/prebuilts/go/darwin-x86/src/math/ |
sqrt_386.s | 7 // func Sqrt(x float64) float64 8 TEXT ·Sqrt(SB),NOSPLIT,$0
|
sqrt_amd64.s | 7 // func Sqrt(x float64) float64 8 TEXT ·Sqrt(SB),NOSPLIT,$0
|
sqrt_arm.s | 7 // func Sqrt(x float64) float64 8 TEXT ·Sqrt(SB),NOSPLIT,$0
|
sqrt_arm64.s | 7 // func Sqrt(x float64) float64 8 TEXT ·Sqrt(SB),NOSPLIT,$0
|
hypot.go | 8 Hypot -- sqrt(p*p + q*q), but overflows only if the result does. 11 // Hypot returns Sqrt(p*p + q*q), taking care to avoid 42 return p * Sqrt(1+q*q)
|
log1p.go | 27 // where sqrt(2)/2 < 1+f < sqrt(2) . 99 Sqrt2M1 = 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34 100 Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866 133 if absx < Sqrt2M1 { // |x| < Sqrt(2)-1 140 if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x 141 // (Sqrt(2)/2-1) < x < (Sqrt(2)-1) 167 if iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2) 174 f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2 [all...] |
sqrt.go | 22 // Return correctly rounded sqrt. 24 // | Use the hardware sqrt if you have one | 31 // sqrt(x) = 2**k * sqrt(y) 33 // Let q = sqrt(y) truncated to i bit after binary point (q = 1), 85 // Sqrt returns the square root of x. 88 // Sqrt(+Inf) = +Inf 89 // Sqrt(±0) = ±0 90 // Sqrt(x < 0) = NaN 91 // Sqrt(NaN) = Na 99 func sqrt(x float64) float64 { func [all...] |
acosh.go | 25 // acosh(x) = log [ x + sqrt(x*x-1) ] 28 // acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else 29 // acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. 56 return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2**28 > x > 2 59 return Log1p(t + Sqrt(2*t+t*t)) // 2 >= x > 1
|
asinh.go | 25 // asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] 29 // := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else 30 // := sign(x)*log1p(|x| + x**2/(1 + sqrt(1+x**2))) 59 temp = Log(2*x + 1/(Sqrt(x*x+1)+x)) // 2**28 > |x| > 2.0 63 temp = Log1p(x + x*x/(1+Sqrt(1+x*x))) // 2.0 > |x| > 2**-28
|
/prebuilts/go/linux-x86/src/math/ |
sqrt_386.s | 7 // func Sqrt(x float64) float64 8 TEXT ·Sqrt(SB),NOSPLIT,$0
|
sqrt_amd64.s | 7 // func Sqrt(x float64) float64 8 TEXT ·Sqrt(SB),NOSPLIT,$0
|
sqrt_arm.s | 7 // func Sqrt(x float64) float64 8 TEXT ·Sqrt(SB),NOSPLIT,$0
|
sqrt_arm64.s | 7 // func Sqrt(x float64) float64 8 TEXT ·Sqrt(SB),NOSPLIT,$0
|
hypot.go | 8 Hypot -- sqrt(p*p + q*q), but overflows only if the result does. 11 // Hypot returns Sqrt(p*p + q*q), taking care to avoid 42 return p * Sqrt(1+q*q)
|
log1p.go | 27 // where sqrt(2)/2 < 1+f < sqrt(2) . 99 Sqrt2M1 = 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34 100 Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866 133 if absx < Sqrt2M1 { // |x| < Sqrt(2)-1 140 if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x 141 // (Sqrt(2)/2-1) < x < (Sqrt(2)-1) 167 if iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2) 174 f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2 [all...] |
sqrt.go | 22 // Return correctly rounded sqrt. 24 // | Use the hardware sqrt if you have one | 31 // sqrt(x) = 2**k * sqrt(y) 33 // Let q = sqrt(y) truncated to i bit after binary point (q = 1), 85 // Sqrt returns the square root of x. 88 // Sqrt(+Inf) = +Inf 89 // Sqrt(±0) = ±0 90 // Sqrt(x < 0) = NaN 91 // Sqrt(NaN) = Na 99 func sqrt(x float64) float64 { func [all...] |
acosh.go | 25 // acosh(x) = log [ x + sqrt(x*x-1) ] 28 // acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else 29 // acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. 56 return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2**28 > x > 2 59 return Log1p(t + Sqrt(2*t+t*t)) // 2 >= x > 1
|
asinh.go | 25 // asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] 29 // := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else 30 // := sign(x)*log1p(|x| + x**2/(1 + sqrt(1+x**2))) 59 temp = Log(2*x + 1/(Sqrt(x*x+1)+x)) // 2**28 > |x| > 2.0 63 temp = Log1p(x + x*x/(1+Sqrt(1+x*x))) // 2.0 > |x| > 2**-28
|
/prebuilts/go/darwin-x86/src/runtime/ |
sqrt_test.go | 5 // A copy of Sqrt tests from the math package to test the 6 // purely integer arithmetic implementation in sqrt.go. 17 return math.Float64frombits(runtime.Sqrt(math.Float64bits(x))) 23 if f := SqrtRT(a); sqrt[i] != f { 24 t.Errorf("Sqrt(%g) = %g, want %g", a, f, sqrt[i]) 29 t.Errorf("Sqrt(%g) = %g, want %g", vfsqrtSC[i], f, sqrtSC[i]) 57 var sqrt = []float64{ var
|
/prebuilts/go/linux-x86/src/runtime/ |
sqrt_test.go | 5 // A copy of Sqrt tests from the math package to test the 6 // purely integer arithmetic implementation in sqrt.go. 17 return math.Float64frombits(runtime.Sqrt(math.Float64bits(x))) 23 if f := SqrtRT(a); sqrt[i] != f { 24 t.Errorf("Sqrt(%g) = %g, want %g", a, f, sqrt[i]) 29 t.Errorf("Sqrt(%g) = %g, want %g", vfsqrtSC[i], f, sqrtSC[i]) 57 var sqrt = []float64{ var
|
/prebuilts/go/darwin-x86/src/math/cmplx/ |
sqrt.go | 56 // Sqrt returns the square root of x. 58 func Sqrt(x complex128) complex128 { 64 return complex(0, math.Sqrt(-real(x))) 66 return complex(math.Sqrt(real(x)), 0) 70 r := math.Sqrt(-0.5 * imag(x)) 73 r := math.Sqrt(0.5 * imag(x)) 92 t = math.Sqrt(0.5*r + 0.5*a) 96 r = math.Sqrt(0.5*r - 0.5*a)
|
/prebuilts/go/linux-x86/src/math/cmplx/ |
sqrt.go | 56 // Sqrt returns the square root of x. 58 func Sqrt(x complex128) complex128 { 64 return complex(0, math.Sqrt(-real(x))) 66 return complex(math.Sqrt(real(x)), 0) 70 r := math.Sqrt(-0.5 * imag(x)) 73 r := math.Sqrt(0.5 * imag(x)) 92 t = math.Sqrt(0.5*r + 0.5*a) 96 r = math.Sqrt(0.5*r - 0.5*a)
|
/external/google-benchmark/src/ |
stat.h | 124 *stddev = Sqrt(avg_squares - Sqr(mean)); 134 return Sqrt(avg_squares - Sqr(mean)); 173 static inline SType Sqrt(const SType &dat) { 176 return sqrt(dat); 180 static inline Vector2<SType> Sqrt(const Vector2<SType> &dat) { 182 return Max(dat, Vector2<SType>()).Sqrt(); 186 static inline Vector3<SType> Sqrt(const Vector3<SType> &dat) { 188 return Max(dat, Vector3<SType>()).Sqrt(); 192 static inline Vector4<SType> Sqrt(const Vector4<SType> &dat) { 194 return Max(dat, Vector4<SType>()).Sqrt(); [all...] |
/external/antlr/antlr-3.4/runtime/CSharp2/Sources/Antlr3.Runtime/Antlr.Runtime.Misc/ |
Stats.cs | 59 * numerical properties than the textbook summation/sqrt. To me 75 return Math.Sqrt(s2); 88 return Math.Sqrt(s2);
|
/external/antlr/antlr-3.4/runtime/CSharp3/Sources/Antlr3.Runtime.Debug/Misc/ |
Stats.cs | 64 * numerical properties than the textbook summation/sqrt. To me 83 return Math.Sqrt( s2 ); 99 return Math.Sqrt( s2 );
|