1 // Copyright 2011 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // SSE2 version of some decoding functions (idct, loop filtering). 11 // 12 // Author: somnath (at) google.com (Somnath Banerjee) 13 // cduvivier (at) google.com (Christian Duvivier) 14 15 #include "./dsp.h" 16 17 #if defined(WEBP_USE_SSE2) 18 19 // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C 20 // one it seems => disable it by default. Uncomment the following to enable: 21 // #define USE_TRANSFORM_AC3 22 23 #include <emmintrin.h> 24 #include "../dec/vp8i.h" 25 26 //------------------------------------------------------------------------------ 27 // Transforms (Paragraph 14.4) 28 29 static void Transform(const int16_t* in, uint8_t* dst, int do_two) { 30 // This implementation makes use of 16-bit fixed point versions of two 31 // multiply constants: 32 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 33 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 34 // 35 // To be able to use signed 16-bit integers, we use the following trick to 36 // have constants within range: 37 // - Associated constants are obtained by subtracting the 16-bit fixed point 38 // version of one: 39 // k = K - (1 << 16) => K = k + (1 << 16) 40 // K1 = 85267 => k1 = 20091 41 // K2 = 35468 => k2 = -30068 42 // - The multiplication of a variable by a constant become the sum of the 43 // variable and the multiplication of that variable by the associated 44 // constant: 45 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x 46 const __m128i k1 = _mm_set1_epi16(20091); 47 const __m128i k2 = _mm_set1_epi16(-30068); 48 __m128i T0, T1, T2, T3; 49 50 // Load and concatenate the transform coefficients (we'll do two transforms 51 // in parallel). In the case of only one transform, the second half of the 52 // vectors will just contain random value we'll never use nor store. 53 __m128i in0, in1, in2, in3; 54 { 55 in0 = _mm_loadl_epi64((const __m128i*)&in[0]); 56 in1 = _mm_loadl_epi64((const __m128i*)&in[4]); 57 in2 = _mm_loadl_epi64((const __m128i*)&in[8]); 58 in3 = _mm_loadl_epi64((const __m128i*)&in[12]); 59 // a00 a10 a20 a30 x x x x 60 // a01 a11 a21 a31 x x x x 61 // a02 a12 a22 a32 x x x x 62 // a03 a13 a23 a33 x x x x 63 if (do_two) { 64 const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]); 65 const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]); 66 const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]); 67 const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]); 68 in0 = _mm_unpacklo_epi64(in0, inB0); 69 in1 = _mm_unpacklo_epi64(in1, inB1); 70 in2 = _mm_unpacklo_epi64(in2, inB2); 71 in3 = _mm_unpacklo_epi64(in3, inB3); 72 // a00 a10 a20 a30 b00 b10 b20 b30 73 // a01 a11 a21 a31 b01 b11 b21 b31 74 // a02 a12 a22 a32 b02 b12 b22 b32 75 // a03 a13 a23 a33 b03 b13 b23 b33 76 } 77 } 78 79 // Vertical pass and subsequent transpose. 80 { 81 // First pass, c and d calculations are longer because of the "trick" 82 // multiplications. 83 const __m128i a = _mm_add_epi16(in0, in2); 84 const __m128i b = _mm_sub_epi16(in0, in2); 85 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 86 const __m128i c1 = _mm_mulhi_epi16(in1, k2); 87 const __m128i c2 = _mm_mulhi_epi16(in3, k1); 88 const __m128i c3 = _mm_sub_epi16(in1, in3); 89 const __m128i c4 = _mm_sub_epi16(c1, c2); 90 const __m128i c = _mm_add_epi16(c3, c4); 91 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 92 const __m128i d1 = _mm_mulhi_epi16(in1, k1); 93 const __m128i d2 = _mm_mulhi_epi16(in3, k2); 94 const __m128i d3 = _mm_add_epi16(in1, in3); 95 const __m128i d4 = _mm_add_epi16(d1, d2); 96 const __m128i d = _mm_add_epi16(d3, d4); 97 98 // Second pass. 99 const __m128i tmp0 = _mm_add_epi16(a, d); 100 const __m128i tmp1 = _mm_add_epi16(b, c); 101 const __m128i tmp2 = _mm_sub_epi16(b, c); 102 const __m128i tmp3 = _mm_sub_epi16(a, d); 103 104 // Transpose the two 4x4. 105 // a00 a01 a02 a03 b00 b01 b02 b03 106 // a10 a11 a12 a13 b10 b11 b12 b13 107 // a20 a21 a22 a23 b20 b21 b22 b23 108 // a30 a31 a32 a33 b30 b31 b32 b33 109 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1); 110 const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3); 111 const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1); 112 const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3); 113 // a00 a10 a01 a11 a02 a12 a03 a13 114 // a20 a30 a21 a31 a22 a32 a23 a33 115 // b00 b10 b01 b11 b02 b12 b03 b13 116 // b20 b30 b21 b31 b22 b32 b23 b33 117 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); 118 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); 119 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); 120 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); 121 // a00 a10 a20 a30 a01 a11 a21 a31 122 // b00 b10 b20 b30 b01 b11 b21 b31 123 // a02 a12 a22 a32 a03 a13 a23 a33 124 // b02 b12 a22 b32 b03 b13 b23 b33 125 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); 126 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); 127 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); 128 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); 129 // a00 a10 a20 a30 b00 b10 b20 b30 130 // a01 a11 a21 a31 b01 b11 b21 b31 131 // a02 a12 a22 a32 b02 b12 b22 b32 132 // a03 a13 a23 a33 b03 b13 b23 b33 133 } 134 135 // Horizontal pass and subsequent transpose. 136 { 137 // First pass, c and d calculations are longer because of the "trick" 138 // multiplications. 139 const __m128i four = _mm_set1_epi16(4); 140 const __m128i dc = _mm_add_epi16(T0, four); 141 const __m128i a = _mm_add_epi16(dc, T2); 142 const __m128i b = _mm_sub_epi16(dc, T2); 143 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 144 const __m128i c1 = _mm_mulhi_epi16(T1, k2); 145 const __m128i c2 = _mm_mulhi_epi16(T3, k1); 146 const __m128i c3 = _mm_sub_epi16(T1, T3); 147 const __m128i c4 = _mm_sub_epi16(c1, c2); 148 const __m128i c = _mm_add_epi16(c3, c4); 149 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 150 const __m128i d1 = _mm_mulhi_epi16(T1, k1); 151 const __m128i d2 = _mm_mulhi_epi16(T3, k2); 152 const __m128i d3 = _mm_add_epi16(T1, T3); 153 const __m128i d4 = _mm_add_epi16(d1, d2); 154 const __m128i d = _mm_add_epi16(d3, d4); 155 156 // Second pass. 157 const __m128i tmp0 = _mm_add_epi16(a, d); 158 const __m128i tmp1 = _mm_add_epi16(b, c); 159 const __m128i tmp2 = _mm_sub_epi16(b, c); 160 const __m128i tmp3 = _mm_sub_epi16(a, d); 161 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); 162 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); 163 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); 164 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); 165 166 // Transpose the two 4x4. 167 // a00 a01 a02 a03 b00 b01 b02 b03 168 // a10 a11 a12 a13 b10 b11 b12 b13 169 // a20 a21 a22 a23 b20 b21 b22 b23 170 // a30 a31 a32 a33 b30 b31 b32 b33 171 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1); 172 const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3); 173 const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1); 174 const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3); 175 // a00 a10 a01 a11 a02 a12 a03 a13 176 // a20 a30 a21 a31 a22 a32 a23 a33 177 // b00 b10 b01 b11 b02 b12 b03 b13 178 // b20 b30 b21 b31 b22 b32 b23 b33 179 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); 180 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); 181 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); 182 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); 183 // a00 a10 a20 a30 a01 a11 a21 a31 184 // b00 b10 b20 b30 b01 b11 b21 b31 185 // a02 a12 a22 a32 a03 a13 a23 a33 186 // b02 b12 a22 b32 b03 b13 b23 b33 187 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); 188 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); 189 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); 190 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); 191 // a00 a10 a20 a30 b00 b10 b20 b30 192 // a01 a11 a21 a31 b01 b11 b21 b31 193 // a02 a12 a22 a32 b02 b12 b22 b32 194 // a03 a13 a23 a33 b03 b13 b23 b33 195 } 196 197 // Add inverse transform to 'dst' and store. 198 { 199 const __m128i zero = _mm_setzero_si128(); 200 // Load the reference(s). 201 __m128i dst0, dst1, dst2, dst3; 202 if (do_two) { 203 // Load eight bytes/pixels per line. 204 dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS)); 205 dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS)); 206 dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS)); 207 dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS)); 208 } else { 209 // Load four bytes/pixels per line. 210 dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS)); 211 dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS)); 212 dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS)); 213 dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS)); 214 } 215 // Convert to 16b. 216 dst0 = _mm_unpacklo_epi8(dst0, zero); 217 dst1 = _mm_unpacklo_epi8(dst1, zero); 218 dst2 = _mm_unpacklo_epi8(dst2, zero); 219 dst3 = _mm_unpacklo_epi8(dst3, zero); 220 // Add the inverse transform(s). 221 dst0 = _mm_add_epi16(dst0, T0); 222 dst1 = _mm_add_epi16(dst1, T1); 223 dst2 = _mm_add_epi16(dst2, T2); 224 dst3 = _mm_add_epi16(dst3, T3); 225 // Unsigned saturate to 8b. 226 dst0 = _mm_packus_epi16(dst0, dst0); 227 dst1 = _mm_packus_epi16(dst1, dst1); 228 dst2 = _mm_packus_epi16(dst2, dst2); 229 dst3 = _mm_packus_epi16(dst3, dst3); 230 // Store the results. 231 if (do_two) { 232 // Store eight bytes/pixels per line. 233 _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0); 234 _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1); 235 _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2); 236 _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3); 237 } else { 238 // Store four bytes/pixels per line. 239 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0)); 240 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1)); 241 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2)); 242 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3)); 243 } 244 } 245 } 246 247 #if defined(USE_TRANSFORM_AC3) 248 #define MUL(a, b) (((a) * (b)) >> 16) 249 static void TransformAC3(const int16_t* in, uint8_t* dst) { 250 static const int kC1 = 20091 + (1 << 16); 251 static const int kC2 = 35468; 252 const __m128i A = _mm_set1_epi16(in[0] + 4); 253 const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2)); 254 const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1)); 255 const int c1 = MUL(in[1], kC2); 256 const int d1 = MUL(in[1], kC1); 257 const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1); 258 const __m128i B = _mm_adds_epi16(A, CD); 259 const __m128i m0 = _mm_adds_epi16(B, d4); 260 const __m128i m1 = _mm_adds_epi16(B, c4); 261 const __m128i m2 = _mm_subs_epi16(B, c4); 262 const __m128i m3 = _mm_subs_epi16(B, d4); 263 const __m128i zero = _mm_setzero_si128(); 264 // Load the source pixels. 265 __m128i dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS)); 266 __m128i dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS)); 267 __m128i dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS)); 268 __m128i dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS)); 269 // Convert to 16b. 270 dst0 = _mm_unpacklo_epi8(dst0, zero); 271 dst1 = _mm_unpacklo_epi8(dst1, zero); 272 dst2 = _mm_unpacklo_epi8(dst2, zero); 273 dst3 = _mm_unpacklo_epi8(dst3, zero); 274 // Add the inverse transform. 275 dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3)); 276 dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3)); 277 dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3)); 278 dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3)); 279 // Unsigned saturate to 8b. 280 dst0 = _mm_packus_epi16(dst0, dst0); 281 dst1 = _mm_packus_epi16(dst1, dst1); 282 dst2 = _mm_packus_epi16(dst2, dst2); 283 dst3 = _mm_packus_epi16(dst3, dst3); 284 // Store the results. 285 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0)); 286 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1)); 287 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2)); 288 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3)); 289 } 290 #undef MUL 291 #endif // USE_TRANSFORM_AC3 292 293 //------------------------------------------------------------------------------ 294 // Loop Filter (Paragraph 15) 295 296 // Compute abs(p - q) = subs(p - q) OR subs(q - p) 297 #define MM_ABS(p, q) _mm_or_si128( \ 298 _mm_subs_epu8((q), (p)), \ 299 _mm_subs_epu8((p), (q))) 300 301 // Shift each byte of "x" by 3 bits while preserving by the sign bit. 302 static WEBP_INLINE void SignedShift8b(__m128i* const x) { 303 const __m128i zero = _mm_setzero_si128(); 304 const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x); 305 const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x); 306 const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8); 307 const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8); 308 *x = _mm_packs_epi16(lo_1, hi_1); 309 } 310 311 #define FLIP_SIGN_BIT2(a, b) { \ 312 a = _mm_xor_si128(a, sign_bit); \ 313 b = _mm_xor_si128(b, sign_bit); \ 314 } 315 316 #define FLIP_SIGN_BIT4(a, b, c, d) { \ 317 FLIP_SIGN_BIT2(a, b); \ 318 FLIP_SIGN_BIT2(c, d); \ 319 } 320 321 // input/output is uint8_t 322 static WEBP_INLINE void GetNotHEV(const __m128i* const p1, 323 const __m128i* const p0, 324 const __m128i* const q0, 325 const __m128i* const q1, 326 int hev_thresh, __m128i* const not_hev) { 327 const __m128i zero = _mm_setzero_si128(); 328 const __m128i t_1 = MM_ABS(*p1, *p0); 329 const __m128i t_2 = MM_ABS(*q1, *q0); 330 331 const __m128i h = _mm_set1_epi8(hev_thresh); 332 const __m128i t_max = _mm_max_epu8(t_1, t_2); 333 334 const __m128i t_max_h = _mm_subs_epu8(t_max, h); 335 *not_hev = _mm_cmpeq_epi8(t_max_h, zero); // not_hev <= t1 && not_hev <= t2 336 } 337 338 // input pixels are int8_t 339 static WEBP_INLINE void GetBaseDelta(const __m128i* const p1, 340 const __m128i* const p0, 341 const __m128i* const q0, 342 const __m128i* const q1, 343 __m128i* const delta) { 344 // beware of addition order, for saturation! 345 const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 346 const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0); // q0 - p0 347 const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0); // p1 - q1 + 1 * (q0 - p0) 348 const __m128i s2 = _mm_adds_epi8(q0_p0, s1); // p1 - q1 + 2 * (q0 - p0) 349 const __m128i s3 = _mm_adds_epi8(q0_p0, s2); // p1 - q1 + 3 * (q0 - p0) 350 *delta = s3; 351 } 352 353 // input and output are int8_t 354 static WEBP_INLINE void DoSimpleFilter(__m128i* const p0, __m128i* const q0, 355 const __m128i* const fl) { 356 const __m128i k3 = _mm_set1_epi8(3); 357 const __m128i k4 = _mm_set1_epi8(4); 358 __m128i v3 = _mm_adds_epi8(*fl, k3); 359 __m128i v4 = _mm_adds_epi8(*fl, k4); 360 361 SignedShift8b(&v4); // v4 >> 3 362 SignedShift8b(&v3); // v3 >> 3 363 *q0 = _mm_subs_epi8(*q0, v4); // q0 -= v4 364 *p0 = _mm_adds_epi8(*p0, v3); // p0 += v3 365 } 366 367 // Updates values of 2 pixels at MB edge during complex filtering. 368 // Update operations: 369 // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)] 370 // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip). 371 static WEBP_INLINE void Update2Pixels(__m128i* const pi, __m128i* const qi, 372 const __m128i* const a0_lo, 373 const __m128i* const a0_hi) { 374 const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7); 375 const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7); 376 const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi); 377 const __m128i sign_bit = _mm_set1_epi8(0x80); 378 *pi = _mm_adds_epi8(*pi, delta); 379 *qi = _mm_subs_epi8(*qi, delta); 380 FLIP_SIGN_BIT2(*pi, *qi); 381 } 382 383 // input pixels are uint8_t 384 static WEBP_INLINE void NeedsFilter(const __m128i* const p1, 385 const __m128i* const p0, 386 const __m128i* const q0, 387 const __m128i* const q1, 388 int thresh, __m128i* const mask) { 389 const __m128i m_thresh = _mm_set1_epi8(thresh); 390 const __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1) 391 const __m128i kFE = _mm_set1_epi8(0xFE); 392 const __m128i t2 = _mm_and_si128(t1, kFE); // set lsb of each byte to zero 393 const __m128i t3 = _mm_srli_epi16(t2, 1); // abs(p1 - q1) / 2 394 395 const __m128i t4 = MM_ABS(*p0, *q0); // abs(p0 - q0) 396 const __m128i t5 = _mm_adds_epu8(t4, t4); // abs(p0 - q0) * 2 397 const __m128i t6 = _mm_adds_epu8(t5, t3); // abs(p0-q0)*2 + abs(p1-q1)/2 398 399 const __m128i t7 = _mm_subs_epu8(t6, m_thresh); // mask <= m_thresh 400 *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128()); 401 } 402 403 //------------------------------------------------------------------------------ 404 // Edge filtering functions 405 406 // Applies filter on 2 pixels (p0 and q0) 407 static WEBP_INLINE void DoFilter2(__m128i* const p1, __m128i* const p0, 408 __m128i* const q0, __m128i* const q1, 409 int thresh) { 410 __m128i a, mask; 411 const __m128i sign_bit = _mm_set1_epi8(0x80); 412 // convert p1/q1 to int8_t (for GetBaseDelta) 413 const __m128i p1s = _mm_xor_si128(*p1, sign_bit); 414 const __m128i q1s = _mm_xor_si128(*q1, sign_bit); 415 416 NeedsFilter(p1, p0, q0, q1, thresh, &mask); 417 418 FLIP_SIGN_BIT2(*p0, *q0); 419 GetBaseDelta(&p1s, p0, q0, &q1s, &a); 420 a = _mm_and_si128(a, mask); // mask filter values we don't care about 421 DoSimpleFilter(p0, q0, &a); 422 FLIP_SIGN_BIT2(*p0, *q0); 423 } 424 425 // Applies filter on 4 pixels (p1, p0, q0 and q1) 426 static WEBP_INLINE void DoFilter4(__m128i* const p1, __m128i* const p0, 427 __m128i* const q0, __m128i* const q1, 428 const __m128i* const mask, int hev_thresh) { 429 const __m128i zero = _mm_setzero_si128(); 430 const __m128i sign_bit = _mm_set1_epi8(0x80); 431 const __m128i k64 = _mm_set1_epi8(64); 432 const __m128i k3 = _mm_set1_epi8(3); 433 const __m128i k4 = _mm_set1_epi8(4); 434 __m128i not_hev; 435 __m128i t1, t2, t3; 436 437 // compute hev mask 438 GetNotHEV(p1, p0, q0, q1, hev_thresh, ¬_hev); 439 440 // convert to signed values 441 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); 442 443 t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 444 t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1) 445 t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0 446 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0) 447 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0) 448 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0) 449 t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about 450 451 t2 = _mm_adds_epi8(t1, k3); // 3 * (q0 - p0) + hev(p1 - q1) + 3 452 t3 = _mm_adds_epi8(t1, k4); // 3 * (q0 - p0) + hev(p1 - q1) + 4 453 SignedShift8b(&t2); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3 454 SignedShift8b(&t3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3 455 *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2 456 *q0 = _mm_subs_epi8(*q0, t3); // q0 -= t3 457 FLIP_SIGN_BIT2(*p0, *q0); 458 459 // this is equivalent to signed (a + 1) >> 1 calculation 460 t2 = _mm_add_epi8(t3, sign_bit); 461 t3 = _mm_avg_epu8(t2, zero); 462 t3 = _mm_sub_epi8(t3, k64); 463 464 t3 = _mm_and_si128(not_hev, t3); // if !hev 465 *q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3 466 *p1 = _mm_adds_epi8(*p1, t3); // p1 += t3 467 FLIP_SIGN_BIT2(*p1, *q1); 468 } 469 470 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2) 471 static WEBP_INLINE void DoFilter6(__m128i* const p2, __m128i* const p1, 472 __m128i* const p0, __m128i* const q0, 473 __m128i* const q1, __m128i* const q2, 474 const __m128i* const mask, int hev_thresh) { 475 const __m128i zero = _mm_setzero_si128(); 476 const __m128i sign_bit = _mm_set1_epi8(0x80); 477 __m128i a, not_hev; 478 479 // compute hev mask 480 GetNotHEV(p1, p0, q0, q1, hev_thresh, ¬_hev); 481 482 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); 483 FLIP_SIGN_BIT2(*p2, *q2); 484 GetBaseDelta(p1, p0, q0, q1, &a); 485 486 { // do simple filter on pixels with hev 487 const __m128i m = _mm_andnot_si128(not_hev, *mask); 488 const __m128i f = _mm_and_si128(a, m); 489 DoSimpleFilter(p0, q0, &f); 490 } 491 492 { // do strong filter on pixels with not hev 493 const __m128i k9 = _mm_set1_epi16(0x0900); 494 const __m128i k63 = _mm_set1_epi16(63); 495 496 const __m128i m = _mm_and_si128(not_hev, *mask); 497 const __m128i f = _mm_and_si128(a, m); 498 499 const __m128i f_lo = _mm_unpacklo_epi8(zero, f); 500 const __m128i f_hi = _mm_unpackhi_epi8(zero, f); 501 502 const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9); // Filter (lo) * 9 503 const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9); // Filter (hi) * 9 504 505 const __m128i a2_lo = _mm_add_epi16(f9_lo, k63); // Filter * 9 + 63 506 const __m128i a2_hi = _mm_add_epi16(f9_hi, k63); // Filter * 9 + 63 507 508 const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo); // Filter * 18 + 63 509 const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi); // Filter * 18 + 63 510 511 const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo); // Filter * 27 + 63 512 const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi); // Filter * 27 + 63 513 514 Update2Pixels(p2, q2, &a2_lo, &a2_hi); 515 Update2Pixels(p1, q1, &a1_lo, &a1_hi); 516 Update2Pixels(p0, q0, &a0_lo, &a0_hi); 517 } 518 } 519 520 // reads 8 rows across a vertical edge. 521 static WEBP_INLINE void Load8x4(const uint8_t* const b, int stride, 522 __m128i* const p, __m128i* const q) { 523 // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00 524 // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10 525 const __m128i A0 = _mm_set_epi32( 526 WebPMemToUint32(&b[6 * stride]), WebPMemToUint32(&b[2 * stride]), 527 WebPMemToUint32(&b[4 * stride]), WebPMemToUint32(&b[0 * stride])); 528 const __m128i A1 = _mm_set_epi32( 529 WebPMemToUint32(&b[7 * stride]), WebPMemToUint32(&b[3 * stride]), 530 WebPMemToUint32(&b[5 * stride]), WebPMemToUint32(&b[1 * stride])); 531 532 // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00 533 // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20 534 const __m128i B0 = _mm_unpacklo_epi8(A0, A1); 535 const __m128i B1 = _mm_unpackhi_epi8(A0, A1); 536 537 // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00 538 // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40 539 const __m128i C0 = _mm_unpacklo_epi16(B0, B1); 540 const __m128i C1 = _mm_unpackhi_epi16(B0, B1); 541 542 // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 543 // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 544 *p = _mm_unpacklo_epi32(C0, C1); 545 *q = _mm_unpackhi_epi32(C0, C1); 546 } 547 548 static WEBP_INLINE void Load16x4(const uint8_t* const r0, 549 const uint8_t* const r8, 550 int stride, 551 __m128i* const p1, __m128i* const p0, 552 __m128i* const q0, __m128i* const q1) { 553 // Assume the pixels around the edge (|) are numbered as follows 554 // 00 01 | 02 03 555 // 10 11 | 12 13 556 // ... | ... 557 // e0 e1 | e2 e3 558 // f0 f1 | f2 f3 559 // 560 // r0 is pointing to the 0th row (00) 561 // r8 is pointing to the 8th row (80) 562 563 // Load 564 // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 565 // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 566 // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80 567 // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82 568 Load8x4(r0, stride, p1, q0); 569 Load8x4(r8, stride, p0, q1); 570 571 { 572 // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 573 // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01 574 // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 575 // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03 576 const __m128i t1 = *p1; 577 const __m128i t2 = *q0; 578 *p1 = _mm_unpacklo_epi64(t1, *p0); 579 *p0 = _mm_unpackhi_epi64(t1, *p0); 580 *q0 = _mm_unpacklo_epi64(t2, *q1); 581 *q1 = _mm_unpackhi_epi64(t2, *q1); 582 } 583 } 584 585 static WEBP_INLINE void Store4x4(__m128i* const x, uint8_t* dst, int stride) { 586 int i; 587 for (i = 0; i < 4; ++i, dst += stride) { 588 WebPUint32ToMem(dst, _mm_cvtsi128_si32(*x)); 589 *x = _mm_srli_si128(*x, 4); 590 } 591 } 592 593 // Transpose back and store 594 static WEBP_INLINE void Store16x4(const __m128i* const p1, 595 const __m128i* const p0, 596 const __m128i* const q0, 597 const __m128i* const q1, 598 uint8_t* r0, uint8_t* r8, 599 int stride) { 600 __m128i t1, p1_s, p0_s, q0_s, q1_s; 601 602 // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00 603 // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80 604 t1 = *p0; 605 p0_s = _mm_unpacklo_epi8(*p1, t1); 606 p1_s = _mm_unpackhi_epi8(*p1, t1); 607 608 // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02 609 // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82 610 t1 = *q0; 611 q0_s = _mm_unpacklo_epi8(t1, *q1); 612 q1_s = _mm_unpackhi_epi8(t1, *q1); 613 614 // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00 615 // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40 616 t1 = p0_s; 617 p0_s = _mm_unpacklo_epi16(t1, q0_s); 618 q0_s = _mm_unpackhi_epi16(t1, q0_s); 619 620 // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80 621 // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0 622 t1 = p1_s; 623 p1_s = _mm_unpacklo_epi16(t1, q1_s); 624 q1_s = _mm_unpackhi_epi16(t1, q1_s); 625 626 Store4x4(&p0_s, r0, stride); 627 r0 += 4 * stride; 628 Store4x4(&q0_s, r0, stride); 629 630 Store4x4(&p1_s, r8, stride); 631 r8 += 4 * stride; 632 Store4x4(&q1_s, r8, stride); 633 } 634 635 //------------------------------------------------------------------------------ 636 // Simple In-loop filtering (Paragraph 15.2) 637 638 static void SimpleVFilter16(uint8_t* p, int stride, int thresh) { 639 // Load 640 __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]); 641 __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]); 642 __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]); 643 __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]); 644 645 DoFilter2(&p1, &p0, &q0, &q1, thresh); 646 647 // Store 648 _mm_storeu_si128((__m128i*)&p[-stride], p0); 649 _mm_storeu_si128((__m128i*)&p[0], q0); 650 } 651 652 static void SimpleHFilter16(uint8_t* p, int stride, int thresh) { 653 __m128i p1, p0, q0, q1; 654 655 p -= 2; // beginning of p1 656 657 Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1); 658 DoFilter2(&p1, &p0, &q0, &q1, thresh); 659 Store16x4(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride); 660 } 661 662 static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) { 663 int k; 664 for (k = 3; k > 0; --k) { 665 p += 4 * stride; 666 SimpleVFilter16(p, stride, thresh); 667 } 668 } 669 670 static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) { 671 int k; 672 for (k = 3; k > 0; --k) { 673 p += 4; 674 SimpleHFilter16(p, stride, thresh); 675 } 676 } 677 678 //------------------------------------------------------------------------------ 679 // Complex In-loop filtering (Paragraph 15.3) 680 681 #define MAX_DIFF1(p3, p2, p1, p0, m) do { \ 682 m = MM_ABS(p1, p0); \ 683 m = _mm_max_epu8(m, MM_ABS(p3, p2)); \ 684 m = _mm_max_epu8(m, MM_ABS(p2, p1)); \ 685 } while (0) 686 687 #define MAX_DIFF2(p3, p2, p1, p0, m) do { \ 688 m = _mm_max_epu8(m, MM_ABS(p1, p0)); \ 689 m = _mm_max_epu8(m, MM_ABS(p3, p2)); \ 690 m = _mm_max_epu8(m, MM_ABS(p2, p1)); \ 691 } while (0) 692 693 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \ 694 e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]); \ 695 e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]); \ 696 e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]); \ 697 e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]); \ 698 } 699 700 #define LOADUV_H_EDGE(p, u, v, stride) do { \ 701 const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \ 702 const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]); \ 703 p = _mm_unpacklo_epi64(U, V); \ 704 } while (0) 705 706 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \ 707 LOADUV_H_EDGE(e1, u, v, 0 * stride); \ 708 LOADUV_H_EDGE(e2, u, v, 1 * stride); \ 709 LOADUV_H_EDGE(e3, u, v, 2 * stride); \ 710 LOADUV_H_EDGE(e4, u, v, 3 * stride); \ 711 } 712 713 #define STOREUV(p, u, v, stride) { \ 714 _mm_storel_epi64((__m128i*)&u[(stride)], p); \ 715 p = _mm_srli_si128(p, 8); \ 716 _mm_storel_epi64((__m128i*)&v[(stride)], p); \ 717 } 718 719 static WEBP_INLINE void ComplexMask(const __m128i* const p1, 720 const __m128i* const p0, 721 const __m128i* const q0, 722 const __m128i* const q1, 723 int thresh, int ithresh, 724 __m128i* const mask) { 725 const __m128i it = _mm_set1_epi8(ithresh); 726 const __m128i diff = _mm_subs_epu8(*mask, it); 727 const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128()); 728 __m128i filter_mask; 729 NeedsFilter(p1, p0, q0, q1, thresh, &filter_mask); 730 *mask = _mm_and_si128(thresh_mask, filter_mask); 731 } 732 733 // on macroblock edges 734 static void VFilter16(uint8_t* p, int stride, 735 int thresh, int ithresh, int hev_thresh) { 736 __m128i t1; 737 __m128i mask; 738 __m128i p2, p1, p0, q0, q1, q2; 739 740 // Load p3, p2, p1, p0 741 LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0); 742 MAX_DIFF1(t1, p2, p1, p0, mask); 743 744 // Load q0, q1, q2, q3 745 LOAD_H_EDGES4(p, stride, q0, q1, q2, t1); 746 MAX_DIFF2(t1, q2, q1, q0, mask); 747 748 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); 749 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 750 751 // Store 752 _mm_storeu_si128((__m128i*)&p[-3 * stride], p2); 753 _mm_storeu_si128((__m128i*)&p[-2 * stride], p1); 754 _mm_storeu_si128((__m128i*)&p[-1 * stride], p0); 755 _mm_storeu_si128((__m128i*)&p[+0 * stride], q0); 756 _mm_storeu_si128((__m128i*)&p[+1 * stride], q1); 757 _mm_storeu_si128((__m128i*)&p[+2 * stride], q2); 758 } 759 760 static void HFilter16(uint8_t* p, int stride, 761 int thresh, int ithresh, int hev_thresh) { 762 __m128i mask; 763 __m128i p3, p2, p1, p0, q0, q1, q2, q3; 764 765 uint8_t* const b = p - 4; 766 Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0 767 MAX_DIFF1(p3, p2, p1, p0, mask); 768 769 Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3 770 MAX_DIFF2(q3, q2, q1, q0, mask); 771 772 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); 773 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 774 775 Store16x4(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride); 776 Store16x4(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride); 777 } 778 779 // on three inner edges 780 static void VFilter16i(uint8_t* p, int stride, 781 int thresh, int ithresh, int hev_thresh) { 782 int k; 783 __m128i p3, p2, p1, p0; // loop invariants 784 785 LOAD_H_EDGES4(p, stride, p3, p2, p1, p0); // prologue 786 787 for (k = 3; k > 0; --k) { 788 __m128i mask, tmp1, tmp2; 789 uint8_t* const b = p + 2 * stride; // beginning of p1 790 p += 4 * stride; 791 792 MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask 793 LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2); 794 MAX_DIFF2(p3, p2, tmp1, tmp2, mask); 795 796 // p3 and p2 are not just temporary variables here: they will be 797 // re-used for next span. And q2/q3 will become p1/p0 accordingly. 798 ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask); 799 DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh); 800 801 // Store 802 _mm_storeu_si128((__m128i*)&b[0 * stride], p1); 803 _mm_storeu_si128((__m128i*)&b[1 * stride], p0); 804 _mm_storeu_si128((__m128i*)&b[2 * stride], p3); 805 _mm_storeu_si128((__m128i*)&b[3 * stride], p2); 806 807 // rotate samples 808 p1 = tmp1; 809 p0 = tmp2; 810 } 811 } 812 813 static void HFilter16i(uint8_t* p, int stride, 814 int thresh, int ithresh, int hev_thresh) { 815 int k; 816 __m128i p3, p2, p1, p0; // loop invariants 817 818 Load16x4(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0); // prologue 819 820 for (k = 3; k > 0; --k) { 821 __m128i mask, tmp1, tmp2; 822 uint8_t* const b = p + 2; // beginning of p1 823 824 p += 4; // beginning of q0 (and next span) 825 826 MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask 827 Load16x4(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2); 828 MAX_DIFF2(p3, p2, tmp1, tmp2, mask); 829 830 ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask); 831 DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh); 832 833 Store16x4(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride); 834 835 // rotate samples 836 p1 = tmp1; 837 p0 = tmp2; 838 } 839 } 840 841 // 8-pixels wide variant, for chroma filtering 842 static void VFilter8(uint8_t* u, uint8_t* v, int stride, 843 int thresh, int ithresh, int hev_thresh) { 844 __m128i mask; 845 __m128i t1, p2, p1, p0, q0, q1, q2; 846 847 // Load p3, p2, p1, p0 848 LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0); 849 MAX_DIFF1(t1, p2, p1, p0, mask); 850 851 // Load q0, q1, q2, q3 852 LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1); 853 MAX_DIFF2(t1, q2, q1, q0, mask); 854 855 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); 856 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 857 858 // Store 859 STOREUV(p2, u, v, -3 * stride); 860 STOREUV(p1, u, v, -2 * stride); 861 STOREUV(p0, u, v, -1 * stride); 862 STOREUV(q0, u, v, 0 * stride); 863 STOREUV(q1, u, v, 1 * stride); 864 STOREUV(q2, u, v, 2 * stride); 865 } 866 867 static void HFilter8(uint8_t* u, uint8_t* v, int stride, 868 int thresh, int ithresh, int hev_thresh) { 869 __m128i mask; 870 __m128i p3, p2, p1, p0, q0, q1, q2, q3; 871 872 uint8_t* const tu = u - 4; 873 uint8_t* const tv = v - 4; 874 Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0 875 MAX_DIFF1(p3, p2, p1, p0, mask); 876 877 Load16x4(u, v, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3 878 MAX_DIFF2(q3, q2, q1, q0, mask); 879 880 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); 881 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 882 883 Store16x4(&p3, &p2, &p1, &p0, tu, tv, stride); 884 Store16x4(&q0, &q1, &q2, &q3, u, v, stride); 885 } 886 887 static void VFilter8i(uint8_t* u, uint8_t* v, int stride, 888 int thresh, int ithresh, int hev_thresh) { 889 __m128i mask; 890 __m128i t1, t2, p1, p0, q0, q1; 891 892 // Load p3, p2, p1, p0 893 LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0); 894 MAX_DIFF1(t2, t1, p1, p0, mask); 895 896 u += 4 * stride; 897 v += 4 * stride; 898 899 // Load q0, q1, q2, q3 900 LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2); 901 MAX_DIFF2(t2, t1, q1, q0, mask); 902 903 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); 904 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh); 905 906 // Store 907 STOREUV(p1, u, v, -2 * stride); 908 STOREUV(p0, u, v, -1 * stride); 909 STOREUV(q0, u, v, 0 * stride); 910 STOREUV(q1, u, v, 1 * stride); 911 } 912 913 static void HFilter8i(uint8_t* u, uint8_t* v, int stride, 914 int thresh, int ithresh, int hev_thresh) { 915 __m128i mask; 916 __m128i t1, t2, p1, p0, q0, q1; 917 Load16x4(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0 918 MAX_DIFF1(t2, t1, p1, p0, mask); 919 920 u += 4; // beginning of q0 921 v += 4; 922 Load16x4(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3 923 MAX_DIFF2(t2, t1, q1, q0, mask); 924 925 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); 926 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh); 927 928 u -= 2; // beginning of p1 929 v -= 2; 930 Store16x4(&p1, &p0, &q0, &q1, u, v, stride); 931 } 932 933 //------------------------------------------------------------------------------ 934 // 4x4 predictions 935 936 #define DST(x, y) dst[(x) + (y) * BPS] 937 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) 938 939 // We use the following 8b-arithmetic tricks: 940 // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1 941 // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1] 942 // and: 943 // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb 944 // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1 945 // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1 946 947 static void VE4(uint8_t* dst) { // vertical 948 const __m128i one = _mm_set1_epi8(1); 949 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); 950 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); 951 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); 952 const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00); 953 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one); 954 const __m128i b = _mm_subs_epu8(a, lsb); 955 const __m128i avg = _mm_avg_epu8(b, BCDEFGH0); 956 const uint32_t vals = _mm_cvtsi128_si32(avg); 957 int i; 958 for (i = 0; i < 4; ++i) { 959 WebPUint32ToMem(dst + i * BPS, vals); 960 } 961 } 962 963 static void LD4(uint8_t* dst) { // Down-Left 964 const __m128i one = _mm_set1_epi8(1); 965 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS)); 966 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); 967 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); 968 const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3); 969 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0); 970 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one); 971 const __m128i avg2 = _mm_subs_epu8(avg1, lsb); 972 const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0); 973 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg )); 974 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); 975 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); 976 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); 977 } 978 979 static void VR4(uint8_t* dst) { // Vertical-Right 980 const __m128i one = _mm_set1_epi8(1); 981 const int I = dst[-1 + 0 * BPS]; 982 const int J = dst[-1 + 1 * BPS]; 983 const int K = dst[-1 + 2 * BPS]; 984 const int X = dst[-1 - BPS]; 985 const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); 986 const __m128i ABCD0 = _mm_srli_si128(XABCD, 1); 987 const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0); 988 const __m128i _XABCD = _mm_slli_si128(XABCD, 1); 989 const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0); 990 const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0); 991 const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one); 992 const __m128i avg2 = _mm_subs_epu8(avg1, lsb); 993 const __m128i efgh = _mm_avg_epu8(avg2, XABCD); 994 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd )); 995 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh )); 996 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1))); 997 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1))); 998 999 // these two are hard to implement in SSE2, so we keep the C-version: 1000 DST(0, 2) = AVG3(J, I, X); 1001 DST(0, 3) = AVG3(K, J, I); 1002 } 1003 1004 static void VL4(uint8_t* dst) { // Vertical-Left 1005 const __m128i one = _mm_set1_epi8(1); 1006 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS)); 1007 const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1); 1008 const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2); 1009 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_); 1010 const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_); 1011 const __m128i avg3 = _mm_avg_epu8(avg1, avg2); 1012 const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one); 1013 const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_); 1014 const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_); 1015 const __m128i abbc = _mm_or_si128(ab, bc); 1016 const __m128i lsb2 = _mm_and_si128(abbc, lsb1); 1017 const __m128i avg4 = _mm_subs_epu8(avg3, lsb2); 1018 const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4)); 1019 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 )); 1020 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 )); 1021 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1))); 1022 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1))); 1023 1024 // these two are hard to get and irregular 1025 DST(3, 2) = (extra_out >> 0) & 0xff; 1026 DST(3, 3) = (extra_out >> 8) & 0xff; 1027 } 1028 1029 static void RD4(uint8_t* dst) { // Down-right 1030 const __m128i one = _mm_set1_epi8(1); 1031 const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); 1032 const __m128i ____XABCD = _mm_slli_si128(XABCD, 4); 1033 const uint32_t I = dst[-1 + 0 * BPS]; 1034 const uint32_t J = dst[-1 + 1 * BPS]; 1035 const uint32_t K = dst[-1 + 2 * BPS]; 1036 const uint32_t L = dst[-1 + 3 * BPS]; 1037 const __m128i LKJI_____ = 1038 _mm_cvtsi32_si128(L | (K << 8) | (J << 16) | (I << 24)); 1039 const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD); 1040 const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1); 1041 const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2); 1042 const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD); 1043 const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one); 1044 const __m128i avg2 = _mm_subs_epu8(avg1, lsb); 1045 const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_); 1046 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg )); 1047 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); 1048 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); 1049 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); 1050 } 1051 1052 #undef DST 1053 #undef AVG3 1054 1055 //------------------------------------------------------------------------------ 1056 // Luma 16x16 1057 1058 static WEBP_INLINE void TrueMotion(uint8_t* dst, int size) { 1059 const uint8_t* top = dst - BPS; 1060 const __m128i zero = _mm_setzero_si128(); 1061 int y; 1062 if (size == 4) { 1063 const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top)); 1064 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); 1065 for (y = 0; y < 4; ++y, dst += BPS) { 1066 const int val = dst[-1] - top[-1]; 1067 const __m128i base = _mm_set1_epi16(val); 1068 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); 1069 WebPUint32ToMem(dst, _mm_cvtsi128_si32(out)); 1070 } 1071 } else if (size == 8) { 1072 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); 1073 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); 1074 for (y = 0; y < 8; ++y, dst += BPS) { 1075 const int val = dst[-1] - top[-1]; 1076 const __m128i base = _mm_set1_epi16(val); 1077 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); 1078 _mm_storel_epi64((__m128i*)dst, out); 1079 } 1080 } else { 1081 const __m128i top_values = _mm_loadu_si128((const __m128i*)top); 1082 const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero); 1083 const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero); 1084 for (y = 0; y < 16; ++y, dst += BPS) { 1085 const int val = dst[-1] - top[-1]; 1086 const __m128i base = _mm_set1_epi16(val); 1087 const __m128i out_0 = _mm_add_epi16(base, top_base_0); 1088 const __m128i out_1 = _mm_add_epi16(base, top_base_1); 1089 const __m128i out = _mm_packus_epi16(out_0, out_1); 1090 _mm_storeu_si128((__m128i*)dst, out); 1091 } 1092 } 1093 } 1094 1095 static void TM4(uint8_t* dst) { TrueMotion(dst, 4); } 1096 static void TM8uv(uint8_t* dst) { TrueMotion(dst, 8); } 1097 static void TM16(uint8_t* dst) { TrueMotion(dst, 16); } 1098 1099 static void VE16(uint8_t* dst) { 1100 const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); 1101 int j; 1102 for (j = 0; j < 16; ++j) { 1103 _mm_storeu_si128((__m128i*)(dst + j * BPS), top); 1104 } 1105 } 1106 1107 static void HE16(uint8_t* dst) { // horizontal 1108 int j; 1109 for (j = 16; j > 0; --j) { 1110 const __m128i values = _mm_set1_epi8(dst[-1]); 1111 _mm_storeu_si128((__m128i*)dst, values); 1112 dst += BPS; 1113 } 1114 } 1115 1116 static WEBP_INLINE void Put16(uint8_t v, uint8_t* dst) { 1117 int j; 1118 const __m128i values = _mm_set1_epi8(v); 1119 for (j = 0; j < 16; ++j) { 1120 _mm_storeu_si128((__m128i*)(dst + j * BPS), values); 1121 } 1122 } 1123 1124 static void DC16(uint8_t* dst) { // DC 1125 const __m128i zero = _mm_setzero_si128(); 1126 const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); 1127 const __m128i sad8x2 = _mm_sad_epu8(top, zero); 1128 // sum the two sads: sad8x2[0:1] + sad8x2[8:9] 1129 const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); 1130 int left = 0; 1131 int j; 1132 for (j = 0; j < 16; ++j) { 1133 left += dst[-1 + j * BPS]; 1134 } 1135 { 1136 const int DC = _mm_cvtsi128_si32(sum) + left + 16; 1137 Put16(DC >> 5, dst); 1138 } 1139 } 1140 1141 static void DC16NoTop(uint8_t* dst) { // DC with top samples not available 1142 int DC = 8; 1143 int j; 1144 for (j = 0; j < 16; ++j) { 1145 DC += dst[-1 + j * BPS]; 1146 } 1147 Put16(DC >> 4, dst); 1148 } 1149 1150 static void DC16NoLeft(uint8_t* dst) { // DC with left samples not available 1151 const __m128i zero = _mm_setzero_si128(); 1152 const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); 1153 const __m128i sad8x2 = _mm_sad_epu8(top, zero); 1154 // sum the two sads: sad8x2[0:1] + sad8x2[8:9] 1155 const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); 1156 const int DC = _mm_cvtsi128_si32(sum) + 8; 1157 Put16(DC >> 4, dst); 1158 } 1159 1160 static void DC16NoTopLeft(uint8_t* dst) { // DC with no top and left samples 1161 Put16(0x80, dst); 1162 } 1163 1164 //------------------------------------------------------------------------------ 1165 // Chroma 1166 1167 static void VE8uv(uint8_t* dst) { // vertical 1168 int j; 1169 const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); 1170 for (j = 0; j < 8; ++j) { 1171 _mm_storel_epi64((__m128i*)(dst + j * BPS), top); 1172 } 1173 } 1174 1175 static void HE8uv(uint8_t* dst) { // horizontal 1176 int j; 1177 for (j = 0; j < 8; ++j) { 1178 const __m128i values = _mm_set1_epi8(dst[-1]); 1179 _mm_storel_epi64((__m128i*)dst, values); 1180 dst += BPS; 1181 } 1182 } 1183 1184 // helper for chroma-DC predictions 1185 static WEBP_INLINE void Put8x8uv(uint8_t v, uint8_t* dst) { 1186 int j; 1187 const __m128i values = _mm_set1_epi8(v); 1188 for (j = 0; j < 8; ++j) { 1189 _mm_storel_epi64((__m128i*)(dst + j * BPS), values); 1190 } 1191 } 1192 1193 static void DC8uv(uint8_t* dst) { // DC 1194 const __m128i zero = _mm_setzero_si128(); 1195 const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); 1196 const __m128i sum = _mm_sad_epu8(top, zero); 1197 int left = 0; 1198 int j; 1199 for (j = 0; j < 8; ++j) { 1200 left += dst[-1 + j * BPS]; 1201 } 1202 { 1203 const int DC = _mm_cvtsi128_si32(sum) + left + 8; 1204 Put8x8uv(DC >> 4, dst); 1205 } 1206 } 1207 1208 static void DC8uvNoLeft(uint8_t* dst) { // DC with no left samples 1209 const __m128i zero = _mm_setzero_si128(); 1210 const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); 1211 const __m128i sum = _mm_sad_epu8(top, zero); 1212 const int DC = _mm_cvtsi128_si32(sum) + 4; 1213 Put8x8uv(DC >> 3, dst); 1214 } 1215 1216 static void DC8uvNoTop(uint8_t* dst) { // DC with no top samples 1217 int dc0 = 4; 1218 int i; 1219 for (i = 0; i < 8; ++i) { 1220 dc0 += dst[-1 + i * BPS]; 1221 } 1222 Put8x8uv(dc0 >> 3, dst); 1223 } 1224 1225 static void DC8uvNoTopLeft(uint8_t* dst) { // DC with nothing 1226 Put8x8uv(0x80, dst); 1227 } 1228 1229 //------------------------------------------------------------------------------ 1230 // Entry point 1231 1232 extern void VP8DspInitSSE2(void); 1233 1234 WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) { 1235 VP8Transform = Transform; 1236 #if defined(USE_TRANSFORM_AC3) 1237 VP8TransformAC3 = TransformAC3; 1238 #endif 1239 1240 VP8VFilter16 = VFilter16; 1241 VP8HFilter16 = HFilter16; 1242 VP8VFilter8 = VFilter8; 1243 VP8HFilter8 = HFilter8; 1244 VP8VFilter16i = VFilter16i; 1245 VP8HFilter16i = HFilter16i; 1246 VP8VFilter8i = VFilter8i; 1247 VP8HFilter8i = HFilter8i; 1248 1249 VP8SimpleVFilter16 = SimpleVFilter16; 1250 VP8SimpleHFilter16 = SimpleHFilter16; 1251 VP8SimpleVFilter16i = SimpleVFilter16i; 1252 VP8SimpleHFilter16i = SimpleHFilter16i; 1253 1254 VP8PredLuma4[1] = TM4; 1255 VP8PredLuma4[2] = VE4; 1256 VP8PredLuma4[4] = RD4; 1257 VP8PredLuma4[5] = VR4; 1258 VP8PredLuma4[6] = LD4; 1259 VP8PredLuma4[7] = VL4; 1260 1261 VP8PredLuma16[0] = DC16; 1262 VP8PredLuma16[1] = TM16; 1263 VP8PredLuma16[2] = VE16; 1264 VP8PredLuma16[3] = HE16; 1265 VP8PredLuma16[4] = DC16NoTop; 1266 VP8PredLuma16[5] = DC16NoLeft; 1267 VP8PredLuma16[6] = DC16NoTopLeft; 1268 1269 VP8PredChroma8[0] = DC8uv; 1270 VP8PredChroma8[1] = TM8uv; 1271 VP8PredChroma8[2] = VE8uv; 1272 VP8PredChroma8[3] = HE8uv; 1273 VP8PredChroma8[4] = DC8uvNoTop; 1274 VP8PredChroma8[5] = DC8uvNoLeft; 1275 VP8PredChroma8[6] = DC8uvNoTopLeft; 1276 } 1277 1278 #else // !WEBP_USE_SSE2 1279 1280 WEBP_DSP_INIT_STUB(VP8DspInitSSE2) 1281 1282 #endif // WEBP_USE_SSE2 1283