Home | History | Annotate | Download | only in SparseLU
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_SPARSELU_GEMM_KERNEL_H
     11 #define EIGEN_SPARSELU_GEMM_KERNEL_H
     12 
     13 namespace Eigen {
     14 
     15 namespace internal {
     16 
     17 
     18 /** \internal
     19   * A general matrix-matrix product kernel optimized for the SparseLU factorization.
     20   *  - A, B, and C must be column major
     21   *  - lda and ldc must be multiples of the respective packet size
     22   *  - C must have the same alignment as A
     23   */
     24 template<typename Scalar,typename Index>
     25 EIGEN_DONT_INLINE
     26 void sparselu_gemm(Index m, Index n, Index d, const Scalar* A, Index lda, const Scalar* B, Index ldb, Scalar* C, Index ldc)
     27 {
     28   using namespace Eigen::internal;
     29 
     30   typedef typename packet_traits<Scalar>::type Packet;
     31   enum {
     32     NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
     33     PacketSize = packet_traits<Scalar>::size,
     34     PM = 8,                             // peeling in M
     35     RN = 2,                             // register blocking
     36     RK = NumberOfRegisters>=16 ? 4 : 2, // register blocking
     37     BM = 4096/sizeof(Scalar),           // number of rows of A-C per chunk
     38     SM = PM*PacketSize                  // step along M
     39   };
     40   Index d_end = (d/RK)*RK;    // number of columns of A (rows of B) suitable for full register blocking
     41   Index n_end = (n/RN)*RN;    // number of columns of B-C suitable for processing RN columns at once
     42   Index i0 = internal::first_aligned(A,m);
     43 
     44   eigen_internal_assert(((lda%PacketSize)==0) && ((ldc%PacketSize)==0) && (i0==internal::first_aligned(C,m)));
     45 
     46   // handle the non aligned rows of A and C without any optimization:
     47   for(Index i=0; i<i0; ++i)
     48   {
     49     for(Index j=0; j<n; ++j)
     50     {
     51       Scalar c = C[i+j*ldc];
     52       for(Index k=0; k<d; ++k)
     53         c += B[k+j*ldb] * A[i+k*lda];
     54       C[i+j*ldc] = c;
     55     }
     56   }
     57   // process the remaining rows per chunk of BM rows
     58   for(Index ib=i0; ib<m; ib+=BM)
     59   {
     60     Index actual_b = std::min<Index>(BM, m-ib);                 // actual number of rows
     61     Index actual_b_end1 = (actual_b/SM)*SM;                   // actual number of rows suitable for peeling
     62     Index actual_b_end2 = (actual_b/PacketSize)*PacketSize;   // actual number of rows suitable for vectorization
     63 
     64     // Let's process two columns of B-C at once
     65     for(Index j=0; j<n_end; j+=RN)
     66     {
     67       const Scalar* Bc0 = B+(j+0)*ldb;
     68       const Scalar* Bc1 = B+(j+1)*ldb;
     69 
     70       for(Index k=0; k<d_end; k+=RK)
     71       {
     72 
     73         // load and expand a RN x RK block of B
     74         Packet b00, b10, b20, b30, b01, b11, b21, b31;
     75                   b00 = pset1<Packet>(Bc0[0]);
     76                   b10 = pset1<Packet>(Bc0[1]);
     77         if(RK==4) b20 = pset1<Packet>(Bc0[2]);
     78         if(RK==4) b30 = pset1<Packet>(Bc0[3]);
     79                   b01 = pset1<Packet>(Bc1[0]);
     80                   b11 = pset1<Packet>(Bc1[1]);
     81         if(RK==4) b21 = pset1<Packet>(Bc1[2]);
     82         if(RK==4) b31 = pset1<Packet>(Bc1[3]);
     83 
     84         Packet a0, a1, a2, a3, c0, c1, t0, t1;
     85 
     86         const Scalar* A0 = A+ib+(k+0)*lda;
     87         const Scalar* A1 = A+ib+(k+1)*lda;
     88         const Scalar* A2 = A+ib+(k+2)*lda;
     89         const Scalar* A3 = A+ib+(k+3)*lda;
     90 
     91         Scalar* C0 = C+ib+(j+0)*ldc;
     92         Scalar* C1 = C+ib+(j+1)*ldc;
     93 
     94                   a0 = pload<Packet>(A0);
     95                   a1 = pload<Packet>(A1);
     96         if(RK==4)
     97         {
     98           a2 = pload<Packet>(A2);
     99           a3 = pload<Packet>(A3);
    100         }
    101         else
    102         {
    103           // workaround "may be used uninitialized in this function" warning
    104           a2 = a3 = a0;
    105         }
    106 
    107 #define KMADD(c, a, b, tmp) {tmp = b; tmp = pmul(a,tmp); c = padd(c,tmp);}
    108 #define WORK(I)  \
    109                     c0 = pload<Packet>(C0+i+(I)*PacketSize);   \
    110                     c1 = pload<Packet>(C1+i+(I)*PacketSize);   \
    111                     KMADD(c0, a0, b00, t0)      \
    112                     KMADD(c1, a0, b01, t1)      \
    113                     a0 = pload<Packet>(A0+i+(I+1)*PacketSize); \
    114                     KMADD(c0, a1, b10, t0)      \
    115                     KMADD(c1, a1, b11, t1)       \
    116                     a1 = pload<Packet>(A1+i+(I+1)*PacketSize); \
    117           if(RK==4) KMADD(c0, a2, b20, t0)       \
    118           if(RK==4) KMADD(c1, a2, b21, t1)       \
    119           if(RK==4) a2 = pload<Packet>(A2+i+(I+1)*PacketSize); \
    120           if(RK==4) KMADD(c0, a3, b30, t0)       \
    121           if(RK==4) KMADD(c1, a3, b31, t1)       \
    122           if(RK==4) a3 = pload<Packet>(A3+i+(I+1)*PacketSize); \
    123                     pstore(C0+i+(I)*PacketSize, c0);           \
    124                     pstore(C1+i+(I)*PacketSize, c1)
    125 
    126         // process rows of A' - C' with aggressive vectorization and peeling
    127         for(Index i=0; i<actual_b_end1; i+=PacketSize*8)
    128         {
    129           EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL1");
    130                     prefetch((A0+i+(5)*PacketSize));
    131                     prefetch((A1+i+(5)*PacketSize));
    132           if(RK==4) prefetch((A2+i+(5)*PacketSize));
    133           if(RK==4) prefetch((A3+i+(5)*PacketSize));
    134                     WORK(0);
    135                     WORK(1);
    136                     WORK(2);
    137                     WORK(3);
    138                     WORK(4);
    139                     WORK(5);
    140                     WORK(6);
    141                     WORK(7);
    142         }
    143         // process the remaining rows with vectorization only
    144         for(Index i=actual_b_end1; i<actual_b_end2; i+=PacketSize)
    145         {
    146           WORK(0);
    147         }
    148 #undef WORK
    149         // process the remaining rows without vectorization
    150         for(Index i=actual_b_end2; i<actual_b; ++i)
    151         {
    152           if(RK==4)
    153           {
    154             C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]+A2[i]*Bc0[2]+A3[i]*Bc0[3];
    155             C1[i] += A0[i]*Bc1[0]+A1[i]*Bc1[1]+A2[i]*Bc1[2]+A3[i]*Bc1[3];
    156           }
    157           else
    158           {
    159             C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1];
    160             C1[i] += A0[i]*Bc1[0]+A1[i]*Bc1[1];
    161           }
    162         }
    163 
    164         Bc0 += RK;
    165         Bc1 += RK;
    166       } // peeled loop on k
    167     } // peeled loop on the columns j
    168     // process the last column (we now perform a matrux-vector product)
    169     if((n-n_end)>0)
    170     {
    171       const Scalar* Bc0 = B+(n-1)*ldb;
    172 
    173       for(Index k=0; k<d_end; k+=RK)
    174       {
    175 
    176         // load and expand a 1 x RK block of B
    177         Packet b00, b10, b20, b30;
    178                   b00 = pset1<Packet>(Bc0[0]);
    179                   b10 = pset1<Packet>(Bc0[1]);
    180         if(RK==4) b20 = pset1<Packet>(Bc0[2]);
    181         if(RK==4) b30 = pset1<Packet>(Bc0[3]);
    182 
    183         Packet a0, a1, a2, a3, c0, t0/*, t1*/;
    184 
    185         const Scalar* A0 = A+ib+(k+0)*lda;
    186         const Scalar* A1 = A+ib+(k+1)*lda;
    187         const Scalar* A2 = A+ib+(k+2)*lda;
    188         const Scalar* A3 = A+ib+(k+3)*lda;
    189 
    190         Scalar* C0 = C+ib+(n_end)*ldc;
    191 
    192                   a0 = pload<Packet>(A0);
    193                   a1 = pload<Packet>(A1);
    194         if(RK==4)
    195         {
    196           a2 = pload<Packet>(A2);
    197           a3 = pload<Packet>(A3);
    198         }
    199         else
    200         {
    201           // workaround "may be used uninitialized in this function" warning
    202           a2 = a3 = a0;
    203         }
    204 
    205 #define WORK(I) \
    206                   c0 = pload<Packet>(C0+i+(I)*PacketSize);   \
    207                   KMADD(c0, a0, b00, t0)       \
    208                   a0 = pload<Packet>(A0+i+(I+1)*PacketSize); \
    209                   KMADD(c0, a1, b10, t0)       \
    210                   a1 = pload<Packet>(A1+i+(I+1)*PacketSize); \
    211         if(RK==4) KMADD(c0, a2, b20, t0)       \
    212         if(RK==4) a2 = pload<Packet>(A2+i+(I+1)*PacketSize); \
    213         if(RK==4) KMADD(c0, a3, b30, t0)       \
    214         if(RK==4) a3 = pload<Packet>(A3+i+(I+1)*PacketSize); \
    215                   pstore(C0+i+(I)*PacketSize, c0);
    216 
    217         // agressive vectorization and peeling
    218         for(Index i=0; i<actual_b_end1; i+=PacketSize*8)
    219         {
    220           EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL2");
    221           WORK(0);
    222           WORK(1);
    223           WORK(2);
    224           WORK(3);
    225           WORK(4);
    226           WORK(5);
    227           WORK(6);
    228           WORK(7);
    229         }
    230         // vectorization only
    231         for(Index i=actual_b_end1; i<actual_b_end2; i+=PacketSize)
    232         {
    233           WORK(0);
    234         }
    235         // remaining scalars
    236         for(Index i=actual_b_end2; i<actual_b; ++i)
    237         {
    238           if(RK==4)
    239             C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]+A2[i]*Bc0[2]+A3[i]*Bc0[3];
    240           else
    241             C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1];
    242         }
    243 
    244         Bc0 += RK;
    245 #undef WORK
    246       }
    247     }
    248 
    249     // process the last columns of A, corresponding to the last rows of B
    250     Index rd = d-d_end;
    251     if(rd>0)
    252     {
    253       for(Index j=0; j<n; ++j)
    254       {
    255         enum {
    256           Alignment = PacketSize>1 ? Aligned : 0
    257         };
    258         typedef Map<Matrix<Scalar,Dynamic,1>, Alignment > MapVector;
    259         typedef Map<const Matrix<Scalar,Dynamic,1>, Alignment > ConstMapVector;
    260         if(rd==1)       MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b);
    261 
    262         else if(rd==2)  MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b)
    263                                                         + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b);
    264 
    265         else            MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b)
    266                                                         + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b)
    267                                                         + B[2+d_end+j*ldb] * ConstMapVector(A+(d_end+2)*lda+ib, actual_b);
    268       }
    269     }
    270 
    271   } // blocking on the rows of A and C
    272 }
    273 #undef KMADD
    274 
    275 } // namespace internal
    276 
    277 } // namespace Eigen
    278 
    279 #endif // EIGEN_SPARSELU_GEMM_KERNEL_H
    280