Home | History | Annotate | Download | only in dsp
      1 // Copyright 2011 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // SSE2 version of some decoding functions (idct, loop filtering).
     11 //
     12 // Author: somnath (at) google.com (Somnath Banerjee)
     13 //         cduvivier (at) google.com (Christian Duvivier)
     14 
     15 #include "./dsp.h"
     16 
     17 #if defined(WEBP_USE_SSE2)
     18 
     19 // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
     20 // one it seems => disable it by default. Uncomment the following to enable:
     21 // #define USE_TRANSFORM_AC3
     22 
     23 #include <emmintrin.h>
     24 #include "../dec/vp8i.h"
     25 
     26 //------------------------------------------------------------------------------
     27 // Transforms (Paragraph 14.4)
     28 
     29 static void Transform(const int16_t* in, uint8_t* dst, int do_two) {
     30   // This implementation makes use of 16-bit fixed point versions of two
     31   // multiply constants:
     32   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
     33   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
     34   //
     35   // To be able to use signed 16-bit integers, we use the following trick to
     36   // have constants within range:
     37   // - Associated constants are obtained by subtracting the 16-bit fixed point
     38   //   version of one:
     39   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
     40   //      K1 = 85267  =>  k1 =  20091
     41   //      K2 = 35468  =>  k2 = -30068
     42   // - The multiplication of a variable by a constant become the sum of the
     43   //   variable and the multiplication of that variable by the associated
     44   //   constant:
     45   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
     46   const __m128i k1 = _mm_set1_epi16(20091);
     47   const __m128i k2 = _mm_set1_epi16(-30068);
     48   __m128i T0, T1, T2, T3;
     49 
     50   // Load and concatenate the transform coefficients (we'll do two transforms
     51   // in parallel). In the case of only one transform, the second half of the
     52   // vectors will just contain random value we'll never use nor store.
     53   __m128i in0, in1, in2, in3;
     54   {
     55     in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
     56     in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
     57     in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
     58     in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
     59     // a00 a10 a20 a30   x x x x
     60     // a01 a11 a21 a31   x x x x
     61     // a02 a12 a22 a32   x x x x
     62     // a03 a13 a23 a33   x x x x
     63     if (do_two) {
     64       const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
     65       const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
     66       const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
     67       const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
     68       in0 = _mm_unpacklo_epi64(in0, inB0);
     69       in1 = _mm_unpacklo_epi64(in1, inB1);
     70       in2 = _mm_unpacklo_epi64(in2, inB2);
     71       in3 = _mm_unpacklo_epi64(in3, inB3);
     72       // a00 a10 a20 a30   b00 b10 b20 b30
     73       // a01 a11 a21 a31   b01 b11 b21 b31
     74       // a02 a12 a22 a32   b02 b12 b22 b32
     75       // a03 a13 a23 a33   b03 b13 b23 b33
     76     }
     77   }
     78 
     79   // Vertical pass and subsequent transpose.
     80   {
     81     // First pass, c and d calculations are longer because of the "trick"
     82     // multiplications.
     83     const __m128i a = _mm_add_epi16(in0, in2);
     84     const __m128i b = _mm_sub_epi16(in0, in2);
     85     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
     86     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
     87     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
     88     const __m128i c3 = _mm_sub_epi16(in1, in3);
     89     const __m128i c4 = _mm_sub_epi16(c1, c2);
     90     const __m128i c = _mm_add_epi16(c3, c4);
     91     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
     92     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
     93     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
     94     const __m128i d3 = _mm_add_epi16(in1, in3);
     95     const __m128i d4 = _mm_add_epi16(d1, d2);
     96     const __m128i d = _mm_add_epi16(d3, d4);
     97 
     98     // Second pass.
     99     const __m128i tmp0 = _mm_add_epi16(a, d);
    100     const __m128i tmp1 = _mm_add_epi16(b, c);
    101     const __m128i tmp2 = _mm_sub_epi16(b, c);
    102     const __m128i tmp3 = _mm_sub_epi16(a, d);
    103 
    104     // Transpose the two 4x4.
    105     // a00 a01 a02 a03   b00 b01 b02 b03
    106     // a10 a11 a12 a13   b10 b11 b12 b13
    107     // a20 a21 a22 a23   b20 b21 b22 b23
    108     // a30 a31 a32 a33   b30 b31 b32 b33
    109     const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
    110     const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
    111     const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
    112     const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
    113     // a00 a10 a01 a11   a02 a12 a03 a13
    114     // a20 a30 a21 a31   a22 a32 a23 a33
    115     // b00 b10 b01 b11   b02 b12 b03 b13
    116     // b20 b30 b21 b31   b22 b32 b23 b33
    117     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    118     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    119     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    120     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    121     // a00 a10 a20 a30 a01 a11 a21 a31
    122     // b00 b10 b20 b30 b01 b11 b21 b31
    123     // a02 a12 a22 a32 a03 a13 a23 a33
    124     // b02 b12 a22 b32 b03 b13 b23 b33
    125     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    126     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    127     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    128     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    129     // a00 a10 a20 a30   b00 b10 b20 b30
    130     // a01 a11 a21 a31   b01 b11 b21 b31
    131     // a02 a12 a22 a32   b02 b12 b22 b32
    132     // a03 a13 a23 a33   b03 b13 b23 b33
    133   }
    134 
    135   // Horizontal pass and subsequent transpose.
    136   {
    137     // First pass, c and d calculations are longer because of the "trick"
    138     // multiplications.
    139     const __m128i four = _mm_set1_epi16(4);
    140     const __m128i dc = _mm_add_epi16(T0, four);
    141     const __m128i a =  _mm_add_epi16(dc, T2);
    142     const __m128i b =  _mm_sub_epi16(dc, T2);
    143     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
    144     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
    145     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
    146     const __m128i c3 = _mm_sub_epi16(T1, T3);
    147     const __m128i c4 = _mm_sub_epi16(c1, c2);
    148     const __m128i c = _mm_add_epi16(c3, c4);
    149     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
    150     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
    151     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
    152     const __m128i d3 = _mm_add_epi16(T1, T3);
    153     const __m128i d4 = _mm_add_epi16(d1, d2);
    154     const __m128i d = _mm_add_epi16(d3, d4);
    155 
    156     // Second pass.
    157     const __m128i tmp0 = _mm_add_epi16(a, d);
    158     const __m128i tmp1 = _mm_add_epi16(b, c);
    159     const __m128i tmp2 = _mm_sub_epi16(b, c);
    160     const __m128i tmp3 = _mm_sub_epi16(a, d);
    161     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
    162     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
    163     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
    164     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
    165 
    166     // Transpose the two 4x4.
    167     // a00 a01 a02 a03   b00 b01 b02 b03
    168     // a10 a11 a12 a13   b10 b11 b12 b13
    169     // a20 a21 a22 a23   b20 b21 b22 b23
    170     // a30 a31 a32 a33   b30 b31 b32 b33
    171     const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
    172     const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
    173     const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
    174     const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
    175     // a00 a10 a01 a11   a02 a12 a03 a13
    176     // a20 a30 a21 a31   a22 a32 a23 a33
    177     // b00 b10 b01 b11   b02 b12 b03 b13
    178     // b20 b30 b21 b31   b22 b32 b23 b33
    179     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    180     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    181     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    182     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    183     // a00 a10 a20 a30 a01 a11 a21 a31
    184     // b00 b10 b20 b30 b01 b11 b21 b31
    185     // a02 a12 a22 a32 a03 a13 a23 a33
    186     // b02 b12 a22 b32 b03 b13 b23 b33
    187     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    188     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    189     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    190     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    191     // a00 a10 a20 a30   b00 b10 b20 b30
    192     // a01 a11 a21 a31   b01 b11 b21 b31
    193     // a02 a12 a22 a32   b02 b12 b22 b32
    194     // a03 a13 a23 a33   b03 b13 b23 b33
    195   }
    196 
    197   // Add inverse transform to 'dst' and store.
    198   {
    199     const __m128i zero = _mm_setzero_si128();
    200     // Load the reference(s).
    201     __m128i dst0, dst1, dst2, dst3;
    202     if (do_two) {
    203       // Load eight bytes/pixels per line.
    204       dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
    205       dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
    206       dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
    207       dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
    208     } else {
    209       // Load four bytes/pixels per line.
    210       dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
    211       dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
    212       dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
    213       dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
    214     }
    215     // Convert to 16b.
    216     dst0 = _mm_unpacklo_epi8(dst0, zero);
    217     dst1 = _mm_unpacklo_epi8(dst1, zero);
    218     dst2 = _mm_unpacklo_epi8(dst2, zero);
    219     dst3 = _mm_unpacklo_epi8(dst3, zero);
    220     // Add the inverse transform(s).
    221     dst0 = _mm_add_epi16(dst0, T0);
    222     dst1 = _mm_add_epi16(dst1, T1);
    223     dst2 = _mm_add_epi16(dst2, T2);
    224     dst3 = _mm_add_epi16(dst3, T3);
    225     // Unsigned saturate to 8b.
    226     dst0 = _mm_packus_epi16(dst0, dst0);
    227     dst1 = _mm_packus_epi16(dst1, dst1);
    228     dst2 = _mm_packus_epi16(dst2, dst2);
    229     dst3 = _mm_packus_epi16(dst3, dst3);
    230     // Store the results.
    231     if (do_two) {
    232       // Store eight bytes/pixels per line.
    233       _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
    234       _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
    235       _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
    236       _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
    237     } else {
    238       // Store four bytes/pixels per line.
    239       WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
    240       WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
    241       WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
    242       WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
    243     }
    244   }
    245 }
    246 
    247 #if defined(USE_TRANSFORM_AC3)
    248 #define MUL(a, b) (((a) * (b)) >> 16)
    249 static void TransformAC3(const int16_t* in, uint8_t* dst) {
    250   static const int kC1 = 20091 + (1 << 16);
    251   static const int kC2 = 35468;
    252   const __m128i A = _mm_set1_epi16(in[0] + 4);
    253   const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2));
    254   const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1));
    255   const int c1 = MUL(in[1], kC2);
    256   const int d1 = MUL(in[1], kC1);
    257   const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
    258   const __m128i B = _mm_adds_epi16(A, CD);
    259   const __m128i m0 = _mm_adds_epi16(B, d4);
    260   const __m128i m1 = _mm_adds_epi16(B, c4);
    261   const __m128i m2 = _mm_subs_epi16(B, c4);
    262   const __m128i m3 = _mm_subs_epi16(B, d4);
    263   const __m128i zero = _mm_setzero_si128();
    264   // Load the source pixels.
    265   __m128i dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
    266   __m128i dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
    267   __m128i dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
    268   __m128i dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
    269   // Convert to 16b.
    270   dst0 = _mm_unpacklo_epi8(dst0, zero);
    271   dst1 = _mm_unpacklo_epi8(dst1, zero);
    272   dst2 = _mm_unpacklo_epi8(dst2, zero);
    273   dst3 = _mm_unpacklo_epi8(dst3, zero);
    274   // Add the inverse transform.
    275   dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
    276   dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
    277   dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
    278   dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
    279   // Unsigned saturate to 8b.
    280   dst0 = _mm_packus_epi16(dst0, dst0);
    281   dst1 = _mm_packus_epi16(dst1, dst1);
    282   dst2 = _mm_packus_epi16(dst2, dst2);
    283   dst3 = _mm_packus_epi16(dst3, dst3);
    284   // Store the results.
    285   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
    286   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
    287   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
    288   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
    289 }
    290 #undef MUL
    291 #endif   // USE_TRANSFORM_AC3
    292 
    293 //------------------------------------------------------------------------------
    294 // Loop Filter (Paragraph 15)
    295 
    296 // Compute abs(p - q) = subs(p - q) OR subs(q - p)
    297 #define MM_ABS(p, q)  _mm_or_si128(                                            \
    298     _mm_subs_epu8((q), (p)),                                                   \
    299     _mm_subs_epu8((p), (q)))
    300 
    301 // Shift each byte of "x" by 3 bits while preserving by the sign bit.
    302 static WEBP_INLINE void SignedShift8b(__m128i* const x) {
    303   const __m128i zero = _mm_setzero_si128();
    304   const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x);
    305   const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x);
    306   const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8);
    307   const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8);
    308   *x = _mm_packs_epi16(lo_1, hi_1);
    309 }
    310 
    311 #define FLIP_SIGN_BIT2(a, b) {                                                 \
    312   a = _mm_xor_si128(a, sign_bit);                                              \
    313   b = _mm_xor_si128(b, sign_bit);                                              \
    314 }
    315 
    316 #define FLIP_SIGN_BIT4(a, b, c, d) {                                           \
    317   FLIP_SIGN_BIT2(a, b);                                                        \
    318   FLIP_SIGN_BIT2(c, d);                                                        \
    319 }
    320 
    321 // input/output is uint8_t
    322 static WEBP_INLINE void GetNotHEV(const __m128i* const p1,
    323                                   const __m128i* const p0,
    324                                   const __m128i* const q0,
    325                                   const __m128i* const q1,
    326                                   int hev_thresh, __m128i* const not_hev) {
    327   const __m128i zero = _mm_setzero_si128();
    328   const __m128i t_1 = MM_ABS(*p1, *p0);
    329   const __m128i t_2 = MM_ABS(*q1, *q0);
    330 
    331   const __m128i h = _mm_set1_epi8(hev_thresh);
    332   const __m128i t_max = _mm_max_epu8(t_1, t_2);
    333 
    334   const __m128i t_max_h = _mm_subs_epu8(t_max, h);
    335   *not_hev = _mm_cmpeq_epi8(t_max_h, zero);  // not_hev <= t1 && not_hev <= t2
    336 }
    337 
    338 // input pixels are int8_t
    339 static WEBP_INLINE void GetBaseDelta(const __m128i* const p1,
    340                                      const __m128i* const p0,
    341                                      const __m128i* const q0,
    342                                      const __m128i* const q1,
    343                                      __m128i* const delta) {
    344   // beware of addition order, for saturation!
    345   const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1);   // p1 - q1
    346   const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0);   // q0 - p0
    347   const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0);  // p1 - q1 + 1 * (q0 - p0)
    348   const __m128i s2 = _mm_adds_epi8(q0_p0, s1);     // p1 - q1 + 2 * (q0 - p0)
    349   const __m128i s3 = _mm_adds_epi8(q0_p0, s2);     // p1 - q1 + 3 * (q0 - p0)
    350   *delta = s3;
    351 }
    352 
    353 // input and output are int8_t
    354 static WEBP_INLINE void DoSimpleFilter(__m128i* const p0, __m128i* const q0,
    355                                        const __m128i* const fl) {
    356   const __m128i k3 = _mm_set1_epi8(3);
    357   const __m128i k4 = _mm_set1_epi8(4);
    358   __m128i v3 = _mm_adds_epi8(*fl, k3);
    359   __m128i v4 = _mm_adds_epi8(*fl, k4);
    360 
    361   SignedShift8b(&v4);                  // v4 >> 3
    362   SignedShift8b(&v3);                  // v3 >> 3
    363   *q0 = _mm_subs_epi8(*q0, v4);        // q0 -= v4
    364   *p0 = _mm_adds_epi8(*p0, v3);        // p0 += v3
    365 }
    366 
    367 // Updates values of 2 pixels at MB edge during complex filtering.
    368 // Update operations:
    369 // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
    370 // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
    371 static WEBP_INLINE void Update2Pixels(__m128i* const pi, __m128i* const qi,
    372                                       const __m128i* const a0_lo,
    373                                       const __m128i* const a0_hi) {
    374   const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
    375   const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
    376   const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
    377   const __m128i sign_bit = _mm_set1_epi8(0x80);
    378   *pi = _mm_adds_epi8(*pi, delta);
    379   *qi = _mm_subs_epi8(*qi, delta);
    380   FLIP_SIGN_BIT2(*pi, *qi);
    381 }
    382 
    383 // input pixels are uint8_t
    384 static WEBP_INLINE void NeedsFilter(const __m128i* const p1,
    385                                     const __m128i* const p0,
    386                                     const __m128i* const q0,
    387                                     const __m128i* const q1,
    388                                     int thresh, __m128i* const mask) {
    389   const __m128i m_thresh = _mm_set1_epi8(thresh);
    390   const __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
    391   const __m128i kFE = _mm_set1_epi8(0xFE);
    392   const __m128i t2 = _mm_and_si128(t1, kFE);  // set lsb of each byte to zero
    393   const __m128i t3 = _mm_srli_epi16(t2, 1);   // abs(p1 - q1) / 2
    394 
    395   const __m128i t4 = MM_ABS(*p0, *q0);        // abs(p0 - q0)
    396   const __m128i t5 = _mm_adds_epu8(t4, t4);   // abs(p0 - q0) * 2
    397   const __m128i t6 = _mm_adds_epu8(t5, t3);   // abs(p0-q0)*2 + abs(p1-q1)/2
    398 
    399   const __m128i t7 = _mm_subs_epu8(t6, m_thresh);  // mask <= m_thresh
    400   *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
    401 }
    402 
    403 //------------------------------------------------------------------------------
    404 // Edge filtering functions
    405 
    406 // Applies filter on 2 pixels (p0 and q0)
    407 static WEBP_INLINE void DoFilter2(__m128i* const p1, __m128i* const p0,
    408                                   __m128i* const q0, __m128i* const q1,
    409                                   int thresh) {
    410   __m128i a, mask;
    411   const __m128i sign_bit = _mm_set1_epi8(0x80);
    412   // convert p1/q1 to int8_t (for GetBaseDelta)
    413   const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
    414   const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
    415 
    416   NeedsFilter(p1, p0, q0, q1, thresh, &mask);
    417 
    418   FLIP_SIGN_BIT2(*p0, *q0);
    419   GetBaseDelta(&p1s, p0, q0, &q1s, &a);
    420   a = _mm_and_si128(a, mask);     // mask filter values we don't care about
    421   DoSimpleFilter(p0, q0, &a);
    422   FLIP_SIGN_BIT2(*p0, *q0);
    423 }
    424 
    425 // Applies filter on 4 pixels (p1, p0, q0 and q1)
    426 static WEBP_INLINE void DoFilter4(__m128i* const p1, __m128i* const p0,
    427                                   __m128i* const q0, __m128i* const q1,
    428                                   const __m128i* const mask, int hev_thresh) {
    429   const __m128i zero = _mm_setzero_si128();
    430   const __m128i sign_bit = _mm_set1_epi8(0x80);
    431   const __m128i k64 = _mm_set1_epi8(64);
    432   const __m128i k3 = _mm_set1_epi8(3);
    433   const __m128i k4 = _mm_set1_epi8(4);
    434   __m128i not_hev;
    435   __m128i t1, t2, t3;
    436 
    437   // compute hev mask
    438   GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
    439 
    440   // convert to signed values
    441   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
    442 
    443   t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
    444   t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
    445   t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
    446   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
    447   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
    448   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
    449   t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about
    450 
    451   t2 = _mm_adds_epi8(t1, k3);        // 3 * (q0 - p0) + hev(p1 - q1) + 3
    452   t3 = _mm_adds_epi8(t1, k4);        // 3 * (q0 - p0) + hev(p1 - q1) + 4
    453   SignedShift8b(&t2);                // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
    454   SignedShift8b(&t3);                // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
    455   *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2
    456   *q0 = _mm_subs_epi8(*q0, t3);      // q0 -= t3
    457   FLIP_SIGN_BIT2(*p0, *q0);
    458 
    459   // this is equivalent to signed (a + 1) >> 1 calculation
    460   t2 = _mm_add_epi8(t3, sign_bit);
    461   t3 = _mm_avg_epu8(t2, zero);
    462   t3 = _mm_sub_epi8(t3, k64);
    463 
    464   t3 = _mm_and_si128(not_hev, t3);   // if !hev
    465   *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
    466   *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3
    467   FLIP_SIGN_BIT2(*p1, *q1);
    468 }
    469 
    470 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
    471 static WEBP_INLINE void DoFilter6(__m128i* const p2, __m128i* const p1,
    472                                   __m128i* const p0, __m128i* const q0,
    473                                   __m128i* const q1, __m128i* const q2,
    474                                   const __m128i* const mask, int hev_thresh) {
    475   const __m128i zero = _mm_setzero_si128();
    476   const __m128i sign_bit = _mm_set1_epi8(0x80);
    477   __m128i a, not_hev;
    478 
    479   // compute hev mask
    480   GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
    481 
    482   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
    483   FLIP_SIGN_BIT2(*p2, *q2);
    484   GetBaseDelta(p1, p0, q0, q1, &a);
    485 
    486   { // do simple filter on pixels with hev
    487     const __m128i m = _mm_andnot_si128(not_hev, *mask);
    488     const __m128i f = _mm_and_si128(a, m);
    489     DoSimpleFilter(p0, q0, &f);
    490   }
    491 
    492   { // do strong filter on pixels with not hev
    493     const __m128i k9 = _mm_set1_epi16(0x0900);
    494     const __m128i k63 = _mm_set1_epi16(63);
    495 
    496     const __m128i m = _mm_and_si128(not_hev, *mask);
    497     const __m128i f = _mm_and_si128(a, m);
    498 
    499     const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
    500     const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
    501 
    502     const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9);    // Filter (lo) * 9
    503     const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9);    // Filter (hi) * 9
    504 
    505     const __m128i a2_lo = _mm_add_epi16(f9_lo, k63);    // Filter * 9 + 63
    506     const __m128i a2_hi = _mm_add_epi16(f9_hi, k63);    // Filter * 9 + 63
    507 
    508     const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo);  // Filter * 18 + 63
    509     const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi);  // Filter * 18 + 63
    510 
    511     const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo);  // Filter * 27 + 63
    512     const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi);  // Filter * 27 + 63
    513 
    514     Update2Pixels(p2, q2, &a2_lo, &a2_hi);
    515     Update2Pixels(p1, q1, &a1_lo, &a1_hi);
    516     Update2Pixels(p0, q0, &a0_lo, &a0_hi);
    517   }
    518 }
    519 
    520 // reads 8 rows across a vertical edge.
    521 static WEBP_INLINE void Load8x4(const uint8_t* const b, int stride,
    522                                 __m128i* const p, __m128i* const q) {
    523   // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00
    524   // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10
    525   const __m128i A0 = _mm_set_epi32(
    526       WebPMemToUint32(&b[6 * stride]), WebPMemToUint32(&b[2 * stride]),
    527       WebPMemToUint32(&b[4 * stride]), WebPMemToUint32(&b[0 * stride]));
    528   const __m128i A1 = _mm_set_epi32(
    529       WebPMemToUint32(&b[7 * stride]), WebPMemToUint32(&b[3 * stride]),
    530       WebPMemToUint32(&b[5 * stride]), WebPMemToUint32(&b[1 * stride]));
    531 
    532   // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
    533   // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
    534   const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
    535   const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
    536 
    537   // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
    538   // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
    539   const __m128i C0 = _mm_unpacklo_epi16(B0, B1);
    540   const __m128i C1 = _mm_unpackhi_epi16(B0, B1);
    541 
    542   // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
    543   // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
    544   *p = _mm_unpacklo_epi32(C0, C1);
    545   *q = _mm_unpackhi_epi32(C0, C1);
    546 }
    547 
    548 static WEBP_INLINE void Load16x4(const uint8_t* const r0,
    549                                  const uint8_t* const r8,
    550                                  int stride,
    551                                  __m128i* const p1, __m128i* const p0,
    552                                  __m128i* const q0, __m128i* const q1) {
    553   // Assume the pixels around the edge (|) are numbered as follows
    554   //                00 01 | 02 03
    555   //                10 11 | 12 13
    556   //                 ...  |  ...
    557   //                e0 e1 | e2 e3
    558   //                f0 f1 | f2 f3
    559   //
    560   // r0 is pointing to the 0th row (00)
    561   // r8 is pointing to the 8th row (80)
    562 
    563   // Load
    564   // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
    565   // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
    566   // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
    567   // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
    568   Load8x4(r0, stride, p1, q0);
    569   Load8x4(r8, stride, p0, q1);
    570 
    571   {
    572     // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
    573     // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
    574     // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
    575     // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
    576     const __m128i t1 = *p1;
    577     const __m128i t2 = *q0;
    578     *p1 = _mm_unpacklo_epi64(t1, *p0);
    579     *p0 = _mm_unpackhi_epi64(t1, *p0);
    580     *q0 = _mm_unpacklo_epi64(t2, *q1);
    581     *q1 = _mm_unpackhi_epi64(t2, *q1);
    582   }
    583 }
    584 
    585 static WEBP_INLINE void Store4x4(__m128i* const x, uint8_t* dst, int stride) {
    586   int i;
    587   for (i = 0; i < 4; ++i, dst += stride) {
    588     WebPUint32ToMem(dst, _mm_cvtsi128_si32(*x));
    589     *x = _mm_srli_si128(*x, 4);
    590   }
    591 }
    592 
    593 // Transpose back and store
    594 static WEBP_INLINE void Store16x4(const __m128i* const p1,
    595                                   const __m128i* const p0,
    596                                   const __m128i* const q0,
    597                                   const __m128i* const q1,
    598                                   uint8_t* r0, uint8_t* r8,
    599                                   int stride) {
    600   __m128i t1, p1_s, p0_s, q0_s, q1_s;
    601 
    602   // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
    603   // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
    604   t1 = *p0;
    605   p0_s = _mm_unpacklo_epi8(*p1, t1);
    606   p1_s = _mm_unpackhi_epi8(*p1, t1);
    607 
    608   // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
    609   // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
    610   t1 = *q0;
    611   q0_s = _mm_unpacklo_epi8(t1, *q1);
    612   q1_s = _mm_unpackhi_epi8(t1, *q1);
    613 
    614   // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
    615   // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
    616   t1 = p0_s;
    617   p0_s = _mm_unpacklo_epi16(t1, q0_s);
    618   q0_s = _mm_unpackhi_epi16(t1, q0_s);
    619 
    620   // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
    621   // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
    622   t1 = p1_s;
    623   p1_s = _mm_unpacklo_epi16(t1, q1_s);
    624   q1_s = _mm_unpackhi_epi16(t1, q1_s);
    625 
    626   Store4x4(&p0_s, r0, stride);
    627   r0 += 4 * stride;
    628   Store4x4(&q0_s, r0, stride);
    629 
    630   Store4x4(&p1_s, r8, stride);
    631   r8 += 4 * stride;
    632   Store4x4(&q1_s, r8, stride);
    633 }
    634 
    635 //------------------------------------------------------------------------------
    636 // Simple In-loop filtering (Paragraph 15.2)
    637 
    638 static void SimpleVFilter16(uint8_t* p, int stride, int thresh) {
    639   // Load
    640   __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
    641   __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
    642   __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
    643   __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
    644 
    645   DoFilter2(&p1, &p0, &q0, &q1, thresh);
    646 
    647   // Store
    648   _mm_storeu_si128((__m128i*)&p[-stride], p0);
    649   _mm_storeu_si128((__m128i*)&p[0], q0);
    650 }
    651 
    652 static void SimpleHFilter16(uint8_t* p, int stride, int thresh) {
    653   __m128i p1, p0, q0, q1;
    654 
    655   p -= 2;  // beginning of p1
    656 
    657   Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
    658   DoFilter2(&p1, &p0, &q0, &q1, thresh);
    659   Store16x4(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
    660 }
    661 
    662 static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) {
    663   int k;
    664   for (k = 3; k > 0; --k) {
    665     p += 4 * stride;
    666     SimpleVFilter16(p, stride, thresh);
    667   }
    668 }
    669 
    670 static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) {
    671   int k;
    672   for (k = 3; k > 0; --k) {
    673     p += 4;
    674     SimpleHFilter16(p, stride, thresh);
    675   }
    676 }
    677 
    678 //------------------------------------------------------------------------------
    679 // Complex In-loop filtering (Paragraph 15.3)
    680 
    681 #define MAX_DIFF1(p3, p2, p1, p0, m) do {                                      \
    682   m = MM_ABS(p1, p0);                                                          \
    683   m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
    684   m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
    685 } while (0)
    686 
    687 #define MAX_DIFF2(p3, p2, p1, p0, m) do {                                      \
    688   m = _mm_max_epu8(m, MM_ABS(p1, p0));                                         \
    689   m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
    690   m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
    691 } while (0)
    692 
    693 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) {                             \
    694   e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]);                            \
    695   e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]);                            \
    696   e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]);                            \
    697   e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]);                            \
    698 }
    699 
    700 #define LOADUV_H_EDGE(p, u, v, stride) do {                                    \
    701   const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                 \
    702   const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]);                 \
    703   p = _mm_unpacklo_epi64(U, V);                                                \
    704 } while (0)
    705 
    706 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) {                        \
    707   LOADUV_H_EDGE(e1, u, v, 0 * stride);                                         \
    708   LOADUV_H_EDGE(e2, u, v, 1 * stride);                                         \
    709   LOADUV_H_EDGE(e3, u, v, 2 * stride);                                         \
    710   LOADUV_H_EDGE(e4, u, v, 3 * stride);                                         \
    711 }
    712 
    713 #define STOREUV(p, u, v, stride) {                                             \
    714   _mm_storel_epi64((__m128i*)&u[(stride)], p);                                 \
    715   p = _mm_srli_si128(p, 8);                                                    \
    716   _mm_storel_epi64((__m128i*)&v[(stride)], p);                                 \
    717 }
    718 
    719 static WEBP_INLINE void ComplexMask(const __m128i* const p1,
    720                                     const __m128i* const p0,
    721                                     const __m128i* const q0,
    722                                     const __m128i* const q1,
    723                                     int thresh, int ithresh,
    724                                     __m128i* const mask) {
    725   const __m128i it = _mm_set1_epi8(ithresh);
    726   const __m128i diff = _mm_subs_epu8(*mask, it);
    727   const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
    728   __m128i filter_mask;
    729   NeedsFilter(p1, p0, q0, q1, thresh, &filter_mask);
    730   *mask = _mm_and_si128(thresh_mask, filter_mask);
    731 }
    732 
    733 // on macroblock edges
    734 static void VFilter16(uint8_t* p, int stride,
    735                       int thresh, int ithresh, int hev_thresh) {
    736   __m128i t1;
    737   __m128i mask;
    738   __m128i p2, p1, p0, q0, q1, q2;
    739 
    740   // Load p3, p2, p1, p0
    741   LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
    742   MAX_DIFF1(t1, p2, p1, p0, mask);
    743 
    744   // Load q0, q1, q2, q3
    745   LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
    746   MAX_DIFF2(t1, q2, q1, q0, mask);
    747 
    748   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    749   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
    750 
    751   // Store
    752   _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
    753   _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
    754   _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
    755   _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
    756   _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
    757   _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
    758 }
    759 
    760 static void HFilter16(uint8_t* p, int stride,
    761                       int thresh, int ithresh, int hev_thresh) {
    762   __m128i mask;
    763   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
    764 
    765   uint8_t* const b = p - 4;
    766   Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
    767   MAX_DIFF1(p3, p2, p1, p0, mask);
    768 
    769   Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);  // q0, q1, q2, q3
    770   MAX_DIFF2(q3, q2, q1, q0, mask);
    771 
    772   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    773   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
    774 
    775   Store16x4(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
    776   Store16x4(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
    777 }
    778 
    779 // on three inner edges
    780 static void VFilter16i(uint8_t* p, int stride,
    781                        int thresh, int ithresh, int hev_thresh) {
    782   int k;
    783   __m128i p3, p2, p1, p0;   // loop invariants
    784 
    785   LOAD_H_EDGES4(p, stride, p3, p2, p1, p0);  // prologue
    786 
    787   for (k = 3; k > 0; --k) {
    788     __m128i mask, tmp1, tmp2;
    789     uint8_t* const b = p + 2 * stride;   // beginning of p1
    790     p += 4 * stride;
    791 
    792     MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
    793     LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
    794     MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
    795 
    796     // p3 and p2 are not just temporary variables here: they will be
    797     // re-used for next span. And q2/q3 will become p1/p0 accordingly.
    798     ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
    799     DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
    800 
    801     // Store
    802     _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
    803     _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
    804     _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
    805     _mm_storeu_si128((__m128i*)&b[3 * stride], p2);
    806 
    807     // rotate samples
    808     p1 = tmp1;
    809     p0 = tmp2;
    810   }
    811 }
    812 
    813 static void HFilter16i(uint8_t* p, int stride,
    814                        int thresh, int ithresh, int hev_thresh) {
    815   int k;
    816   __m128i p3, p2, p1, p0;   // loop invariants
    817 
    818   Load16x4(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0);  // prologue
    819 
    820   for (k = 3; k > 0; --k) {
    821     __m128i mask, tmp1, tmp2;
    822     uint8_t* const b = p + 2;   // beginning of p1
    823 
    824     p += 4;  // beginning of q0 (and next span)
    825 
    826     MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
    827     Load16x4(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
    828     MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
    829 
    830     ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
    831     DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
    832 
    833     Store16x4(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
    834 
    835     // rotate samples
    836     p1 = tmp1;
    837     p0 = tmp2;
    838   }
    839 }
    840 
    841 // 8-pixels wide variant, for chroma filtering
    842 static void VFilter8(uint8_t* u, uint8_t* v, int stride,
    843                      int thresh, int ithresh, int hev_thresh) {
    844   __m128i mask;
    845   __m128i t1, p2, p1, p0, q0, q1, q2;
    846 
    847   // Load p3, p2, p1, p0
    848   LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
    849   MAX_DIFF1(t1, p2, p1, p0, mask);
    850 
    851   // Load q0, q1, q2, q3
    852   LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
    853   MAX_DIFF2(t1, q2, q1, q0, mask);
    854 
    855   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    856   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
    857 
    858   // Store
    859   STOREUV(p2, u, v, -3 * stride);
    860   STOREUV(p1, u, v, -2 * stride);
    861   STOREUV(p0, u, v, -1 * stride);
    862   STOREUV(q0, u, v, 0 * stride);
    863   STOREUV(q1, u, v, 1 * stride);
    864   STOREUV(q2, u, v, 2 * stride);
    865 }
    866 
    867 static void HFilter8(uint8_t* u, uint8_t* v, int stride,
    868                      int thresh, int ithresh, int hev_thresh) {
    869   __m128i mask;
    870   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
    871 
    872   uint8_t* const tu = u - 4;
    873   uint8_t* const tv = v - 4;
    874   Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
    875   MAX_DIFF1(p3, p2, p1, p0, mask);
    876 
    877   Load16x4(u, v, stride, &q0, &q1, &q2, &q3);    // q0, q1, q2, q3
    878   MAX_DIFF2(q3, q2, q1, q0, mask);
    879 
    880   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    881   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
    882 
    883   Store16x4(&p3, &p2, &p1, &p0, tu, tv, stride);
    884   Store16x4(&q0, &q1, &q2, &q3, u, v, stride);
    885 }
    886 
    887 static void VFilter8i(uint8_t* u, uint8_t* v, int stride,
    888                       int thresh, int ithresh, int hev_thresh) {
    889   __m128i mask;
    890   __m128i t1, t2, p1, p0, q0, q1;
    891 
    892   // Load p3, p2, p1, p0
    893   LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
    894   MAX_DIFF1(t2, t1, p1, p0, mask);
    895 
    896   u += 4 * stride;
    897   v += 4 * stride;
    898 
    899   // Load q0, q1, q2, q3
    900   LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
    901   MAX_DIFF2(t2, t1, q1, q0, mask);
    902 
    903   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    904   DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
    905 
    906   // Store
    907   STOREUV(p1, u, v, -2 * stride);
    908   STOREUV(p0, u, v, -1 * stride);
    909   STOREUV(q0, u, v, 0 * stride);
    910   STOREUV(q1, u, v, 1 * stride);
    911 }
    912 
    913 static void HFilter8i(uint8_t* u, uint8_t* v, int stride,
    914                       int thresh, int ithresh, int hev_thresh) {
    915   __m128i mask;
    916   __m128i t1, t2, p1, p0, q0, q1;
    917   Load16x4(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
    918   MAX_DIFF1(t2, t1, p1, p0, mask);
    919 
    920   u += 4;  // beginning of q0
    921   v += 4;
    922   Load16x4(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
    923   MAX_DIFF2(t2, t1, q1, q0, mask);
    924 
    925   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    926   DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
    927 
    928   u -= 2;  // beginning of p1
    929   v -= 2;
    930   Store16x4(&p1, &p0, &q0, &q1, u, v, stride);
    931 }
    932 
    933 //------------------------------------------------------------------------------
    934 // 4x4 predictions
    935 
    936 #define DST(x, y) dst[(x) + (y) * BPS]
    937 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
    938 
    939 // We use the following 8b-arithmetic tricks:
    940 //     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
    941 //   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
    942 // and:
    943 //     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
    944 //   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
    945 //   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
    946 
    947 static void VE4(uint8_t* dst) {    // vertical
    948   const __m128i one = _mm_set1_epi8(1);
    949   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
    950   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
    951   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
    952   const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
    953   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
    954   const __m128i b = _mm_subs_epu8(a, lsb);
    955   const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
    956   const uint32_t vals = _mm_cvtsi128_si32(avg);
    957   int i;
    958   for (i = 0; i < 4; ++i) {
    959     WebPUint32ToMem(dst + i * BPS, vals);
    960   }
    961 }
    962 
    963 static void LD4(uint8_t* dst) {   // Down-Left
    964   const __m128i one = _mm_set1_epi8(1);
    965   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
    966   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
    967   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
    968   const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3);
    969   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
    970   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
    971   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
    972   const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
    973   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
    974   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
    975   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
    976   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
    977 }
    978 
    979 static void VR4(uint8_t* dst) {   // Vertical-Right
    980   const __m128i one = _mm_set1_epi8(1);
    981   const int I = dst[-1 + 0 * BPS];
    982   const int J = dst[-1 + 1 * BPS];
    983   const int K = dst[-1 + 2 * BPS];
    984   const int X = dst[-1 - BPS];
    985   const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
    986   const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
    987   const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
    988   const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
    989   const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
    990   const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
    991   const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
    992   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
    993   const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
    994   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
    995   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
    996   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
    997   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
    998 
    999   // these two are hard to implement in SSE2, so we keep the C-version:
   1000   DST(0, 2) = AVG3(J, I, X);
   1001   DST(0, 3) = AVG3(K, J, I);
   1002 }
   1003 
   1004 static void VL4(uint8_t* dst) {   // Vertical-Left
   1005   const __m128i one = _mm_set1_epi8(1);
   1006   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
   1007   const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
   1008   const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
   1009   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
   1010   const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
   1011   const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
   1012   const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
   1013   const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
   1014   const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
   1015   const __m128i abbc = _mm_or_si128(ab, bc);
   1016   const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
   1017   const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
   1018   const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
   1019   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
   1020   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
   1021   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
   1022   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
   1023 
   1024   // these two are hard to get and irregular
   1025   DST(3, 2) = (extra_out >> 0) & 0xff;
   1026   DST(3, 3) = (extra_out >> 8) & 0xff;
   1027 }
   1028 
   1029 static void RD4(uint8_t* dst) {   // Down-right
   1030   const __m128i one = _mm_set1_epi8(1);
   1031   const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
   1032   const __m128i ____XABCD = _mm_slli_si128(XABCD, 4);
   1033   const uint32_t I = dst[-1 + 0 * BPS];
   1034   const uint32_t J = dst[-1 + 1 * BPS];
   1035   const uint32_t K = dst[-1 + 2 * BPS];
   1036   const uint32_t L = dst[-1 + 3 * BPS];
   1037   const __m128i LKJI_____ =
   1038       _mm_cvtsi32_si128(L | (K << 8) | (J << 16) | (I << 24));
   1039   const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD);
   1040   const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
   1041   const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
   1042   const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
   1043   const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
   1044   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
   1045   const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
   1046   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
   1047   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
   1048   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
   1049   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
   1050 }
   1051 
   1052 #undef DST
   1053 #undef AVG3
   1054 
   1055 //------------------------------------------------------------------------------
   1056 // Luma 16x16
   1057 
   1058 static WEBP_INLINE void TrueMotion(uint8_t* dst, int size) {
   1059   const uint8_t* top = dst - BPS;
   1060   const __m128i zero = _mm_setzero_si128();
   1061   int y;
   1062   if (size == 4) {
   1063     const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
   1064     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
   1065     for (y = 0; y < 4; ++y, dst += BPS) {
   1066       const int val = dst[-1] - top[-1];
   1067       const __m128i base = _mm_set1_epi16(val);
   1068       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
   1069       WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
   1070     }
   1071   } else if (size == 8) {
   1072     const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
   1073     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
   1074     for (y = 0; y < 8; ++y, dst += BPS) {
   1075       const int val = dst[-1] - top[-1];
   1076       const __m128i base = _mm_set1_epi16(val);
   1077       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
   1078       _mm_storel_epi64((__m128i*)dst, out);
   1079     }
   1080   } else {
   1081     const __m128i top_values = _mm_loadu_si128((const __m128i*)top);
   1082     const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
   1083     const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
   1084     for (y = 0; y < 16; ++y, dst += BPS) {
   1085       const int val = dst[-1] - top[-1];
   1086       const __m128i base = _mm_set1_epi16(val);
   1087       const __m128i out_0 = _mm_add_epi16(base, top_base_0);
   1088       const __m128i out_1 = _mm_add_epi16(base, top_base_1);
   1089       const __m128i out = _mm_packus_epi16(out_0, out_1);
   1090       _mm_storeu_si128((__m128i*)dst, out);
   1091     }
   1092   }
   1093 }
   1094 
   1095 static void TM4(uint8_t* dst)   { TrueMotion(dst, 4); }
   1096 static void TM8uv(uint8_t* dst) { TrueMotion(dst, 8); }
   1097 static void TM16(uint8_t* dst)  { TrueMotion(dst, 16); }
   1098 
   1099 static void VE16(uint8_t* dst) {
   1100   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
   1101   int j;
   1102   for (j = 0; j < 16; ++j) {
   1103     _mm_storeu_si128((__m128i*)(dst + j * BPS), top);
   1104   }
   1105 }
   1106 
   1107 static void HE16(uint8_t* dst) {     // horizontal
   1108   int j;
   1109   for (j = 16; j > 0; --j) {
   1110     const __m128i values = _mm_set1_epi8(dst[-1]);
   1111     _mm_storeu_si128((__m128i*)dst, values);
   1112     dst += BPS;
   1113   }
   1114 }
   1115 
   1116 static WEBP_INLINE void Put16(uint8_t v, uint8_t* dst) {
   1117   int j;
   1118   const __m128i values = _mm_set1_epi8(v);
   1119   for (j = 0; j < 16; ++j) {
   1120     _mm_storeu_si128((__m128i*)(dst + j * BPS), values);
   1121   }
   1122 }
   1123 
   1124 static void DC16(uint8_t* dst) {    // DC
   1125   const __m128i zero = _mm_setzero_si128();
   1126   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
   1127   const __m128i sad8x2 = _mm_sad_epu8(top, zero);
   1128   // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
   1129   const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
   1130   int left = 0;
   1131   int j;
   1132   for (j = 0; j < 16; ++j) {
   1133     left += dst[-1 + j * BPS];
   1134   }
   1135   {
   1136     const int DC = _mm_cvtsi128_si32(sum) + left + 16;
   1137     Put16(DC >> 5, dst);
   1138   }
   1139 }
   1140 
   1141 static void DC16NoTop(uint8_t* dst) {   // DC with top samples not available
   1142   int DC = 8;
   1143   int j;
   1144   for (j = 0; j < 16; ++j) {
   1145     DC += dst[-1 + j * BPS];
   1146   }
   1147   Put16(DC >> 4, dst);
   1148 }
   1149 
   1150 static void DC16NoLeft(uint8_t* dst) {  // DC with left samples not available
   1151   const __m128i zero = _mm_setzero_si128();
   1152   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
   1153   const __m128i sad8x2 = _mm_sad_epu8(top, zero);
   1154   // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
   1155   const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
   1156   const int DC = _mm_cvtsi128_si32(sum) + 8;
   1157   Put16(DC >> 4, dst);
   1158 }
   1159 
   1160 static void DC16NoTopLeft(uint8_t* dst) {  // DC with no top and left samples
   1161   Put16(0x80, dst);
   1162 }
   1163 
   1164 //------------------------------------------------------------------------------
   1165 // Chroma
   1166 
   1167 static void VE8uv(uint8_t* dst) {    // vertical
   1168   int j;
   1169   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
   1170   for (j = 0; j < 8; ++j) {
   1171     _mm_storel_epi64((__m128i*)(dst + j * BPS), top);
   1172   }
   1173 }
   1174 
   1175 static void HE8uv(uint8_t* dst) {    // horizontal
   1176   int j;
   1177   for (j = 0; j < 8; ++j) {
   1178     const __m128i values = _mm_set1_epi8(dst[-1]);
   1179     _mm_storel_epi64((__m128i*)dst, values);
   1180     dst += BPS;
   1181   }
   1182 }
   1183 
   1184 // helper for chroma-DC predictions
   1185 static WEBP_INLINE void Put8x8uv(uint8_t v, uint8_t* dst) {
   1186   int j;
   1187   const __m128i values = _mm_set1_epi8(v);
   1188   for (j = 0; j < 8; ++j) {
   1189     _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
   1190   }
   1191 }
   1192 
   1193 static void DC8uv(uint8_t* dst) {     // DC
   1194   const __m128i zero = _mm_setzero_si128();
   1195   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
   1196   const __m128i sum = _mm_sad_epu8(top, zero);
   1197   int left = 0;
   1198   int j;
   1199   for (j = 0; j < 8; ++j) {
   1200     left += dst[-1 + j * BPS];
   1201   }
   1202   {
   1203     const int DC = _mm_cvtsi128_si32(sum) + left + 8;
   1204     Put8x8uv(DC >> 4, dst);
   1205   }
   1206 }
   1207 
   1208 static void DC8uvNoLeft(uint8_t* dst) {   // DC with no left samples
   1209   const __m128i zero = _mm_setzero_si128();
   1210   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
   1211   const __m128i sum = _mm_sad_epu8(top, zero);
   1212   const int DC = _mm_cvtsi128_si32(sum) + 4;
   1213   Put8x8uv(DC >> 3, dst);
   1214 }
   1215 
   1216 static void DC8uvNoTop(uint8_t* dst) {  // DC with no top samples
   1217   int dc0 = 4;
   1218   int i;
   1219   for (i = 0; i < 8; ++i) {
   1220     dc0 += dst[-1 + i * BPS];
   1221   }
   1222   Put8x8uv(dc0 >> 3, dst);
   1223 }
   1224 
   1225 static void DC8uvNoTopLeft(uint8_t* dst) {    // DC with nothing
   1226   Put8x8uv(0x80, dst);
   1227 }
   1228 
   1229 //------------------------------------------------------------------------------
   1230 // Entry point
   1231 
   1232 extern void VP8DspInitSSE2(void);
   1233 
   1234 WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) {
   1235   VP8Transform = Transform;
   1236 #if defined(USE_TRANSFORM_AC3)
   1237   VP8TransformAC3 = TransformAC3;
   1238 #endif
   1239 
   1240   VP8VFilter16 = VFilter16;
   1241   VP8HFilter16 = HFilter16;
   1242   VP8VFilter8 = VFilter8;
   1243   VP8HFilter8 = HFilter8;
   1244   VP8VFilter16i = VFilter16i;
   1245   VP8HFilter16i = HFilter16i;
   1246   VP8VFilter8i = VFilter8i;
   1247   VP8HFilter8i = HFilter8i;
   1248 
   1249   VP8SimpleVFilter16 = SimpleVFilter16;
   1250   VP8SimpleHFilter16 = SimpleHFilter16;
   1251   VP8SimpleVFilter16i = SimpleVFilter16i;
   1252   VP8SimpleHFilter16i = SimpleHFilter16i;
   1253 
   1254   VP8PredLuma4[1] = TM4;
   1255   VP8PredLuma4[2] = VE4;
   1256   VP8PredLuma4[4] = RD4;
   1257   VP8PredLuma4[5] = VR4;
   1258   VP8PredLuma4[6] = LD4;
   1259   VP8PredLuma4[7] = VL4;
   1260 
   1261   VP8PredLuma16[0] = DC16;
   1262   VP8PredLuma16[1] = TM16;
   1263   VP8PredLuma16[2] = VE16;
   1264   VP8PredLuma16[3] = HE16;
   1265   VP8PredLuma16[4] = DC16NoTop;
   1266   VP8PredLuma16[5] = DC16NoLeft;
   1267   VP8PredLuma16[6] = DC16NoTopLeft;
   1268 
   1269   VP8PredChroma8[0] = DC8uv;
   1270   VP8PredChroma8[1] = TM8uv;
   1271   VP8PredChroma8[2] = VE8uv;
   1272   VP8PredChroma8[3] = HE8uv;
   1273   VP8PredChroma8[4] = DC8uvNoTop;
   1274   VP8PredChroma8[5] = DC8uvNoLeft;
   1275   VP8PredChroma8[6] = DC8uvNoTopLeft;
   1276 }
   1277 
   1278 #else  // !WEBP_USE_SSE2
   1279 
   1280 WEBP_DSP_INIT_STUB(VP8DspInitSSE2)
   1281 
   1282 #endif  // WEBP_USE_SSE2
   1283