length"); 667 return -1; 668 } 669 670 Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey)); 671 if (rsa.get() == NULL) { 672 logOpenSSLError("openssl_verify_data"); 673 return -1; 674 } 675 676 UniquePtr<uint8_t[]> dataPtr(new uint8_t[signedDataLength]); 677 if (dataPtr.get() == NULL) { 678 logOpenSSLError("openssl_verify_data"); 679 return -1; 680 } 681 682 unsigned char* tmp = reinterpret_cast<unsigned char*>(dataPtr.get()); 683 if (!RSA_public_decrypt(signatureLength, signature, tmp, rsa.get(), RSA_NO_PADDING)) { 684 logOpenSSLError("openssl_verify_data"); 685 return -1; 686 } 687 688 int result = 0; 689 for (size_t i = 0; i < signedDataLength; i++) { 690 result |= tmp[i] ^ signedData[i]; 691 } 692 693 return result == 0 ? 0 : -1; 694 } 695 696 __attribute__((visibility("default"))) int openssl_verify_data( 697 const keymaster0_device_t*, const void* params, const uint8_t* keyBlob, 698 const size_t keyBlobLength, const uint8_t* signedData, const size_t signedDataLength, 699 const uint8_t* signature, const size_t signatureLength) { 700 if (signedData == NULL || signature == NULL) { 701 ALOGW("data or signature buffers == NULL"); 702 return -1; 703 } 704 705 Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); 706 if (pkey.get() == NULL) { 707 return -1; 708 } 709 710 int type = EVP_PKEY_type(pkey->type); 711 if (type == EVP_PKEY_DSA) { 712 const keymaster_dsa_sign_params_t* sign_params = 713 reinterpret_cast<const keymaster_dsa_sign_params_t*>(params); 714 return verify_dsa(pkey.get(), const_cast<keymaster_dsa_sign_params_t*>(sign_params), 715 signedData, signedDataLength, signature, signatureLength); 716 } else if (type == EVP_PKEY_RSA) { 717 const keymaster_rsa_sign_params_t* sign_params = 718 reinterpret_cast<const keymaster_rsa_sign_params_t*>(params); 719 return verify_rsa(pkey.get(), const_cast<keymaster_rsa_sign_params_t*>(sign_params), 720 signedData, signedDataLength, signature, signatureLength); 721 } else if (type == EVP_PKEY_EC) { 722 const keymaster_ec_sign_params_t* sign_params = 723 reinterpret_cast<const keymaster_ec_sign_params_t*>(params); 724 return verify_ec(pkey.get(), const_cast<keymaster_ec_sign_params_t*>(sign_params), 725 signedData, signedDataLength, signature, signatureLength); 726 } else { 727 ALOGW("Unsupported key type %d", type); 728 return -1; 729 } 730 } 731 732 /* Close an opened OpenSSL instance */ 733 static int openssl_close(hw_device_t* dev) { 734 delete dev; 735 return 0; 736 } 737 738 /* 739 * Generic device handling 740 */ 741 __attribute__((visibility("default"))) int openssl_open(const hw_module_t* module, const char* name, 742 hw_device_t** device) { 743 if (strcmp(name, KEYSTORE_KEYMASTER) != 0) 744 return -EINVAL; 745 746 Unique_keymaster_device_t dev(new keymaster0_device_t); 747 if (dev.get() == NULL) 748 return -ENOMEM; 749 750 dev->common.tag = HARDWARE_DEVICE_TAG; 751 dev->common.version = 1; 752 dev->common.module = (struct hw_module_t*)module; 753 dev->common.close = openssl_close; 754 755 dev->flags = KEYMASTER_SOFTWARE_ONLY | KEYMASTER_BLOBS_ARE_STANDALONE | KEYMASTER_SUPPORTS_DSA | 756 KEYMASTER_SUPPORTS_EC; 757 758 dev->generate_keypair = openssl_generate_keypair; 759 dev->import_keypair = openssl_import_keypair; 760 dev->get_keypair_public = openssl_get_keypair_public; 761 dev->delete_keypair = NULL; 762 dev->delete_all = NULL; 763 dev->sign_data = openssl_sign_data; 764 dev->verify_data = openssl_verify_data; 765 766 ERR_load_crypto_strings(); 767 ERR_load_BIO_strings(); 768 769 *device = reinterpret_cast<hw_device_t*>(dev.release()); 770 771 return 0; 772 } 773 774 static struct hw_module_methods_t keystore_module_methods = { 775 .open = openssl_open, 776 }; 777 778 struct keystore_module softkeymaster_module __attribute__((visibility("default"))) = { 779 .common = 780 { 781 .tag = HARDWARE_MODULE_TAG, 782 .module_api_version = KEYMASTER_MODULE_API_VERSION_0_2, 783 .hal_api_version = HARDWARE_HAL_API_VERSION, 784 .id = KEYSTORE_HARDWARE_MODULE_ID, 785 .name = "Keymaster OpenSSL HAL", 786 .author = "The Android Open Source Project", 787 .methods = &keystore_module_methods, 788 .dso = 0, 789 .reserved = {}, 790 }, 791 }; 792