HomeSort by relevance Sort by last modified time
    Searched refs:Sqrt (Results 1 - 25 of 83) sorted by null

1 2 3 4

  /prebuilts/go/darwin-x86/src/math/
sqrt_386.s 7 // func Sqrt(x float64) float64
8 TEXT ·Sqrt(SB),NOSPLIT,$0
sqrt_amd64.s 7 // func Sqrt(x float64) float64
8 TEXT ·Sqrt(SB),NOSPLIT,$0
sqrt_arm.s 7 // func Sqrt(x float64) float64
8 TEXT ·Sqrt(SB),NOSPLIT,$0
sqrt_arm64.s 7 // func Sqrt(x float64) float64
8 TEXT ·Sqrt(SB),NOSPLIT,$0
hypot.go 8 Hypot -- sqrt(p*p + q*q), but overflows only if the result does.
11 // Hypot returns Sqrt(p*p + q*q), taking care to avoid
42 return p * Sqrt(1+q*q)
log1p.go 27 // where sqrt(2)/2 < 1+f < sqrt(2) .
99 Sqrt2M1 = 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34
100 Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866
133 if absx < Sqrt2M1 { // |x| < Sqrt(2)-1
140 if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x
141 // (Sqrt(2)/2-1) < x < (Sqrt(2)-1)
167 if iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)
174 f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2
    [all...]
sqrt.go 22 // Return correctly rounded sqrt.
24 // | Use the hardware sqrt if you have one |
31 // sqrt(x) = 2**k * sqrt(y)
33 // Let q = sqrt(y) truncated to i bit after binary point (q = 1),
85 // Sqrt returns the square root of x.
88 // Sqrt(+Inf) = +Inf
89 // Sqrt(±0) = ±0
90 // Sqrt(x < 0) = NaN
91 // Sqrt(NaN) = Na
99 func sqrt(x float64) float64 { func
    [all...]
acosh.go 25 // acosh(x) = log [ x + sqrt(x*x-1) ]
28 // acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
29 // acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
56 return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2**28 > x > 2
59 return Log1p(t + Sqrt(2*t+t*t)) // 2 >= x > 1
asinh.go 25 // asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
29 // := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
30 // := sign(x)*log1p(|x| + x**2/(1 + sqrt(1+x**2)))
59 temp = Log(2*x + 1/(Sqrt(x*x+1)+x)) // 2**28 > |x| > 2.0
63 temp = Log1p(x + x*x/(1+Sqrt(1+x*x))) // 2.0 > |x| > 2**-28
  /prebuilts/go/linux-x86/src/math/
sqrt_386.s 7 // func Sqrt(x float64) float64
8 TEXT ·Sqrt(SB),NOSPLIT,$0
sqrt_amd64.s 7 // func Sqrt(x float64) float64
8 TEXT ·Sqrt(SB),NOSPLIT,$0
sqrt_arm.s 7 // func Sqrt(x float64) float64
8 TEXT ·Sqrt(SB),NOSPLIT,$0
sqrt_arm64.s 7 // func Sqrt(x float64) float64
8 TEXT ·Sqrt(SB),NOSPLIT,$0
hypot.go 8 Hypot -- sqrt(p*p + q*q), but overflows only if the result does.
11 // Hypot returns Sqrt(p*p + q*q), taking care to avoid
42 return p * Sqrt(1+q*q)
log1p.go 27 // where sqrt(2)/2 < 1+f < sqrt(2) .
99 Sqrt2M1 = 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34
100 Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866
133 if absx < Sqrt2M1 { // |x| < Sqrt(2)-1
140 if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x
141 // (Sqrt(2)/2-1) < x < (Sqrt(2)-1)
167 if iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)
174 f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2
    [all...]
sqrt.go 22 // Return correctly rounded sqrt.
24 // | Use the hardware sqrt if you have one |
31 // sqrt(x) = 2**k * sqrt(y)
33 // Let q = sqrt(y) truncated to i bit after binary point (q = 1),
85 // Sqrt returns the square root of x.
88 // Sqrt(+Inf) = +Inf
89 // Sqrt(±0) = ±0
90 // Sqrt(x < 0) = NaN
91 // Sqrt(NaN) = Na
99 func sqrt(x float64) float64 { func
    [all...]
acosh.go 25 // acosh(x) = log [ x + sqrt(x*x-1) ]
28 // acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
29 // acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
56 return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2**28 > x > 2
59 return Log1p(t + Sqrt(2*t+t*t)) // 2 >= x > 1
asinh.go 25 // asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
29 // := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
30 // := sign(x)*log1p(|x| + x**2/(1 + sqrt(1+x**2)))
59 temp = Log(2*x + 1/(Sqrt(x*x+1)+x)) // 2**28 > |x| > 2.0
63 temp = Log1p(x + x*x/(1+Sqrt(1+x*x))) // 2.0 > |x| > 2**-28
  /prebuilts/go/darwin-x86/src/runtime/
sqrt_test.go 5 // A copy of Sqrt tests from the math package to test the
6 // purely integer arithmetic implementation in sqrt.go.
17 return math.Float64frombits(runtime.Sqrt(math.Float64bits(x)))
23 if f := SqrtRT(a); sqrt[i] != f {
24 t.Errorf("Sqrt(%g) = %g, want %g", a, f, sqrt[i])
29 t.Errorf("Sqrt(%g) = %g, want %g", vfsqrtSC[i], f, sqrtSC[i])
57 var sqrt = []float64{ var
  /prebuilts/go/linux-x86/src/runtime/
sqrt_test.go 5 // A copy of Sqrt tests from the math package to test the
6 // purely integer arithmetic implementation in sqrt.go.
17 return math.Float64frombits(runtime.Sqrt(math.Float64bits(x)))
23 if f := SqrtRT(a); sqrt[i] != f {
24 t.Errorf("Sqrt(%g) = %g, want %g", a, f, sqrt[i])
29 t.Errorf("Sqrt(%g) = %g, want %g", vfsqrtSC[i], f, sqrtSC[i])
57 var sqrt = []float64{ var
  /prebuilts/go/darwin-x86/src/math/cmplx/
sqrt.go 56 // Sqrt returns the square root of x.
58 func Sqrt(x complex128) complex128 {
64 return complex(0, math.Sqrt(-real(x)))
66 return complex(math.Sqrt(real(x)), 0)
70 r := math.Sqrt(-0.5 * imag(x))
73 r := math.Sqrt(0.5 * imag(x))
92 t = math.Sqrt(0.5*r + 0.5*a)
96 r = math.Sqrt(0.5*r - 0.5*a)
  /prebuilts/go/linux-x86/src/math/cmplx/
sqrt.go 56 // Sqrt returns the square root of x.
58 func Sqrt(x complex128) complex128 {
64 return complex(0, math.Sqrt(-real(x)))
66 return complex(math.Sqrt(real(x)), 0)
70 r := math.Sqrt(-0.5 * imag(x))
73 r := math.Sqrt(0.5 * imag(x))
92 t = math.Sqrt(0.5*r + 0.5*a)
96 r = math.Sqrt(0.5*r - 0.5*a)
  /external/google-benchmark/src/
stat.h 124 *stddev = Sqrt(avg_squares - Sqr(mean));
134 return Sqrt(avg_squares - Sqr(mean));
173 static inline SType Sqrt(const SType &dat) {
176 return sqrt(dat);
180 static inline Vector2<SType> Sqrt(const Vector2<SType> &dat) {
182 return Max(dat, Vector2<SType>()).Sqrt();
186 static inline Vector3<SType> Sqrt(const Vector3<SType> &dat) {
188 return Max(dat, Vector3<SType>()).Sqrt();
192 static inline Vector4<SType> Sqrt(const Vector4<SType> &dat) {
194 return Max(dat, Vector4<SType>()).Sqrt();
    [all...]
  /external/antlr/antlr-3.4/runtime/CSharp2/Sources/Antlr3.Runtime/Antlr.Runtime.Misc/
Stats.cs 59 * numerical properties than the textbook summation/sqrt. To me
75 return Math.Sqrt(s2);
88 return Math.Sqrt(s2);
  /external/antlr/antlr-3.4/runtime/CSharp3/Sources/Antlr3.Runtime.Debug/Misc/
Stats.cs 64 * numerical properties than the textbook summation/sqrt. To me
83 return Math.Sqrt( s2 );
99 return Math.Sqrt( s2 );

Completed in 605 milliseconds

1 2 3 4