1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions 6 // are met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the 14 // distribution. 15 // 16 // - Neither the name of Sun Microsystems or the names of contributors may 17 // be used to endorse or promote products derived from this software without 18 // specific prior written permission. 19 // 20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 31 // OF THE POSSIBILITY OF SUCH DAMAGE. 32 33 // The original source code covered by the above license above has been modified 34 // significantly by Google Inc. 35 // Copyright 2014 the V8 project authors. All rights reserved. 36 37 #ifndef V8_PPC_ASSEMBLER_PPC_INL_H_ 38 #define V8_PPC_ASSEMBLER_PPC_INL_H_ 39 40 #include "src/ppc/assembler-ppc.h" 41 42 #include "src/assembler.h" 43 #include "src/debug/debug.h" 44 45 46 namespace v8 { 47 namespace internal { 48 49 50 bool CpuFeatures::SupportsCrankshaft() { return true; } 51 52 53 void RelocInfo::apply(intptr_t delta) { 54 // absolute code pointer inside code object moves with the code object. 55 if (IsInternalReference(rmode_)) { 56 // Jump table entry 57 Address target = Memory::Address_at(pc_); 58 Memory::Address_at(pc_) = target + delta; 59 } else { 60 // mov sequence 61 DCHECK(IsInternalReferenceEncoded(rmode_)); 62 Address target = Assembler::target_address_at(pc_, host_); 63 Assembler::set_target_address_at(isolate_, pc_, host_, target + delta, 64 SKIP_ICACHE_FLUSH); 65 } 66 } 67 68 69 Address RelocInfo::target_internal_reference() { 70 if (IsInternalReference(rmode_)) { 71 // Jump table entry 72 return Memory::Address_at(pc_); 73 } else { 74 // mov sequence 75 DCHECK(IsInternalReferenceEncoded(rmode_)); 76 return Assembler::target_address_at(pc_, host_); 77 } 78 } 79 80 81 Address RelocInfo::target_internal_reference_address() { 82 DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); 83 return reinterpret_cast<Address>(pc_); 84 } 85 86 87 Address RelocInfo::target_address() { 88 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); 89 return Assembler::target_address_at(pc_, host_); 90 } 91 92 93 Address RelocInfo::target_address_address() { 94 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || 95 rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE); 96 97 if (FLAG_enable_embedded_constant_pool && 98 Assembler::IsConstantPoolLoadStart(pc_)) { 99 // We return the PC for embedded constant pool since this function is used 100 // by the serializer and expects the address to reside within the code 101 // object. 102 return reinterpret_cast<Address>(pc_); 103 } 104 105 // Read the address of the word containing the target_address in an 106 // instruction stream. 107 // The only architecture-independent user of this function is the serializer. 108 // The serializer uses it to find out how many raw bytes of instruction to 109 // output before the next target. 110 // For an instruction like LIS/ORI where the target bits are mixed into the 111 // instruction bits, the size of the target will be zero, indicating that the 112 // serializer should not step forward in memory after a target is resolved 113 // and written. 114 return reinterpret_cast<Address>(pc_); 115 } 116 117 118 Address RelocInfo::constant_pool_entry_address() { 119 if (FLAG_enable_embedded_constant_pool) { 120 Address constant_pool = host_->constant_pool(); 121 DCHECK(constant_pool); 122 ConstantPoolEntry::Access access; 123 if (Assembler::IsConstantPoolLoadStart(pc_, &access)) 124 return Assembler::target_constant_pool_address_at( 125 pc_, constant_pool, access, ConstantPoolEntry::INTPTR); 126 } 127 UNREACHABLE(); 128 return NULL; 129 } 130 131 132 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } 133 134 135 void RelocInfo::set_target_address(Address target, 136 WriteBarrierMode write_barrier_mode, 137 ICacheFlushMode icache_flush_mode) { 138 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); 139 Assembler::set_target_address_at(isolate_, pc_, host_, target, 140 icache_flush_mode); 141 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL && 142 IsCodeTarget(rmode_)) { 143 Object* target_code = Code::GetCodeFromTargetAddress(target); 144 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( 145 host(), this, HeapObject::cast(target_code)); 146 } 147 } 148 149 150 Address Assembler::target_address_from_return_address(Address pc) { 151 // Returns the address of the call target from the return address that will 152 // be returned to after a call. 153 // Call sequence is : 154 // mov ip, @ call address 155 // mtlr ip 156 // blrl 157 // @ return address 158 int len; 159 ConstantPoolEntry::Access access; 160 if (FLAG_enable_embedded_constant_pool && 161 IsConstantPoolLoadEnd(pc - 3 * kInstrSize, &access)) { 162 len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1; 163 } else { 164 len = kMovInstructionsNoConstantPool; 165 } 166 return pc - (len + 2) * kInstrSize; 167 } 168 169 170 Address Assembler::return_address_from_call_start(Address pc) { 171 int len; 172 ConstantPoolEntry::Access access; 173 if (FLAG_enable_embedded_constant_pool && 174 IsConstantPoolLoadStart(pc, &access)) { 175 len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1; 176 } else { 177 len = kMovInstructionsNoConstantPool; 178 } 179 return pc + (len + 2) * kInstrSize; 180 } 181 182 183 Object* RelocInfo::target_object() { 184 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); 185 return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_)); 186 } 187 188 189 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) { 190 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); 191 return Handle<Object>( 192 reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_))); 193 } 194 195 196 void RelocInfo::set_target_object(Object* target, 197 WriteBarrierMode write_barrier_mode, 198 ICacheFlushMode icache_flush_mode) { 199 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); 200 Assembler::set_target_address_at(isolate_, pc_, host_, 201 reinterpret_cast<Address>(target), 202 icache_flush_mode); 203 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL && 204 target->IsHeapObject()) { 205 host()->GetHeap()->incremental_marking()->RecordWrite( 206 host(), &Memory::Object_at(pc_), HeapObject::cast(target)); 207 } 208 } 209 210 211 Address RelocInfo::target_external_reference() { 212 DCHECK(rmode_ == EXTERNAL_REFERENCE); 213 return Assembler::target_address_at(pc_, host_); 214 } 215 216 217 Address RelocInfo::target_runtime_entry(Assembler* origin) { 218 DCHECK(IsRuntimeEntry(rmode_)); 219 return target_address(); 220 } 221 222 223 void RelocInfo::set_target_runtime_entry(Address target, 224 WriteBarrierMode write_barrier_mode, 225 ICacheFlushMode icache_flush_mode) { 226 DCHECK(IsRuntimeEntry(rmode_)); 227 if (target_address() != target) 228 set_target_address(target, write_barrier_mode, icache_flush_mode); 229 } 230 231 232 Handle<Cell> RelocInfo::target_cell_handle() { 233 DCHECK(rmode_ == RelocInfo::CELL); 234 Address address = Memory::Address_at(pc_); 235 return Handle<Cell>(reinterpret_cast<Cell**>(address)); 236 } 237 238 239 Cell* RelocInfo::target_cell() { 240 DCHECK(rmode_ == RelocInfo::CELL); 241 return Cell::FromValueAddress(Memory::Address_at(pc_)); 242 } 243 244 245 void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode, 246 ICacheFlushMode icache_flush_mode) { 247 DCHECK(rmode_ == RelocInfo::CELL); 248 Address address = cell->address() + Cell::kValueOffset; 249 Memory::Address_at(pc_) = address; 250 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) { 251 // TODO(1550) We are passing NULL as a slot because cell can never be on 252 // evacuation candidate. 253 host()->GetHeap()->incremental_marking()->RecordWrite(host(), NULL, cell); 254 } 255 } 256 257 258 static const int kNoCodeAgeInstructions = 259 FLAG_enable_embedded_constant_pool ? 7 : 6; 260 static const int kCodeAgingInstructions = 261 Assembler::kMovInstructionsNoConstantPool + 3; 262 static const int kNoCodeAgeSequenceInstructions = 263 ((kNoCodeAgeInstructions >= kCodeAgingInstructions) 264 ? kNoCodeAgeInstructions 265 : kCodeAgingInstructions); 266 static const int kNoCodeAgeSequenceNops = 267 (kNoCodeAgeSequenceInstructions - kNoCodeAgeInstructions); 268 static const int kCodeAgingSequenceNops = 269 (kNoCodeAgeSequenceInstructions - kCodeAgingInstructions); 270 static const int kCodeAgingTargetDelta = 1 * Assembler::kInstrSize; 271 static const int kNoCodeAgeSequenceLength = 272 (kNoCodeAgeSequenceInstructions * Assembler::kInstrSize); 273 274 275 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) { 276 UNREACHABLE(); // This should never be reached on PPC. 277 return Handle<Object>(); 278 } 279 280 281 Code* RelocInfo::code_age_stub() { 282 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); 283 return Code::GetCodeFromTargetAddress( 284 Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_)); 285 } 286 287 288 void RelocInfo::set_code_age_stub(Code* stub, 289 ICacheFlushMode icache_flush_mode) { 290 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); 291 Assembler::set_target_address_at(isolate_, pc_ + kCodeAgingTargetDelta, host_, 292 stub->instruction_start(), 293 icache_flush_mode); 294 } 295 296 297 Address RelocInfo::debug_call_address() { 298 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); 299 return Assembler::target_address_at(pc_, host_); 300 } 301 302 303 void RelocInfo::set_debug_call_address(Address target) { 304 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); 305 Assembler::set_target_address_at(isolate_, pc_, host_, target); 306 if (host() != NULL) { 307 Object* target_code = Code::GetCodeFromTargetAddress(target); 308 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( 309 host(), this, HeapObject::cast(target_code)); 310 } 311 } 312 313 314 void RelocInfo::WipeOut() { 315 DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || 316 IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || 317 IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); 318 if (IsInternalReference(rmode_)) { 319 // Jump table entry 320 Memory::Address_at(pc_) = NULL; 321 } else if (IsInternalReferenceEncoded(rmode_)) { 322 // mov sequence 323 // Currently used only by deserializer, no need to flush. 324 Assembler::set_target_address_at(isolate_, pc_, host_, NULL, 325 SKIP_ICACHE_FLUSH); 326 } else { 327 Assembler::set_target_address_at(isolate_, pc_, host_, NULL); 328 } 329 } 330 331 332 bool RelocInfo::IsPatchedReturnSequence() { 333 // 334 // The patched return sequence is defined by 335 // BreakLocation::SetDebugBreakAtReturn() 336 // FIXED_SEQUENCE 337 338 Instr instr0 = Assembler::instr_at(pc_); 339 Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize); 340 #if V8_TARGET_ARCH_PPC64 341 Instr instr3 = Assembler::instr_at(pc_ + (3 * Assembler::kInstrSize)); 342 Instr instr4 = Assembler::instr_at(pc_ + (4 * Assembler::kInstrSize)); 343 Instr binstr = Assembler::instr_at(pc_ + (7 * Assembler::kInstrSize)); 344 #else 345 Instr binstr = Assembler::instr_at(pc_ + 4 * Assembler::kInstrSize); 346 #endif 347 bool patched_return = 348 ((instr0 & kOpcodeMask) == ADDIS && (instr1 & kOpcodeMask) == ORI && 349 #if V8_TARGET_ARCH_PPC64 350 (instr3 & kOpcodeMask) == ORIS && (instr4 & kOpcodeMask) == ORI && 351 #endif 352 (binstr == 0x7d821008)); // twge r2, r2 353 354 // printf("IsPatchedReturnSequence: %d\n", patched_return); 355 return patched_return; 356 } 357 358 359 bool RelocInfo::IsPatchedDebugBreakSlotSequence() { 360 Instr current_instr = Assembler::instr_at(pc_); 361 return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP); 362 } 363 364 365 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { 366 RelocInfo::Mode mode = rmode(); 367 if (mode == RelocInfo::EMBEDDED_OBJECT) { 368 visitor->VisitEmbeddedPointer(this); 369 } else if (RelocInfo::IsCodeTarget(mode)) { 370 visitor->VisitCodeTarget(this); 371 } else if (mode == RelocInfo::CELL) { 372 visitor->VisitCell(this); 373 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { 374 visitor->VisitExternalReference(this); 375 } else if (mode == RelocInfo::INTERNAL_REFERENCE || 376 mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { 377 visitor->VisitInternalReference(this); 378 } else if (RelocInfo::IsCodeAgeSequence(mode)) { 379 visitor->VisitCodeAgeSequence(this); 380 } else if (RelocInfo::IsDebugBreakSlot(mode) && 381 IsPatchedDebugBreakSlotSequence()) { 382 visitor->VisitDebugTarget(this); 383 } else if (IsRuntimeEntry(mode)) { 384 visitor->VisitRuntimeEntry(this); 385 } 386 } 387 388 389 template <typename StaticVisitor> 390 void RelocInfo::Visit(Heap* heap) { 391 RelocInfo::Mode mode = rmode(); 392 if (mode == RelocInfo::EMBEDDED_OBJECT) { 393 StaticVisitor::VisitEmbeddedPointer(heap, this); 394 } else if (RelocInfo::IsCodeTarget(mode)) { 395 StaticVisitor::VisitCodeTarget(heap, this); 396 } else if (mode == RelocInfo::CELL) { 397 StaticVisitor::VisitCell(heap, this); 398 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { 399 StaticVisitor::VisitExternalReference(this); 400 } else if (mode == RelocInfo::INTERNAL_REFERENCE || 401 mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { 402 StaticVisitor::VisitInternalReference(this); 403 } else if (RelocInfo::IsCodeAgeSequence(mode)) { 404 StaticVisitor::VisitCodeAgeSequence(heap, this); 405 } else if (RelocInfo::IsDebugBreakSlot(mode) && 406 IsPatchedDebugBreakSlotSequence()) { 407 StaticVisitor::VisitDebugTarget(heap, this); 408 } else if (IsRuntimeEntry(mode)) { 409 StaticVisitor::VisitRuntimeEntry(this); 410 } 411 } 412 413 Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) { 414 rm_ = no_reg; 415 imm_ = immediate; 416 rmode_ = rmode; 417 } 418 419 Operand::Operand(const ExternalReference& f) { 420 rm_ = no_reg; 421 imm_ = reinterpret_cast<intptr_t>(f.address()); 422 rmode_ = RelocInfo::EXTERNAL_REFERENCE; 423 } 424 425 Operand::Operand(Smi* value) { 426 rm_ = no_reg; 427 imm_ = reinterpret_cast<intptr_t>(value); 428 rmode_ = kRelocInfo_NONEPTR; 429 } 430 431 Operand::Operand(Register rm) { 432 rm_ = rm; 433 rmode_ = kRelocInfo_NONEPTR; // PPC -why doesn't ARM do this? 434 } 435 436 void Assembler::CheckBuffer() { 437 if (buffer_space() <= kGap) { 438 GrowBuffer(); 439 } 440 } 441 442 void Assembler::TrackBranch() { 443 DCHECK(!trampoline_emitted_); 444 int count = tracked_branch_count_++; 445 if (count == 0) { 446 // We leave space (kMaxBlockTrampolineSectionSize) 447 // for BlockTrampolinePoolScope buffer. 448 next_trampoline_check_ = 449 pc_offset() + kMaxCondBranchReach - kMaxBlockTrampolineSectionSize; 450 } else { 451 next_trampoline_check_ -= kTrampolineSlotsSize; 452 } 453 } 454 455 void Assembler::UntrackBranch() { 456 DCHECK(!trampoline_emitted_); 457 DCHECK(tracked_branch_count_ > 0); 458 int count = --tracked_branch_count_; 459 if (count == 0) { 460 // Reset 461 next_trampoline_check_ = kMaxInt; 462 } else { 463 next_trampoline_check_ += kTrampolineSlotsSize; 464 } 465 } 466 467 void Assembler::CheckTrampolinePoolQuick() { 468 if (pc_offset() >= next_trampoline_check_) { 469 CheckTrampolinePool(); 470 } 471 } 472 473 void Assembler::emit(Instr x) { 474 CheckBuffer(); 475 *reinterpret_cast<Instr*>(pc_) = x; 476 pc_ += kInstrSize; 477 CheckTrampolinePoolQuick(); 478 } 479 480 bool Operand::is_reg() const { return rm_.is_valid(); } 481 482 483 // Fetch the 32bit value from the FIXED_SEQUENCE lis/ori 484 Address Assembler::target_address_at(Address pc, Address constant_pool) { 485 if (FLAG_enable_embedded_constant_pool && constant_pool) { 486 ConstantPoolEntry::Access access; 487 if (IsConstantPoolLoadStart(pc, &access)) 488 return Memory::Address_at(target_constant_pool_address_at( 489 pc, constant_pool, access, ConstantPoolEntry::INTPTR)); 490 } 491 492 Instr instr1 = instr_at(pc); 493 Instr instr2 = instr_at(pc + kInstrSize); 494 // Interpret 2 instructions generated by lis/ori 495 if (IsLis(instr1) && IsOri(instr2)) { 496 #if V8_TARGET_ARCH_PPC64 497 Instr instr4 = instr_at(pc + (3 * kInstrSize)); 498 Instr instr5 = instr_at(pc + (4 * kInstrSize)); 499 // Assemble the 64 bit value. 500 uint64_t hi = (static_cast<uint32_t>((instr1 & kImm16Mask) << 16) | 501 static_cast<uint32_t>(instr2 & kImm16Mask)); 502 uint64_t lo = (static_cast<uint32_t>((instr4 & kImm16Mask) << 16) | 503 static_cast<uint32_t>(instr5 & kImm16Mask)); 504 return reinterpret_cast<Address>((hi << 32) | lo); 505 #else 506 // Assemble the 32 bit value. 507 return reinterpret_cast<Address>(((instr1 & kImm16Mask) << 16) | 508 (instr2 & kImm16Mask)); 509 #endif 510 } 511 512 UNREACHABLE(); 513 return NULL; 514 } 515 516 517 #if V8_TARGET_ARCH_PPC64 518 const int kLoadIntptrOpcode = LD; 519 #else 520 const int kLoadIntptrOpcode = LWZ; 521 #endif 522 523 // Constant pool load sequence detection: 524 // 1) REGULAR access: 525 // load <dst>, kConstantPoolRegister + <offset> 526 // 527 // 2) OVERFLOWED access: 528 // addis <scratch>, kConstantPoolRegister, <offset_high> 529 // load <dst>, <scratch> + <offset_low> 530 bool Assembler::IsConstantPoolLoadStart(Address pc, 531 ConstantPoolEntry::Access* access) { 532 Instr instr = instr_at(pc); 533 int opcode = instr & kOpcodeMask; 534 if (!GetRA(instr).is(kConstantPoolRegister)) return false; 535 bool overflowed = (opcode == ADDIS); 536 #ifdef DEBUG 537 if (overflowed) { 538 opcode = instr_at(pc + kInstrSize) & kOpcodeMask; 539 } 540 DCHECK(opcode == kLoadIntptrOpcode || opcode == LFD); 541 #endif 542 if (access) { 543 *access = (overflowed ? ConstantPoolEntry::OVERFLOWED 544 : ConstantPoolEntry::REGULAR); 545 } 546 return true; 547 } 548 549 550 bool Assembler::IsConstantPoolLoadEnd(Address pc, 551 ConstantPoolEntry::Access* access) { 552 Instr instr = instr_at(pc); 553 int opcode = instr & kOpcodeMask; 554 bool overflowed = false; 555 if (!(opcode == kLoadIntptrOpcode || opcode == LFD)) return false; 556 if (!GetRA(instr).is(kConstantPoolRegister)) { 557 instr = instr_at(pc - kInstrSize); 558 opcode = instr & kOpcodeMask; 559 if ((opcode != ADDIS) || !GetRA(instr).is(kConstantPoolRegister)) { 560 return false; 561 } 562 overflowed = true; 563 } 564 if (access) { 565 *access = (overflowed ? ConstantPoolEntry::OVERFLOWED 566 : ConstantPoolEntry::REGULAR); 567 } 568 return true; 569 } 570 571 572 int Assembler::GetConstantPoolOffset(Address pc, 573 ConstantPoolEntry::Access access, 574 ConstantPoolEntry::Type type) { 575 bool overflowed = (access == ConstantPoolEntry::OVERFLOWED); 576 #ifdef DEBUG 577 ConstantPoolEntry::Access access_check = 578 static_cast<ConstantPoolEntry::Access>(-1); 579 DCHECK(IsConstantPoolLoadStart(pc, &access_check)); 580 DCHECK(access_check == access); 581 #endif 582 int offset; 583 if (overflowed) { 584 offset = (instr_at(pc) & kImm16Mask) << 16; 585 offset += SIGN_EXT_IMM16(instr_at(pc + kInstrSize) & kImm16Mask); 586 DCHECK(!is_int16(offset)); 587 } else { 588 offset = SIGN_EXT_IMM16((instr_at(pc) & kImm16Mask)); 589 } 590 return offset; 591 } 592 593 594 void Assembler::PatchConstantPoolAccessInstruction( 595 int pc_offset, int offset, ConstantPoolEntry::Access access, 596 ConstantPoolEntry::Type type) { 597 Address pc = buffer_ + pc_offset; 598 bool overflowed = (access == ConstantPoolEntry::OVERFLOWED); 599 CHECK(overflowed != is_int16(offset)); 600 #ifdef DEBUG 601 ConstantPoolEntry::Access access_check = 602 static_cast<ConstantPoolEntry::Access>(-1); 603 DCHECK(IsConstantPoolLoadStart(pc, &access_check)); 604 DCHECK(access_check == access); 605 #endif 606 if (overflowed) { 607 int hi_word = static_cast<int>(offset >> 16); 608 int lo_word = static_cast<int>(offset & 0xffff); 609 if (lo_word & 0x8000) hi_word++; 610 611 Instr instr1 = instr_at(pc); 612 Instr instr2 = instr_at(pc + kInstrSize); 613 instr1 &= ~kImm16Mask; 614 instr1 |= (hi_word & kImm16Mask); 615 instr2 &= ~kImm16Mask; 616 instr2 |= (lo_word & kImm16Mask); 617 instr_at_put(pc, instr1); 618 instr_at_put(pc + kInstrSize, instr2); 619 } else { 620 Instr instr = instr_at(pc); 621 instr &= ~kImm16Mask; 622 instr |= (offset & kImm16Mask); 623 instr_at_put(pc, instr); 624 } 625 } 626 627 628 Address Assembler::target_constant_pool_address_at( 629 Address pc, Address constant_pool, ConstantPoolEntry::Access access, 630 ConstantPoolEntry::Type type) { 631 Address addr = constant_pool; 632 DCHECK(addr); 633 addr += GetConstantPoolOffset(pc, access, type); 634 return addr; 635 } 636 637 638 // This sets the branch destination (which gets loaded at the call address). 639 // This is for calls and branches within generated code. The serializer 640 // has already deserialized the mov instructions etc. 641 // There is a FIXED_SEQUENCE assumption here 642 void Assembler::deserialization_set_special_target_at( 643 Isolate* isolate, Address instruction_payload, Code* code, Address target) { 644 set_target_address_at(isolate, instruction_payload, code, target); 645 } 646 647 648 void Assembler::deserialization_set_target_internal_reference_at( 649 Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) { 650 if (RelocInfo::IsInternalReferenceEncoded(mode)) { 651 Code* code = NULL; 652 set_target_address_at(isolate, pc, code, target, SKIP_ICACHE_FLUSH); 653 } else { 654 Memory::Address_at(pc) = target; 655 } 656 } 657 658 659 // This code assumes the FIXED_SEQUENCE of lis/ori 660 void Assembler::set_target_address_at(Isolate* isolate, Address pc, 661 Address constant_pool, Address target, 662 ICacheFlushMode icache_flush_mode) { 663 if (FLAG_enable_embedded_constant_pool && constant_pool) { 664 ConstantPoolEntry::Access access; 665 if (IsConstantPoolLoadStart(pc, &access)) { 666 Memory::Address_at(target_constant_pool_address_at( 667 pc, constant_pool, access, ConstantPoolEntry::INTPTR)) = target; 668 return; 669 } 670 } 671 672 Instr instr1 = instr_at(pc); 673 Instr instr2 = instr_at(pc + kInstrSize); 674 // Interpret 2 instructions generated by lis/ori 675 if (IsLis(instr1) && IsOri(instr2)) { 676 #if V8_TARGET_ARCH_PPC64 677 Instr instr4 = instr_at(pc + (3 * kInstrSize)); 678 Instr instr5 = instr_at(pc + (4 * kInstrSize)); 679 // Needs to be fixed up when mov changes to handle 64-bit values. 680 uint32_t* p = reinterpret_cast<uint32_t*>(pc); 681 uintptr_t itarget = reinterpret_cast<uintptr_t>(target); 682 683 instr5 &= ~kImm16Mask; 684 instr5 |= itarget & kImm16Mask; 685 itarget = itarget >> 16; 686 687 instr4 &= ~kImm16Mask; 688 instr4 |= itarget & kImm16Mask; 689 itarget = itarget >> 16; 690 691 instr2 &= ~kImm16Mask; 692 instr2 |= itarget & kImm16Mask; 693 itarget = itarget >> 16; 694 695 instr1 &= ~kImm16Mask; 696 instr1 |= itarget & kImm16Mask; 697 itarget = itarget >> 16; 698 699 *p = instr1; 700 *(p + 1) = instr2; 701 *(p + 3) = instr4; 702 *(p + 4) = instr5; 703 if (icache_flush_mode != SKIP_ICACHE_FLUSH) { 704 Assembler::FlushICache(isolate, p, 5 * kInstrSize); 705 } 706 #else 707 uint32_t* p = reinterpret_cast<uint32_t*>(pc); 708 uint32_t itarget = reinterpret_cast<uint32_t>(target); 709 int lo_word = itarget & kImm16Mask; 710 int hi_word = itarget >> 16; 711 instr1 &= ~kImm16Mask; 712 instr1 |= hi_word; 713 instr2 &= ~kImm16Mask; 714 instr2 |= lo_word; 715 716 *p = instr1; 717 *(p + 1) = instr2; 718 if (icache_flush_mode != SKIP_ICACHE_FLUSH) { 719 Assembler::FlushICache(isolate, p, 2 * kInstrSize); 720 } 721 #endif 722 return; 723 } 724 UNREACHABLE(); 725 } 726 } // namespace internal 727 } // namespace v8 728 729 #endif // V8_PPC_ASSEMBLER_PPC_INL_H_ 730