OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
refs:apart
(Results
1 - 24
of
24
) sorted by null
/toolchain/binutils/binutils-2.25/ld/testsuite/ld-mmix/
b-loc64k.s
2
% correspond to the start of a mmo file with two instructions, 64k
apart
.
/toolchain/binutils/binutils-2.25/gas/testsuite/gas/mt/
relocs2.s
15
;; roughly $100
apart
, so that the FR9 relocation processing in
/toolchain/binutils/binutils-2.25/ld/testsuite/ld-mips-elf/
got-page-6.s
3
# that are large distances
apart
.
/external/llvm/test/ExecutionEngine/RuntimeDyld/X86/
ELF_x64-64_PIC_relocations.s
5
# Test that we can load this code twice at memory locations more than 2GB
apart
/external/opencv3/modules/viz/src/vtk/
vtkVizInteractorStyle.cpp
141
vtkActor*
apart
= vtkActor::SafeDownCast(path->GetLastNode()->GetViewProp());
local
142
float psize =
apart
->GetProperty()->GetPointSize() + delta;
144
apart
->GetProperty()->SetPointSize(psize);
155
vtkActor*
apart
= vtkActor::SafeDownCast(path->GetLastNode()->GetViewProp());
local
156
apart
->GetProperty()->SetRepresentationToPoints();
[
all
...]
/external/opencv3/modules/ts/src/
ts_func.cpp
202
Mat
apart
= buf[0].colRange(0, j2 - j);
local
204
apart0.convertTo(
apart
,
apart
.type(), alpha);
206
double* aptr =
apart
.ptr<double>();
227
apart
.convertTo(cpart0, cpart0.type(), 1, 0);
[
all
...]
/prebuilts/go/darwin-x86/src/cmd/doc/
main.go
204
// parseSymbol breaks str
apart
into a symbol and method.
/prebuilts/go/linux-x86/src/cmd/doc/
main.go
204
// parseSymbol breaks str
apart
into a symbol and method.
/prebuilts/go/darwin-x86/src/cmd/cover/
cover.go
144
//
apart
&& and ||. We could but it doesn't seem important enough to bother.
/prebuilts/go/darwin-x86/src/crypto/elliptic/
p224.go
206
// still spaced 28-bits
apart
and in little-endian order. So the limbs are at
/prebuilts/go/linux-x86/src/cmd/cover/
cover.go
144
//
apart
&& and ||. We could but it doesn't seem important enough to bother.
/prebuilts/go/linux-x86/src/crypto/elliptic/
p224.go
206
// still spaced 28-bits
apart
and in little-endian order. So the limbs are at
/prebuilts/go/darwin-x86/pkg/bootstrap/src/bootstrap/asm/internal/asm/
parse.go
9
// TODO: Split
apart
?
/prebuilts/go/darwin-x86/src/cmd/asm/internal/asm/
parse.go
6
// TODO: Split
apart
?
/prebuilts/go/darwin-x86/src/runtime/
mheap.go
51
// spaced CacheLineSize bytes
apart
, so that each MCentral.lock
/prebuilts/go/linux-x86/pkg/bootstrap/src/bootstrap/asm/internal/asm/
parse.go
9
// TODO: Split
apart
?
/prebuilts/go/linux-x86/src/cmd/asm/internal/asm/
parse.go
6
// TODO: Split
apart
?
/prebuilts/go/linux-x86/src/runtime/
mheap.go
51
// spaced CacheLineSize bytes
apart
, so that each MCentral.lock
/external/chromium-trace/catapult/third_party/gsutil/third_party/boto/boto/machinelearning/
layer1.py
263
another variable or split
apart
into word combinations? The
372
another variable, or split
apart
into word combinations? The
[
all
...]
/external/v8/test/mjsunit/
unicode-test.js
[
all
...]
/prebuilts/gdb/darwin-x86/lib/python2.7/pydoc_data/
topics.py
9
'binary': '\nBinary arithmetic operations\n****************************\n\nThe binary arithmetic operations have the conventional priority\nlevels. Note that some of these operations also apply to certain non-\nnumeric types.
Apart
from the power operator, there are only two\nlevels, one for multiplicative operators and one for additive\noperators:\n\n m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr\n | m_expr "%" u_expr\n a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n\nThe ``*`` (multiplication) operator yields the product of its\narguments. The arguments must either both be numbers, or one argument\nmust be an integer (plain or long) and the other must be a sequence.\nIn the former case, the numbers are converted to a common type and\nthen multiplied together. In the latter case, sequence repetition is\nperformed; a negative repetition factor yields an empty sequence.\n\nThe ``/`` (division) and ``//`` (floor division) operators yield the\nquotient of their arguments. The numeric arguments are first\nconverted to a common type. Plain or long integer division yields an\ninteger of the same type; the result is that of mathematical division\nwith the \'floor\' function applied to the result. Division by zero\nraises the ``ZeroDivisionError`` exception.\n\nThe ``%`` (modulo) operator yields the remainder from the division of\nthe first argument by the second. The numeric arguments are first\nconverted to a common type. A zero right argument raises the\n``ZeroDivisionError`` exception. The arguments may be floating point\nnumbers, e.g., ``3.14%0.7`` equals ``0.34`` (since ``3.14`` equals\n``4*0.7 + 0.34``.) The modulo operator always yields a result with\nthe same sign as its second operand (or zero); the absolute value of\nthe result is strictly smaller than the absolute value of the second\noperand [2].\n\nThe integer division and modulo operators are connected by the\nfollowing identity: ``x == (x/y)*y + (x%y)``. Integer division and\nmodulo are also connected with the built-in function ``divmod()``:\n``divmod(x, y) == (x/y, x%y)``. These identities don\'t hold for\nfloating point numbers; there similar identities hold approximately\nwhere ``x/y`` is replaced by ``floor(x/y)`` or ``floor(x/y) - 1`` [3].\n\nIn addition to performing the modulo operation on numbers, the ``%``\noperator is also overloaded by string and unicode objects to perform\nstring formatting (also known as interpolation). The syntax for string\nformatting is described in the Python Library Reference, section\n*String Formatting Operations*.\n\nDeprecated since version 2.3: The floor division operator, the modulo\noperator, and the ``divmod()`` function are no longer defined for\ncomplex numbers. Instead, convert to a floating point number using\nthe ``abs()`` function if appropriate.\n\nThe ``+`` (addition) operator yields the sum of its arguments. The\narguments must either both be numbers or both sequences of the same\ntype. In the former case, the numbers are converted to a common type\nand then added together. In the latter case, the sequences are\nconcatenated.\n\nThe ``-`` (subtraction) operator yields the difference of its\narguments. The numeric arguments are first converted to a common\ntype.\n',
[
all
...]
/prebuilts/gdb/linux-x86/lib/python2.7/pydoc_data/
topics.py
9
'binary': '\nBinary arithmetic operations\n****************************\n\nThe binary arithmetic operations have the conventional priority\nlevels. Note that some of these operations also apply to certain non-\nnumeric types.
Apart
from the power operator, there are only two\nlevels, one for multiplicative operators and one for additive\noperators:\n\n m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr\n | m_expr "%" u_expr\n a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n\nThe ``*`` (multiplication) operator yields the product of its\narguments. The arguments must either both be numbers, or one argument\nmust be an integer (plain or long) and the other must be a sequence.\nIn the former case, the numbers are converted to a common type and\nthen multiplied together. In the latter case, sequence repetition is\nperformed; a negative repetition factor yields an empty sequence.\n\nThe ``/`` (division) and ``//`` (floor division) operators yield the\nquotient of their arguments. The numeric arguments are first\nconverted to a common type. Plain or long integer division yields an\ninteger of the same type; the result is that of mathematical division\nwith the \'floor\' function applied to the result. Division by zero\nraises the ``ZeroDivisionError`` exception.\n\nThe ``%`` (modulo) operator yields the remainder from the division of\nthe first argument by the second. The numeric arguments are first\nconverted to a common type. A zero right argument raises the\n``ZeroDivisionError`` exception. The arguments may be floating point\nnumbers, e.g., ``3.14%0.7`` equals ``0.34`` (since ``3.14`` equals\n``4*0.7 + 0.34``.) The modulo operator always yields a result with\nthe same sign as its second operand (or zero); the absolute value of\nthe result is strictly smaller than the absolute value of the second\noperand [2].\n\nThe integer division and modulo operators are connected by the\nfollowing identity: ``x == (x/y)*y + (x%y)``. Integer division and\nmodulo are also connected with the built-in function ``divmod()``:\n``divmod(x, y) == (x/y, x%y)``. These identities don\'t hold for\nfloating point numbers; there similar identities hold approximately\nwhere ``x/y`` is replaced by ``floor(x/y)`` or ``floor(x/y) - 1`` [3].\n\nIn addition to performing the modulo operation on numbers, the ``%``\noperator is also overloaded by string and unicode objects to perform\nstring formatting (also known as interpolation). The syntax for string\nformatting is described in the Python Library Reference, section\n*String Formatting Operations*.\n\nDeprecated since version 2.3: The floor division operator, the modulo\noperator, and the ``divmod()`` function are no longer defined for\ncomplex numbers. Instead, convert to a floating point number using\nthe ``abs()`` function if appropriate.\n\nThe ``+`` (addition) operator yields the sum of its arguments. The\narguments must either both be numbers or both sequences of the same\ntype. In the former case, the numbers are converted to a common type\nand then added together. In the latter case, the sequences are\nconcatenated.\n\nThe ``-`` (subtraction) operator yields the difference of its\narguments. The numeric arguments are first converted to a common\ntype.\n',
[
all
...]
/prebuilts/python/darwin-x86/2.7.5/lib/python2.7/pydoc_data/
topics.py
9
'binary': '\nBinary arithmetic operations\n****************************\n\nThe binary arithmetic operations have the conventional priority\nlevels. Note that some of these operations also apply to certain non-\nnumeric types.
Apart
from the power operator, there are only two\nlevels, one for multiplicative operators and one for additive\noperators:\n\n m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr\n | m_expr "%" u_expr\n a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n\nThe ``*`` (multiplication) operator yields the product of its\narguments. The arguments must either both be numbers, or one argument\nmust be an integer (plain or long) and the other must be a sequence.\nIn the former case, the numbers are converted to a common type and\nthen multiplied together. In the latter case, sequence repetition is\nperformed; a negative repetition factor yields an empty sequence.\n\nThe ``/`` (division) and ``//`` (floor division) operators yield the\nquotient of their arguments. The numeric arguments are first\nconverted to a common type. Plain or long integer division yields an\ninteger of the same type; the result is that of mathematical division\nwith the \'floor\' function applied to the result. Division by zero\nraises the ``ZeroDivisionError`` exception.\n\nThe ``%`` (modulo) operator yields the remainder from the division of\nthe first argument by the second. The numeric arguments are first\nconverted to a common type. A zero right argument raises the\n``ZeroDivisionError`` exception. The arguments may be floating point\nnumbers, e.g., ``3.14%0.7`` equals ``0.34`` (since ``3.14`` equals\n``4*0.7 + 0.34``.) The modulo operator always yields a result with\nthe same sign as its second operand (or zero); the absolute value of\nthe result is strictly smaller than the absolute value of the second\noperand [2].\n\nThe integer division and modulo operators are connected by the\nfollowing identity: ``x == (x/y)*y + (x%y)``. Integer division and\nmodulo are also connected with the built-in function ``divmod()``:\n``divmod(x, y) == (x/y, x%y)``. These identities don\'t hold for\nfloating point numbers; there similar identities hold approximately\nwhere ``x/y`` is replaced by ``floor(x/y)`` or ``floor(x/y) - 1`` [3].\n\nIn addition to performing the modulo operation on numbers, the ``%``\noperator is also overloaded by string and unicode objects to perform\nstring formatting (also known as interpolation). The syntax for string\nformatting is described in the Python Library Reference, section\n*String Formatting Operations*.\n\nDeprecated since version 2.3: The floor division operator, the modulo\noperator, and the ``divmod()`` function are no longer defined for\ncomplex numbers. Instead, convert to a floating point number using\nthe ``abs()`` function if appropriate.\n\nThe ``+`` (addition) operator yields the sum of its arguments. The\narguments must either both be numbers or both sequences of the same\ntype. In the former case, the numbers are converted to a common type\nand then added together. In the latter case, the sequences are\nconcatenated.\n\nThe ``-`` (subtraction) operator yields the difference of its\narguments. The numeric arguments are first converted to a common\ntype.\n',
[
all
...]
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/pydoc_data/
topics.py
9
'binary': '\nBinary arithmetic operations\n****************************\n\nThe binary arithmetic operations have the conventional priority\nlevels. Note that some of these operations also apply to certain non-\nnumeric types.
Apart
from the power operator, there are only two\nlevels, one for multiplicative operators and one for additive\noperators:\n\n m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr\n | m_expr "%" u_expr\n a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n\nThe ``*`` (multiplication) operator yields the product of its\narguments. The arguments must either both be numbers, or one argument\nmust be an integer (plain or long) and the other must be a sequence.\nIn the former case, the numbers are converted to a common type and\nthen multiplied together. In the latter case, sequence repetition is\nperformed; a negative repetition factor yields an empty sequence.\n\nThe ``/`` (division) and ``//`` (floor division) operators yield the\nquotient of their arguments. The numeric arguments are first\nconverted to a common type. Plain or long integer division yields an\ninteger of the same type; the result is that of mathematical division\nwith the \'floor\' function applied to the result. Division by zero\nraises the ``ZeroDivisionError`` exception.\n\nThe ``%`` (modulo) operator yields the remainder from the division of\nthe first argument by the second. The numeric arguments are first\nconverted to a common type. A zero right argument raises the\n``ZeroDivisionError`` exception. The arguments may be floating point\nnumbers, e.g., ``3.14%0.7`` equals ``0.34`` (since ``3.14`` equals\n``4*0.7 + 0.34``.) The modulo operator always yields a result with\nthe same sign as its second operand (or zero); the absolute value of\nthe result is strictly smaller than the absolute value of the second\noperand [2].\n\nThe integer division and modulo operators are connected by the\nfollowing identity: ``x == (x/y)*y + (x%y)``. Integer division and\nmodulo are also connected with the built-in function ``divmod()``:\n``divmod(x, y) == (x/y, x%y)``. These identities don\'t hold for\nfloating point numbers; there similar identities hold approximately\nwhere ``x/y`` is replaced by ``floor(x/y)`` or ``floor(x/y) - 1`` [3].\n\nIn addition to performing the modulo operation on numbers, the ``%``\noperator is also overloaded by string and unicode objects to perform\nstring formatting (also known as interpolation). The syntax for string\nformatting is described in the Python Library Reference, section\n*String Formatting Operations*.\n\nDeprecated since version 2.3: The floor division operator, the modulo\noperator, and the ``divmod()`` function are no longer defined for\ncomplex numbers. Instead, convert to a floating point number using\nthe ``abs()`` function if appropriate.\n\nThe ``+`` (addition) operator yields the sum of its arguments. The\narguments must either both be numbers or both sequences of the same\ntype. In the former case, the numbers are converted to a common type\nand then added together. In the latter case, the sequences are\nconcatenated.\n\nThe ``-`` (subtraction) operator yields the difference of its\narguments. The numeric arguments are first converted to a common\ntype.\n',
[
all
...]
Completed in 1266 milliseconds