HomeSort by relevance Sort by last modified time
    Searched refs:Montgomery (Results 1 - 10 of 10) sorted by null

  /external/boringssl/src/ssl/test/runner/curve25519/
mont25519_amd64.go 33 // mladder uses a Montgomery ladder to calculate (xr/zr) *= s.
  /external/v8/benchmarks/
crypto.js 555 // Montgomery reduction
556 function Montgomery(m) {
608 Montgomery.prototype.convert = montConvert;
609 Montgomery.prototype.revert = montRevert;
610 Montgomery.prototype.reduce = montReduce;
611 Montgomery.prototype.mulTo = montMulTo;
612 Montgomery.prototype.sqrTo = montSqrTo;
636 if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
1112 z = new Montgomery(m);
    [all...]
  /prebuilts/go/darwin-x86/src/crypto/elliptic/
p256.go 19 // RInverse contains 1/R mod p - the inverse of the Montgomery constant
93 // Finally, the values stored in a field element are in Montgomery form. So the
306 // The values in field elements are in Montgomery form: x*R mod p where R =
307 // 2**257. Since we just multiplied two Montgomery values together, the result
309 // in Montgomery form.
362 // Montgomery elimination of terms:
    [all...]
  /prebuilts/go/linux-x86/src/crypto/elliptic/
p256.go 19 // RInverse contains 1/R mod p - the inverse of the Montgomery constant
93 // Finally, the values stored in a field element are in Montgomery form. So the
306 // The values in field elements are in Montgomery form: x*R mod p where R =
307 // 2**257. Since we just multiplied two Montgomery values together, the result
309 // in Montgomery form.
362 // Montgomery elimination of terms:
    [all...]
  /prebuilts/go/darwin-x86/pkg/bootstrap/src/bootstrap/compile/internal/big/
nat.go 222 // montgomery computes x*y*2^(-n*_W) mod m,
226 func (z nat) montgomery(x, y, m nat, k Word, n int) nat { func
939 // operations. Uses Montgomery method for odd moduli.
1067 // Uses Montgomery representation.
1115 powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
1116 powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
1118 powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
1121 // initialize z = 1 (Montgomery 1)
1127 // same windowed exponent, but with Montgomery multiplications
1132 zz = zz.montgomery(z, z, m, k0, numWords
    [all...]
  /prebuilts/go/darwin-x86/src/cmd/compile/internal/big/
nat.go 219 // montgomery computes x*y*2^(-n*_W) mod m,
223 func (z nat) montgomery(x, y, m nat, k Word, n int) nat { func
936 // operations. Uses Montgomery method for odd moduli.
1064 // Uses Montgomery representation.
1112 powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
1113 powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
1115 powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
1118 // initialize z = 1 (Montgomery 1)
1124 // same windowed exponent, but with Montgomery multiplications
1129 zz = zz.montgomery(z, z, m, k0, numWords
    [all...]
  /prebuilts/go/darwin-x86/src/math/big/
nat.go 219 // montgomery computes x*y*2^(-n*_W) mod m,
223 func (z nat) montgomery(x, y, m nat, k Word, n int) nat { func
936 // operations. Uses Montgomery method for odd moduli.
1064 // Uses Montgomery representation.
1112 powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
1113 powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
1115 powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
1118 // initialize z = 1 (Montgomery 1)
1124 // same windowed exponent, but with Montgomery multiplications
1129 zz = zz.montgomery(z, z, m, k0, numWords
    [all...]
  /prebuilts/go/linux-x86/pkg/bootstrap/src/bootstrap/compile/internal/big/
nat.go 222 // montgomery computes x*y*2^(-n*_W) mod m,
226 func (z nat) montgomery(x, y, m nat, k Word, n int) nat { func
939 // operations. Uses Montgomery method for odd moduli.
1067 // Uses Montgomery representation.
1115 powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
1116 powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
1118 powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
1121 // initialize z = 1 (Montgomery 1)
1127 // same windowed exponent, but with Montgomery multiplications
1132 zz = zz.montgomery(z, z, m, k0, numWords
    [all...]
  /prebuilts/go/linux-x86/src/cmd/compile/internal/big/
nat.go 219 // montgomery computes x*y*2^(-n*_W) mod m,
223 func (z nat) montgomery(x, y, m nat, k Word, n int) nat { func
936 // operations. Uses Montgomery method for odd moduli.
1064 // Uses Montgomery representation.
1112 powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
1113 powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
1115 powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
1118 // initialize z = 1 (Montgomery 1)
1124 // same windowed exponent, but with Montgomery multiplications
1129 zz = zz.montgomery(z, z, m, k0, numWords
    [all...]
  /prebuilts/go/linux-x86/src/math/big/
nat.go 219 // montgomery computes x*y*2^(-n*_W) mod m,
223 func (z nat) montgomery(x, y, m nat, k Word, n int) nat { func
936 // operations. Uses Montgomery method for odd moduli.
1064 // Uses Montgomery representation.
1112 powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
1113 powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
1115 powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
1118 // initialize z = 1 (Montgomery 1)
1124 // same windowed exponent, but with Montgomery multiplications
1129 zz = zz.montgomery(z, z, m, k0, numWords
    [all...]

Completed in 653 milliseconds