Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2013 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkMipMap.h"
      9 #include "SkBitmap.h"
     10 #include "SkColorPriv.h"
     11 #include "SkMath.h"
     12 #include "SkNx.h"
     13 #include "SkTypes.h"
     14 
     15 //
     16 // ColorTypeFilter is the "Type" we pass to some downsample template functions.
     17 // It controls how we expand a pixel into a large type, with space between each component,
     18 // so we can then perform our simple filter (either box or triangle) and store the intermediates
     19 // in the expanded type.
     20 //
     21 
     22 struct ColorTypeFilter_8888 {
     23     typedef uint32_t Type;
     24 #if defined(SKNX_IS_FAST)
     25     static Sk4h Expand(uint32_t x) {
     26         return SkNx_cast<uint16_t>(Sk4b::Load(&x));
     27     }
     28     static uint32_t Compact(const Sk4h& x) {
     29         uint32_t r;
     30         SkNx_cast<uint8_t>(x).store(&r);
     31         return r;
     32     }
     33 #else
     34     static uint64_t Expand(uint32_t x) {
     35         return (x & 0xFF00FF) | ((uint64_t)(x & 0xFF00FF00) << 24);
     36     }
     37     static uint32_t Compact(uint64_t x) {
     38         return (uint32_t)((x & 0xFF00FF) | ((x >> 24) & 0xFF00FF00));
     39     }
     40 #endif
     41 };
     42 
     43 struct ColorTypeFilter_565 {
     44     typedef uint16_t Type;
     45     static uint32_t Expand(uint16_t x) {
     46         return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16);
     47     }
     48     static uint16_t Compact(uint32_t x) {
     49         return (x & ~SK_G16_MASK_IN_PLACE) | ((x >> 16) & SK_G16_MASK_IN_PLACE);
     50     }
     51 };
     52 
     53 struct ColorTypeFilter_4444 {
     54     typedef uint16_t Type;
     55     static uint32_t Expand(uint16_t x) {
     56         return (x & 0xF0F) | ((x & ~0xF0F) << 12);
     57     }
     58     static uint16_t Compact(uint32_t x) {
     59         return (x & 0xF0F) | ((x >> 12) & ~0xF0F);
     60     }
     61 };
     62 
     63 struct ColorTypeFilter_8 {
     64     typedef uint8_t Type;
     65     static unsigned Expand(unsigned x) {
     66         return x;
     67     }
     68     static uint8_t Compact(unsigned x) {
     69         return (uint8_t)x;
     70     }
     71 };
     72 
     73 template <typename T> T add_121(const T& a, const T& b, const T& c) {
     74     return a + b + b + c;
     75 }
     76 
     77 //
     78 //  To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50)
     79 //  If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50)
     80 //  In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings,
     81 //  else for even cases, we just use a 2x box filter.
     82 //
     83 //  This produces 4 possible filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of src pixels
     84 //  we need to sample in each dimension to produce 1 dst pixel.
     85 //
     86 
     87 template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) {
     88     auto p0 = static_cast<const typename F::Type*>(src);
     89     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
     90     auto d = static_cast<typename F::Type*>(dst);
     91 
     92     for (int i = 0; i < count; ++i) {
     93         auto c00 = F::Expand(p0[0]);
     94         auto c01 = F::Expand(p0[1]);
     95         auto c10 = F::Expand(p1[0]);
     96         auto c11 = F::Expand(p1[1]);
     97 
     98         auto c = c00 + c10 + c01 + c11;
     99         d[i] = F::Compact(c >> 2);
    100         p0 += 2;
    101         p1 += 2;
    102     }
    103 }
    104 
    105 template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) {
    106     SkASSERT(count > 0);
    107     auto p0 = static_cast<const typename F::Type*>(src);
    108     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    109     auto d = static_cast<typename F::Type*>(dst);
    110 
    111     auto c02 = F::Expand(p0[0]);
    112     auto c12 = F::Expand(p1[0]);
    113     for (int i = 0; i < count; ++i) {
    114         auto c00 = c02;
    115         auto c01 = F::Expand(p0[1]);
    116              c02 = F::Expand(p0[2]);
    117         auto c10 = c12;
    118         auto c11 = F::Expand(p1[1]);
    119              c12 = F::Expand(p1[2]);
    120 
    121         auto c = add_121(c00, c01, c02) + add_121(c10, c11, c12);
    122         d[i] = F::Compact(c >> 3);
    123         p0 += 2;
    124         p1 += 2;
    125     }
    126 }
    127 
    128 template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) {
    129     auto p0 = static_cast<const typename F::Type*>(src);
    130     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    131     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
    132     auto d = static_cast<typename F::Type*>(dst);
    133 
    134     for (int i = 0; i < count; ++i) {
    135         auto c00 = F::Expand(p0[0]);
    136         auto c01 = F::Expand(p0[1]);
    137         auto c10 = F::Expand(p1[0]);
    138         auto c11 = F::Expand(p1[1]);
    139         auto c20 = F::Expand(p2[0]);
    140         auto c21 = F::Expand(p2[1]);
    141 
    142         auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21);
    143         d[i] = F::Compact(c >> 3);
    144         p0 += 2;
    145         p1 += 2;
    146         p2 += 2;
    147     }
    148 }
    149 
    150 template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) {
    151     auto p0 = static_cast<const typename F::Type*>(src);
    152     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    153     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
    154     auto d = static_cast<typename F::Type*>(dst);
    155 
    156     auto c02 = F::Expand(p0[0]);
    157     auto c12 = F::Expand(p1[0]);
    158     auto c22 = F::Expand(p2[0]);
    159     for (int i = 0; i < count; ++i) {
    160         auto c00 = c02;
    161         auto c01 = F::Expand(p0[1]);
    162              c02 = F::Expand(p0[2]);
    163         auto c10 = c12;
    164         auto c11 = F::Expand(p1[1]);
    165              c12 = F::Expand(p1[2]);
    166         auto c20 = c22;
    167         auto c21 = F::Expand(p2[1]);
    168              c22 = F::Expand(p2[2]);
    169 
    170         auto c = add_121(c00, c01, c02) + (add_121(c10, c11, c12) << 1) + add_121(c20, c21, c22);
    171         d[i] = F::Compact(c >> 4);
    172         p0 += 2;
    173         p1 += 2;
    174         p2 += 2;
    175     }
    176 }
    177 
    178 ///////////////////////////////////////////////////////////////////////////////////////////////////
    179 
    180 size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) {
    181     if (levelCount < 0) {
    182         return 0;
    183     }
    184     int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize;
    185     if (!sk_64_isS32(size)) {
    186         return 0;
    187     }
    188     return sk_64_asS32(size);
    189 }
    190 
    191 SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
    192     typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count);
    193 
    194     FilterProc* proc_2_2 = nullptr;
    195     FilterProc* proc_2_3 = nullptr;
    196     FilterProc* proc_3_2 = nullptr;
    197     FilterProc* proc_3_3 = nullptr;
    198 
    199     const SkColorType ct = src.colorType();
    200     const SkAlphaType at = src.alphaType();
    201     switch (ct) {
    202         case kRGBA_8888_SkColorType:
    203         case kBGRA_8888_SkColorType:
    204             proc_2_2 = downsample_2_2<ColorTypeFilter_8888>;
    205             proc_2_3 = downsample_2_3<ColorTypeFilter_8888>;
    206             proc_3_2 = downsample_3_2<ColorTypeFilter_8888>;
    207             proc_3_3 = downsample_3_3<ColorTypeFilter_8888>;
    208             break;
    209         case kRGB_565_SkColorType:
    210             proc_2_2 = downsample_2_2<ColorTypeFilter_565>;
    211             proc_2_3 = downsample_2_3<ColorTypeFilter_565>;
    212             proc_3_2 = downsample_3_2<ColorTypeFilter_565>;
    213             proc_3_3 = downsample_3_3<ColorTypeFilter_565>;
    214             break;
    215         case kARGB_4444_SkColorType:
    216             proc_2_2 = downsample_2_2<ColorTypeFilter_4444>;
    217             proc_2_3 = downsample_2_3<ColorTypeFilter_4444>;
    218             proc_3_2 = downsample_3_2<ColorTypeFilter_4444>;
    219             proc_3_3 = downsample_3_3<ColorTypeFilter_4444>;
    220             break;
    221         case kAlpha_8_SkColorType:
    222         case kGray_8_SkColorType:
    223             proc_2_2 = downsample_2_2<ColorTypeFilter_8>;
    224             proc_2_3 = downsample_2_3<ColorTypeFilter_8>;
    225             proc_3_2 = downsample_3_2<ColorTypeFilter_8>;
    226             proc_3_3 = downsample_3_3<ColorTypeFilter_8>;
    227             break;
    228         default:
    229             // TODO: We could build miplevels for kIndex8 if the levels were in 8888.
    230             //       Means using more ram, but the quality would be fine.
    231             return nullptr;
    232     }
    233 
    234     // whip through our loop to compute the exact size needed
    235     size_t  size = 0;
    236     int     countLevels = 0;
    237     {
    238         int width = src.width();
    239         int height = src.height();
    240         for (;;) {
    241             width >>= 1;
    242             height >>= 1;
    243             if (0 == width || 0 == height) {
    244                 break;
    245             }
    246             size += SkColorTypeMinRowBytes(ct, width) * height;
    247             countLevels += 1;
    248         }
    249     }
    250     if (0 == countLevels) {
    251         return nullptr;
    252     }
    253 
    254     SkASSERT(countLevels == SkMipMap::ComputeLevelCount(src.width(), src.height()));
    255 
    256     size_t storageSize = SkMipMap::AllocLevelsSize(countLevels, size);
    257     if (0 == storageSize) {
    258         return nullptr;
    259     }
    260 
    261     SkMipMap* mipmap;
    262     if (fact) {
    263         SkDiscardableMemory* dm = fact(storageSize);
    264         if (nullptr == dm) {
    265             return nullptr;
    266         }
    267         mipmap = new SkMipMap(storageSize, dm);
    268     } else {
    269         mipmap = new SkMipMap(sk_malloc_throw(storageSize), storageSize);
    270     }
    271 
    272     // init
    273     mipmap->fCount = countLevels;
    274     mipmap->fLevels = (Level*)mipmap->writable_data();
    275 
    276     Level* levels = mipmap->fLevels;
    277     uint8_t*    baseAddr = (uint8_t*)&levels[countLevels];
    278     uint8_t*    addr = baseAddr;
    279     int         width = src.width();
    280     int         height = src.height();
    281     uint32_t    rowBytes;
    282     SkPixmap    srcPM(src);
    283 
    284     for (int i = 0; i < countLevels; ++i) {
    285         FilterProc* proc;
    286         if (height & 1) {        // src-height is 3
    287             if (width & 1) {    // src-width is 3
    288                 proc = proc_3_3;
    289             } else {            // src-width is 2
    290                 proc = proc_2_3;
    291             }
    292         } else {                // src-height is 2
    293             if (width & 1) {    // src-width is 3
    294                 proc = proc_3_2;
    295             } else {            // src-width is 2
    296                 proc = proc_2_2;
    297             }
    298         }
    299         width >>= 1;
    300         height >>= 1;
    301         rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width));
    302 
    303         levels[i].fPixmap = SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes);
    304         levels[i].fScale  = SkSize::Make(SkIntToScalar(width)  / src.width(),
    305                                          SkIntToScalar(height) / src.height());
    306 
    307         const SkPixmap& dstPM = levels[i].fPixmap;
    308         const void* srcBasePtr = srcPM.addr();
    309         void* dstBasePtr = dstPM.writable_addr();
    310 
    311         const size_t srcRB = srcPM.rowBytes();
    312         for (int y = 0; y < height; y++) {
    313             proc(dstBasePtr, srcBasePtr, srcRB, width);
    314             srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows
    315             dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes();
    316         }
    317         srcPM = dstPM;
    318         addr += height * rowBytes;
    319     }
    320     SkASSERT(addr == baseAddr + size);
    321 
    322     return mipmap;
    323 }
    324 
    325 int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) {
    326     // OpenGL's spec requires that each mipmap level have height/width equal to
    327     // max(1, floor(original_height / 2^i)
    328     // (or original_width) where i is the mipmap level.
    329     // Continue scaling down until both axes are size 1.
    330     //
    331     // This means it maintains isotropic space (both axes scaling down
    332     // at the same rate) until one axis hits size 1.
    333     // At that point, OpenGL continues to scale down into anisotropic space
    334     // (where the scales are not the same between axes).
    335     //
    336     // Skia currently does not go into anisotropic space.
    337     // Once an axis hits size 1 we stop.
    338     // All this means is rather than use the largest axis we will use the
    339     // smallest axis.
    340 
    341     const int smallestAxis = SkTMin(baseWidth, baseHeight);
    342     if (smallestAxis < 2) {
    343         // SkMipMap::Build requires a minimum size of 2.
    344         return 0;
    345     }
    346     const int leadingZeros = SkCLZ(static_cast<uint32_t>(smallestAxis));
    347     // If the value 00011010 has 3 leading 0s then it has 5 significant bits
    348     // (the bits which are not leading zeros)
    349     const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros;
    350     // This is making the assumption that the size of a byte is 8 bits
    351     // and that sizeof(uint32_t)'s implementation-defined behavior is 4.
    352     int mipLevelCount = significantBits;
    353 
    354     // SkMipMap does not include the base mip level.
    355     // For example, it contains levels 1-x instead of 0-x.
    356     // This is because the image used to create SkMipMap is the base level.
    357     // So subtract 1 from the mip level count.
    358     if (mipLevelCount > 0) {
    359         --mipLevelCount;
    360     }
    361 
    362     return mipLevelCount;
    363 }
    364 
    365 ///////////////////////////////////////////////////////////////////////////////
    366 
    367 bool SkMipMap::extractLevel(const SkSize& scaleSize, Level* levelPtr) const {
    368     if (nullptr == fLevels) {
    369         return false;
    370     }
    371 
    372     SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0);
    373 
    374 #ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE
    375     // Use the smallest scale to match the GPU impl.
    376     const SkScalar scale = SkTMin(scaleSize.width(), scaleSize.height());
    377 #else
    378     // Ideally we'd pick the smaller scale, to match Ganesh.  But ignoring one of the
    379     // scales can produce some atrocious results, so for now we use the geometric mean.
    380     // (https://bugs.chromium.org/p/skia/issues/detail?id=4863)
    381     const SkScalar scale = SkScalarSqrt(scaleSize.width() * scaleSize.height());
    382 #endif
    383 
    384     if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) {
    385         return false;
    386     }
    387 
    388     SkScalar L = -SkScalarLog2(scale);
    389     if (!SkScalarIsFinite(L)) {
    390         return false;
    391     }
    392     SkASSERT(L >= 0);
    393 //    int rndLevel = SkScalarRoundToInt(L);
    394     int level = SkScalarFloorToInt(L);
    395 //    SkDebugf("mipmap scale=%g L=%g level=%d rndLevel=%d\n", scale, L, level, rndLevel);
    396 
    397     SkASSERT(level >= 0);
    398     if (level <= 0) {
    399         return false;
    400     }
    401 
    402     if (level > fCount) {
    403         level = fCount;
    404     }
    405     if (levelPtr) {
    406         *levelPtr = fLevels[level - 1];
    407     }
    408     return true;
    409 }
    410 
    411 // Helper which extracts a pixmap from the src bitmap
    412 //
    413 SkMipMap* SkMipMap::Build(const SkBitmap& src, SkDiscardableFactoryProc fact) {
    414     SkAutoPixmapUnlock srcUnlocker;
    415     if (!src.requestLock(&srcUnlocker)) {
    416         return nullptr;
    417     }
    418     const SkPixmap& srcPixmap = srcUnlocker.pixmap();
    419     // Try to catch where we might have returned nullptr for src crbug.com/492818
    420     if (nullptr == srcPixmap.addr()) {
    421         sk_throw();
    422     }
    423     return Build(srcPixmap, fact);
    424 }
    425 
    426 int SkMipMap::countLevels() const {
    427     return fCount;
    428 }
    429 
    430 bool SkMipMap::getLevel(int index, Level* levelPtr) const {
    431     if (NULL == fLevels) {
    432         return false;
    433     }
    434     if (index < 0) {
    435         return false;
    436     }
    437     if (index > fCount - 1) {
    438         return false;
    439     }
    440     if (levelPtr) {
    441         *levelPtr = fLevels[index];
    442     }
    443     return true;
    444 }
    445