/external/boringssl/src/ssl/test/runner/curve25519/ |
mont25519_amd64.go | 33 // mladder uses a Montgomery ladder to calculate (xr/zr) *= s.
|
/external/v8/benchmarks/ |
crypto.js | 555 // Montgomery reduction 556 function Montgomery(m) { 608 Montgomery.prototype.convert = montConvert; 609 Montgomery.prototype.revert = montRevert; 610 Montgomery.prototype.reduce = montReduce; 611 Montgomery.prototype.mulTo = montMulTo; 612 Montgomery.prototype.sqrTo = montSqrTo; 636 if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); 1112 z = new Montgomery(m); [all...] |
/prebuilts/go/darwin-x86/src/crypto/elliptic/ |
p256.go | 19 // RInverse contains 1/R mod p - the inverse of the Montgomery constant 93 // Finally, the values stored in a field element are in Montgomery form. So the 306 // The values in field elements are in Montgomery form: x*R mod p where R = 307 // 2**257. Since we just multiplied two Montgomery values together, the result 309 // in Montgomery form. 362 // Montgomery elimination of terms: [all...] |
/prebuilts/go/linux-x86/src/crypto/elliptic/ |
p256.go | 19 // RInverse contains 1/R mod p - the inverse of the Montgomery constant 93 // Finally, the values stored in a field element are in Montgomery form. So the 306 // The values in field elements are in Montgomery form: x*R mod p where R = 307 // 2**257. Since we just multiplied two Montgomery values together, the result 309 // in Montgomery form. 362 // Montgomery elimination of terms: [all...] |
/prebuilts/go/darwin-x86/pkg/bootstrap/src/bootstrap/compile/internal/big/ |
nat.go | 222 // montgomery computes x*y*2^(-n*_W) mod m, 226 func (z nat) montgomery(x, y, m nat, k Word, n int) nat { func 939 // operations. Uses Montgomery method for odd moduli. 1067 // Uses Montgomery representation. 1115 powers[0] = powers[0].montgomery(one, RR, m, k0, numWords) 1116 powers[1] = powers[1].montgomery(x, RR, m, k0, numWords) 1118 powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords) 1121 // initialize z = 1 (Montgomery 1) 1127 // same windowed exponent, but with Montgomery multiplications 1132 zz = zz.montgomery(z, z, m, k0, numWords [all...] |
/prebuilts/go/darwin-x86/src/cmd/compile/internal/big/ |
nat.go | 219 // montgomery computes x*y*2^(-n*_W) mod m, 223 func (z nat) montgomery(x, y, m nat, k Word, n int) nat { func 936 // operations. Uses Montgomery method for odd moduli. 1064 // Uses Montgomery representation. 1112 powers[0] = powers[0].montgomery(one, RR, m, k0, numWords) 1113 powers[1] = powers[1].montgomery(x, RR, m, k0, numWords) 1115 powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords) 1118 // initialize z = 1 (Montgomery 1) 1124 // same windowed exponent, but with Montgomery multiplications 1129 zz = zz.montgomery(z, z, m, k0, numWords [all...] |
/prebuilts/go/darwin-x86/src/math/big/ |
nat.go | 219 // montgomery computes x*y*2^(-n*_W) mod m, 223 func (z nat) montgomery(x, y, m nat, k Word, n int) nat { func 936 // operations. Uses Montgomery method for odd moduli. 1064 // Uses Montgomery representation. 1112 powers[0] = powers[0].montgomery(one, RR, m, k0, numWords) 1113 powers[1] = powers[1].montgomery(x, RR, m, k0, numWords) 1115 powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords) 1118 // initialize z = 1 (Montgomery 1) 1124 // same windowed exponent, but with Montgomery multiplications 1129 zz = zz.montgomery(z, z, m, k0, numWords [all...] |
/prebuilts/go/linux-x86/pkg/bootstrap/src/bootstrap/compile/internal/big/ |
nat.go | 222 // montgomery computes x*y*2^(-n*_W) mod m, 226 func (z nat) montgomery(x, y, m nat, k Word, n int) nat { func 939 // operations. Uses Montgomery method for odd moduli. 1067 // Uses Montgomery representation. 1115 powers[0] = powers[0].montgomery(one, RR, m, k0, numWords) 1116 powers[1] = powers[1].montgomery(x, RR, m, k0, numWords) 1118 powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords) 1121 // initialize z = 1 (Montgomery 1) 1127 // same windowed exponent, but with Montgomery multiplications 1132 zz = zz.montgomery(z, z, m, k0, numWords [all...] |
/prebuilts/go/linux-x86/src/cmd/compile/internal/big/ |
nat.go | 219 // montgomery computes x*y*2^(-n*_W) mod m, 223 func (z nat) montgomery(x, y, m nat, k Word, n int) nat { func 936 // operations. Uses Montgomery method for odd moduli. 1064 // Uses Montgomery representation. 1112 powers[0] = powers[0].montgomery(one, RR, m, k0, numWords) 1113 powers[1] = powers[1].montgomery(x, RR, m, k0, numWords) 1115 powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords) 1118 // initialize z = 1 (Montgomery 1) 1124 // same windowed exponent, but with Montgomery multiplications 1129 zz = zz.montgomery(z, z, m, k0, numWords [all...] |
/prebuilts/go/linux-x86/src/math/big/ |
nat.go | 219 // montgomery computes x*y*2^(-n*_W) mod m, 223 func (z nat) montgomery(x, y, m nat, k Word, n int) nat { func 936 // operations. Uses Montgomery method for odd moduli. 1064 // Uses Montgomery representation. 1112 powers[0] = powers[0].montgomery(one, RR, m, k0, numWords) 1113 powers[1] = powers[1].montgomery(x, RR, m, k0, numWords) 1115 powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords) 1118 // initialize z = 1 (Montgomery 1) 1124 // same windowed exponent, but with Montgomery multiplications 1129 zz = zz.montgomery(z, z, m, k0, numWords [all...] |