/external/eigen/failtest/ |
const_qualified_diagonal_method_retval.cpp | 12 Diagonal<Matrix3d> b(m.diagonal());
|
diagonal_nonconst_ctor_on_const_xpr.cpp | 12 Diagonal<Matrix3d> d(m);
|
diagonal_on_const_type_actually_const.cpp | 13 Diagonal<CV_QUALIFIER MatrixXf>(m).coeffRef(0) = 1.0f;
|
/external/gemmlowp/internal/ |
kernel.h | 73 // There is also a third possibility, "diagonal order", 123 enum class CellOrder { DepthMajor, WidthMajor, Diagonal }; 169 case CellOrder::Diagonal: 170 return "Diagonal"; 185 case CellOrder::Diagonal:
|
/external/eigen/Eigen/src/Core/ |
Diagonal.h | 16 /** \class Diagonal 19 * \brief Expression of a diagonal/subdiagonal/superdiagonal in a matrix 21 * \param MatrixType the type of the object in which we are taking a sub/main/super diagonal 22 * \param DiagIndex the index of the sub/super diagonal. The default is 0 and it means the main diagonal. 28 * This class represents an expression of the main diagonal, or any sub/super diagonal 29 * of a square matrix. It is the return type of MatrixBase::diagonal() and MatrixBase::diagonal(Index) and most of the 32 * \sa MatrixBase::diagonal(), MatrixBase::diagonal(Index 168 MatrixBase<Derived>::diagonal() function in class:Eigen::MatrixBase 176 MatrixBase<Derived>::diagonal() const function in class:Eigen::MatrixBase 194 MatrixBase<Derived>::diagonal(Index index) function in class:Eigen::MatrixBase 202 MatrixBase<Derived>::diagonal(Index index) const function in class:Eigen::MatrixBase 221 MatrixBase<Derived>::diagonal() function in class:Eigen::MatrixBase 230 MatrixBase<Derived>::diagonal() const function in class:Eigen::MatrixBase [all...] |
MatrixBase.h | 99 /** \returns the size of the main diagonal, which is min(rows(),cols()). 192 operator*(const DiagonalBase<DiagonalDerived> &diagonal) const; 214 typedef Diagonal<Derived> DiagonalReturnType; 215 DiagonalReturnType diagonal(); 216 typedef typename internal::add_const<Diagonal<const Derived> >::type ConstDiagonalReturnType; 217 ConstDiagonalReturnType diagonal() const; 219 template<int Index> struct DiagonalIndexReturnType { typedef Diagonal<Derived,Index> Type; }; 220 template<int Index> struct ConstDiagonalIndexReturnType { typedef const Diagonal<const Derived,Index> Type; }; 222 template<int Index> typename DiagonalIndexReturnType<Index>::Type diagonal(); 223 template<int Index> typename ConstDiagonalIndexReturnType<Index>::Type diagonal() const [all...] |
ProductBase.h | 83 // Diagonal of a product: no need to evaluate the arguments because they are going to be evaluated only once 131 const Diagonal<const FullyLazyCoeffBaseProductType,0> diagonal() const 135 const Diagonal<FullyLazyCoeffBaseProductType,Index> diagonal() const 138 const Diagonal<FullyLazyCoeffBaseProductType,Dynamic> diagonal(Index index) const 139 { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); }
|
/external/eigen/Eigen/src/SVD/ |
UpperBidiagonalization.h | 39 CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Diagonal<const MatrixType,0> > 43 Diagonal<const MatrixType,1>, 71 return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate()); 77 return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>()) 108 m_bidiagonal.template diagonal<0>().coeffRef(k)); 120 m_bidiagonal.template diagonal<1>().coeffRef(k));
|
/external/eigen/Eigen/src/Eigenvalues/ |
Tridiagonalization.h | 44 * main diagonal and the first diagonal below and above it. The Hessenberg 87 typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type, 88 const Diagonal<const MatrixType> 92 typename internal::add_const_on_value_type<typename Diagonal< 94 const Diagonal< 197 * - the diagonal and lower sub-diagonal represent the real tridiagonal 257 * returned by diagonal() and subDiagonal() instead of creating a new 261 * matrixQ(), packedMatrix(), diagonal(), subDiagonal( 305 Tridiagonalization<MatrixType>::diagonal() const function in class:Eigen::Tridiagonalization [all...] |
/external/dng_sdk/source/ |
dng_rect.h | 188 real64 Diagonal () const 331 real64 Diagonal () const
|
/external/libgdx/extensions/gdx-bullet/jni/swig-src/softbody/com/badlogic/gdx/physics/bullet/softbody/ |
Softbody.java | 85 public static Matrix3 Diagonal(float x) { 86 return SoftbodyJNI.Diagonal(x);
|
SoftbodyJNI.java | [all...] |
/external/eigen/test/eigen2/ |
eigen2_triangular.cpp | 59 VERIFY_IS_APPROX(m3.template part<Diagonal>(), m3.diagonal().asDiagonal());
|
/external/eigen/Eigen/src/Cholesky/ |
LDLT.h | 37 * is lower triangular with a unit diagonal and D is a diagonal matrix. 141 /** \returns the coefficients of the diagonal matrix D */ 142 inline Diagonal<const MatrixType> vectorD() const 145 return m_matrix.diagonal(); 247 * part correspond to the coefficients of L (its diagonal is equal to 1 and 248 * is not stored), and the diagonal entries correspond to D. 284 // Find largest diagonal element 286 mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); 319 temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint() [all...] |
/external/libgdx/extensions/gdx-bullet/jni/src/bullet/BulletSoftBody/ |
btSoftBodyInternals.h | 265 static inline btMatrix3x3 Diagonal(btScalar x) 308 return(Sub(Diagonal(im),cr*iwi*cr)); 318 return(Diagonal(1/dt)*Add(Diagonal(ima),MassMatrix(imb,iwi,r)).inverse());
|
/external/eigen/Eigen/src/Core/products/ |
CoeffBasedProduct.h | 204 const Diagonal<const LazyCoeffBasedProductType,0> diagonal() const function in class:Eigen::CoeffBasedProduct 208 const Diagonal<const LazyCoeffBasedProductType,DiagonalIndex> diagonal() const function in class:Eigen::CoeffBasedProduct 211 const Diagonal<const LazyCoeffBasedProductType,Dynamic> diagonal(Index index) const function in class:Eigen::CoeffBasedProduct 212 { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this).diagonal(index); }
|
/external/eigen/Eigen/src/Core/util/ |
ForwardDeclarations.h | 99 template<typename MatrixType, int Index = 0> class Diagonal;
|
/external/ImageMagick/www/api/ |
morphology.php | 180 <dd> FreiChen:{angle} Frei-Chen Edge Detector is based on a kernel that is similar to the Sobel Kernel, but is designed to be isotropic. That is it takes into account the distance of the diagonal in the kernel. </dd> 192 <dd> Type 2: Diagonal form of Kernel... | 1, sqrt(2), 0 | | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) | 0, -sqrt(2) -1 | </dd> 254 <dd> Peak:radius1,radius2 Find any peak larger than the pixels the fall between the two radii. The default ring of pixels is as per "Ring". Edges Find flat orthogonal edges of a binary shape Corners Find 90 degree corners of a binary shape Diagonals:type A special kernel to thin the 'outside' of diagonals LineEnds:type Find end points of lines (for pruning a skeletion) Two types of lines ends (default to both) can be searched for Type 0: All line ends Type 1: single kernel for 4-conneected line ends Type 2: single kernel for simple line ends LineJunctions Find three line junctions (within a skeletion) Type 0: all line junctions Type 1: Y Junction kernel Type 2: Diagonal T Junction kernel Type 3: Orthogonal T Junction kernel Type 4: Diagonal X Junction kernel Type 5: Orthogonal + Junction kernel Ridges:type Find single pixel ridges or thin lines Type 1: Fine single pixel thick lines and ridges Type 2: Find two pixel thick lines and ridges ConvexHull Octagonal Thickening Kernel, to generate convex hulls of 45 degrees Skeleton:type Traditional skeleton generating kernels. Type 1: Tradional Skeleton kernel (4 connected skeleton) Type 2: HIPR2 Skeleton kernel (8 connected skeleton) Type 3: Thinning skeleton based on a ressearch paper by Dan S. Bloomberg (Default Type) ThinSE:type A huge variety of Thinning Kernels designed to preserve conectivity. many other kernel sets use these kernels as source definitions. Type numbers are 41-49, 81-89, 481, and 482 which are based on the super and sub notations used in the source research paper. </dd> 262 <dd> Chebyshev:[{radius}][x{scale}[!]] Chebyshev Distance (also known as Tchebychev or Chessboard distance) is a value of one to any neighbour, orthogonal or diagonal. One why of thinking of it is the number of squares a 'King' or 'Queen' in chess needs to traverse reach any other position on a chess board. It results in a 'square' like distance function, but one where diagonals are given a value that is closer than expected. </dd> 268 <dd> Euclidean:[{radius}][x{scale}[!]] Euclidean distance is the 'direct' or 'as the crow flys' distance. However by default the kernel size only has a radius of 1, which limits the distance to 'Knight' like moves, with only orthogonal and diagonal measurements being correct. As such for the default kernel you will get octagonal like distance function. </dd> [all...] |
/external/eigen/Eigen/src/SparseCholesky/ |
SimplicialCholesky.h | 120 /** Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization. 122 * During the numerical factorization, the diagonal coefficients are transformed by the following linear model:\n 220 /** keeps off-diagonal entries; drops diagonal entries */ 234 VectorType m_diag; // the diagonal coefficients (LDLT mode) 371 Scalar detL = Base::m_matrix.diagonal().prod(); 417 /** \returns a vector expression of the diagonal D */ 607 Scalar detL = Diagonal<const CholMatrixType>(Base::m_matrix).prod();
|
/external/eigen/Eigen/src/SparseCore/ |
SparseMatrix.h | 61 struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _Index>, DiagIndex> > 625 /** \returns a const expression of the diagonal coefficients */ 626 const Diagonal<const SparseMatrix> diagonal() const { return *this; } function in class:Eigen::SparseMatrix [all...] |
/external/gemmlowp/test/ |
test.cc | [all...] |
/external/libgdx/extensions/gdx-bullet/jni/swig-src/softbody/ |
softbody_wrap.cpp | [all...] |