Home | History | Annotate | Download | only in flann
      1 /***********************************************************************
      2  * Software License Agreement (BSD License)
      3  *
      4  * Copyright 2008-2009  Marius Muja (mariusm (at) cs.ubc.ca). All rights reserved.
      5  * Copyright 2008-2009  David G. Lowe (lowe (at) cs.ubc.ca). All rights reserved.
      6  *
      7  * THE BSD LICENSE
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  *
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29  *************************************************************************/
     30 
     31 /***********************************************************************
     32  * Author: Vincent Rabaud
     33  *************************************************************************/
     34 
     35 #ifndef OPENCV_FLANN_LSH_INDEX_H_
     36 #define OPENCV_FLANN_LSH_INDEX_H_
     37 
     38 #include <algorithm>
     39 #include <cassert>
     40 #include <cstring>
     41 #include <map>
     42 #include <vector>
     43 
     44 #include "general.h"
     45 #include "nn_index.h"
     46 #include "matrix.h"
     47 #include "result_set.h"
     48 #include "heap.h"
     49 #include "lsh_table.h"
     50 #include "allocator.h"
     51 #include "random.h"
     52 #include "saving.h"
     53 
     54 namespace cvflann
     55 {
     56 
     57 struct LshIndexParams : public IndexParams
     58 {
     59     LshIndexParams(unsigned int table_number = 12, unsigned int key_size = 20, unsigned int multi_probe_level = 2)
     60     {
     61         (* this)["algorithm"] = FLANN_INDEX_LSH;
     62         // The number of hash tables to use
     63         (*this)["table_number"] = table_number;
     64         // The length of the key in the hash tables
     65         (*this)["key_size"] = key_size;
     66         // Number of levels to use in multi-probe (0 for standard LSH)
     67         (*this)["multi_probe_level"] = multi_probe_level;
     68     }
     69 };
     70 
     71 /**
     72  * Randomized kd-tree index
     73  *
     74  * Contains the k-d trees and other information for indexing a set of points
     75  * for nearest-neighbor matching.
     76  */
     77 template<typename Distance>
     78 class LshIndex : public NNIndex<Distance>
     79 {
     80 public:
     81     typedef typename Distance::ElementType ElementType;
     82     typedef typename Distance::ResultType DistanceType;
     83 
     84     /** Constructor
     85      * @param input_data dataset with the input features
     86      * @param params parameters passed to the LSH algorithm
     87      * @param d the distance used
     88      */
     89     LshIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LshIndexParams(),
     90              Distance d = Distance()) :
     91         dataset_(input_data), index_params_(params), distance_(d)
     92     {
     93         // cv::flann::IndexParams sets integer params as 'int', so it is used with get_param
     94         // in place of 'unsigned int'
     95         table_number_ = (unsigned int)get_param<int>(index_params_,"table_number",12);
     96         key_size_ = (unsigned int)get_param<int>(index_params_,"key_size",20);
     97         multi_probe_level_ = (unsigned int)get_param<int>(index_params_,"multi_probe_level",2);
     98 
     99         feature_size_ = (unsigned)dataset_.cols;
    100         fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_);
    101     }
    102 
    103 
    104     LshIndex(const LshIndex&);
    105     LshIndex& operator=(const LshIndex&);
    106 
    107     /**
    108      * Builds the index
    109      */
    110     void buildIndex()
    111     {
    112         tables_.resize(table_number_);
    113         for (unsigned int i = 0; i < table_number_; ++i) {
    114             lsh::LshTable<ElementType>& table = tables_[i];
    115             table = lsh::LshTable<ElementType>(feature_size_, key_size_);
    116 
    117             // Add the features to the table
    118             table.add(dataset_);
    119         }
    120     }
    121 
    122     flann_algorithm_t getType() const
    123     {
    124         return FLANN_INDEX_LSH;
    125     }
    126 
    127 
    128     void saveIndex(FILE* stream)
    129     {
    130         save_value(stream,table_number_);
    131         save_value(stream,key_size_);
    132         save_value(stream,multi_probe_level_);
    133         save_value(stream, dataset_);
    134     }
    135 
    136     void loadIndex(FILE* stream)
    137     {
    138         load_value(stream, table_number_);
    139         load_value(stream, key_size_);
    140         load_value(stream, multi_probe_level_);
    141         load_value(stream, dataset_);
    142         // Building the index is so fast we can afford not storing it
    143         buildIndex();
    144 
    145         index_params_["algorithm"] = getType();
    146         index_params_["table_number"] = table_number_;
    147         index_params_["key_size"] = key_size_;
    148         index_params_["multi_probe_level"] = multi_probe_level_;
    149     }
    150 
    151     /**
    152      *  Returns size of index.
    153      */
    154     size_t size() const
    155     {
    156         return dataset_.rows;
    157     }
    158 
    159     /**
    160      * Returns the length of an index feature.
    161      */
    162     size_t veclen() const
    163     {
    164         return feature_size_;
    165     }
    166 
    167     /**
    168      * Computes the index memory usage
    169      * Returns: memory used by the index
    170      */
    171     int usedMemory() const
    172     {
    173         return (int)(dataset_.rows * sizeof(int));
    174     }
    175 
    176 
    177     IndexParams getParameters() const
    178     {
    179         return index_params_;
    180     }
    181 
    182     /**
    183      * \brief Perform k-nearest neighbor search
    184      * \param[in] queries The query points for which to find the nearest neighbors
    185      * \param[out] indices The indices of the nearest neighbors found
    186      * \param[out] dists Distances to the nearest neighbors found
    187      * \param[in] knn Number of nearest neighbors to return
    188      * \param[in] params Search parameters
    189      */
    190     virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
    191     {
    192         assert(queries.cols == veclen());
    193         assert(indices.rows >= queries.rows);
    194         assert(dists.rows >= queries.rows);
    195         assert(int(indices.cols) >= knn);
    196         assert(int(dists.cols) >= knn);
    197 
    198 
    199         KNNUniqueResultSet<DistanceType> resultSet(knn);
    200         for (size_t i = 0; i < queries.rows; i++) {
    201             resultSet.clear();
    202             std::fill_n(indices[i], knn, -1);
    203             std::fill_n(dists[i], knn, std::numeric_limits<DistanceType>::max());
    204             findNeighbors(resultSet, queries[i], params);
    205             if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
    206             else resultSet.copy(indices[i], dists[i], knn);
    207         }
    208     }
    209 
    210 
    211     /**
    212      * Find set of nearest neighbors to vec. Their indices are stored inside
    213      * the result object.
    214      *
    215      * Params:
    216      *     result = the result object in which the indices of the nearest-neighbors are stored
    217      *     vec = the vector for which to search the nearest neighbors
    218      *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
    219      */
    220     void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& /*searchParams*/)
    221     {
    222         getNeighbors(vec, result);
    223     }
    224 
    225 private:
    226     /** Defines the comparator on score and index
    227      */
    228     typedef std::pair<float, unsigned int> ScoreIndexPair;
    229     struct SortScoreIndexPairOnSecond
    230     {
    231         bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const
    232         {
    233             return left.second < right.second;
    234         }
    235     };
    236 
    237     /** Fills the different xor masks to use when getting the neighbors in multi-probe LSH
    238      * @param key the key we build neighbors from
    239      * @param lowest_index the lowest index of the bit set
    240      * @param level the multi-probe level we are at
    241      * @param xor_masks all the xor mask
    242      */
    243     void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level,
    244                        std::vector<lsh::BucketKey>& xor_masks)
    245     {
    246         xor_masks.push_back(key);
    247         if (level == 0) return;
    248         for (int index = lowest_index - 1; index >= 0; --index) {
    249             // Create a new key
    250             lsh::BucketKey new_key = key | (1 << index);
    251             fill_xor_mask(new_key, index, level - 1, xor_masks);
    252         }
    253     }
    254 
    255     /** Performs the approximate nearest-neighbor search.
    256      * @param vec the feature to analyze
    257      * @param do_radius flag indicating if we check the radius too
    258      * @param radius the radius if it is a radius search
    259      * @param do_k flag indicating if we limit the number of nn
    260      * @param k_nn the number of nearest neighbors
    261      * @param checked_average used for debugging
    262      */
    263     void getNeighbors(const ElementType* vec, bool /*do_radius*/, float radius, bool do_k, unsigned int k_nn,
    264                       float& /*checked_average*/)
    265     {
    266         static std::vector<ScoreIndexPair> score_index_heap;
    267 
    268         if (do_k) {
    269             unsigned int worst_score = std::numeric_limits<unsigned int>::max();
    270             typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
    271             typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
    272             for (; table != table_end; ++table) {
    273                 size_t key = table->getKey(vec);
    274                 std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
    275                 std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
    276                 for (; xor_mask != xor_mask_end; ++xor_mask) {
    277                     size_t sub_key = key ^ (*xor_mask);
    278                     const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
    279                     if (bucket == 0) continue;
    280 
    281                     // Go over each descriptor index
    282                     std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
    283                     std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
    284                     DistanceType hamming_distance;
    285 
    286                     // Process the rest of the candidates
    287                     for (; training_index < last_training_index; ++training_index) {
    288                         hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
    289 
    290                         if (hamming_distance < worst_score) {
    291                             // Insert the new element
    292                             score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
    293                             std::push_heap(score_index_heap.begin(), score_index_heap.end());
    294 
    295                             if (score_index_heap.size() > (unsigned int)k_nn) {
    296                                 // Remove the highest distance value as we have too many elements
    297                                 std::pop_heap(score_index_heap.begin(), score_index_heap.end());
    298                                 score_index_heap.pop_back();
    299                                 // Keep track of the worst score
    300                                 worst_score = score_index_heap.front().first;
    301                             }
    302                         }
    303                     }
    304                 }
    305             }
    306         }
    307         else {
    308             typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
    309             typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
    310             for (; table != table_end; ++table) {
    311                 size_t key = table->getKey(vec);
    312                 std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
    313                 std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
    314                 for (; xor_mask != xor_mask_end; ++xor_mask) {
    315                     size_t sub_key = key ^ (*xor_mask);
    316                     const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
    317                     if (bucket == 0) continue;
    318 
    319                     // Go over each descriptor index
    320                     std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
    321                     std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
    322                     DistanceType hamming_distance;
    323 
    324                     // Process the rest of the candidates
    325                     for (; training_index < last_training_index; ++training_index) {
    326                         // Compute the Hamming distance
    327                         hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
    328                         if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
    329                     }
    330                 }
    331             }
    332         }
    333     }
    334 
    335     /** Performs the approximate nearest-neighbor search.
    336      * This is a slower version than the above as it uses the ResultSet
    337      * @param vec the feature to analyze
    338      */
    339     void getNeighbors(const ElementType* vec, ResultSet<DistanceType>& result)
    340     {
    341         typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
    342         typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
    343         for (; table != table_end; ++table) {
    344             size_t key = table->getKey(vec);
    345             std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
    346             std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
    347             for (; xor_mask != xor_mask_end; ++xor_mask) {
    348                 size_t sub_key = key ^ (*xor_mask);
    349                 const lsh::Bucket* bucket = table->getBucketFromKey((lsh::BucketKey)sub_key);
    350                 if (bucket == 0) continue;
    351 
    352                 // Go over each descriptor index
    353                 std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
    354                 std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
    355                 DistanceType hamming_distance;
    356 
    357                 // Process the rest of the candidates
    358                 for (; training_index < last_training_index; ++training_index) {
    359                     // Compute the Hamming distance
    360                     hamming_distance = distance_(vec, dataset_[*training_index], (int)dataset_.cols);
    361                     result.addPoint(hamming_distance, *training_index);
    362                 }
    363             }
    364         }
    365     }
    366 
    367     /** The different hash tables */
    368     std::vector<lsh::LshTable<ElementType> > tables_;
    369 
    370     /** The data the LSH tables where built from */
    371     Matrix<ElementType> dataset_;
    372 
    373     /** The size of the features (as ElementType[]) */
    374     unsigned int feature_size_;
    375 
    376     IndexParams index_params_;
    377 
    378     /** table number */
    379     unsigned int table_number_;
    380     /** key size */
    381     unsigned int key_size_;
    382     /** How far should we look for neighbors in multi-probe LSH */
    383     unsigned int multi_probe_level_;
    384 
    385     /** The XOR masks to apply to a key to get the neighboring buckets */
    386     std::vector<lsh::BucketKey> xor_masks_;
    387 
    388     Distance distance_;
    389 };
    390 }
    391 
    392 #endif //OPENCV_FLANN_LSH_INDEX_H_
    393