1 /******************************************************************************* 2 * Copyright (c) 2013, Daniel Murphy 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without modification, 6 * are permitted provided that the following conditions are met: 7 * * Redistributions of source code must retain the above copyright notice, 8 * this list of conditions and the following disclaimer. 9 * * Redistributions in binary form must reproduce the above copyright notice, 10 * this list of conditions and the following disclaimer in the documentation 11 * and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 15 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16 * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 17 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 19 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 20 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 21 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 22 * POSSIBILITY OF SUCH DAMAGE. 23 ******************************************************************************/ 24 /* 25 * JBox2D - A Java Port of Erin Catto's Box2D 26 * 27 * JBox2D homepage: http://jbox2d.sourceforge.net/ 28 * Box2D homepage: http://www.box2d.org 29 * 30 * This software is provided 'as-is', without any express or implied 31 * warranty. In no event will the authors be held liable for any damages 32 * arising from the use of this software. 33 * 34 * Permission is granted to anyone to use this software for any purpose, 35 * including commercial applications, and to alter it and redistribute it 36 * freely, subject to the following restrictions: 37 * 38 * 1. The origin of this software must not be misrepresented; you must not 39 * claim that you wrote the original software. If you use this software 40 * in a product, an acknowledgment in the product documentation would be 41 * appreciated but is not required. 42 * 2. Altered source versions must be plainly marked as such, and must not be 43 * misrepresented as being the original software. 44 * 3. This notice may not be removed or altered from any source distribution. 45 */ 46 47 package org.jbox2d.common; 48 49 import java.util.Random; 50 51 /** 52 * A few math methods that don't fit very well anywhere else. 53 */ 54 public class MathUtils extends PlatformMathUtils { 55 public static final float PI = (float) Math.PI; 56 public static final float TWOPI = (float) (Math.PI * 2); 57 public static final float INV_PI = 1f / PI; 58 public static final float HALF_PI = PI / 2; 59 public static final float QUARTER_PI = PI / 4; 60 public static final float THREE_HALVES_PI = TWOPI - HALF_PI; 61 62 /** 63 * Degrees to radians conversion factor 64 */ 65 public static final float DEG2RAD = PI / 180; 66 67 /** 68 * Radians to degrees conversion factor 69 */ 70 public static final float RAD2DEG = 180 / PI; 71 72 public static final float[] sinLUT = new float[Settings.SINCOS_LUT_LENGTH]; 73 74 static { 75 for (int i = 0; i < Settings.SINCOS_LUT_LENGTH; i++) { 76 sinLUT[i] = (float) Math.sin(i * Settings.SINCOS_LUT_PRECISION); 77 } 78 } 79 80 public static final float sin(float x) { 81 if (Settings.SINCOS_LUT_ENABLED) { 82 return sinLUT(x); 83 } else { 84 return (float) StrictMath.sin(x); 85 } 86 } 87 88 public static final float sinLUT(float x) { 89 x %= TWOPI; 90 91 if (x < 0) { 92 x += TWOPI; 93 } 94 95 if (Settings.SINCOS_LUT_LERP) { 96 97 x /= Settings.SINCOS_LUT_PRECISION; 98 99 final int index = (int) x; 100 101 if (index != 0) { 102 x %= index; 103 } 104 105 // the next index is 0 106 if (index == Settings.SINCOS_LUT_LENGTH - 1) { 107 return ((1 - x) * sinLUT[index] + x * sinLUT[0]); 108 } else { 109 return ((1 - x) * sinLUT[index] + x * sinLUT[index + 1]); 110 } 111 112 } else { 113 return sinLUT[MathUtils.round(x / Settings.SINCOS_LUT_PRECISION) % Settings.SINCOS_LUT_LENGTH]; 114 } 115 } 116 117 public static final float cos(float x) { 118 if (Settings.SINCOS_LUT_ENABLED) { 119 return sinLUT(HALF_PI - x); 120 } else { 121 return (float) StrictMath.cos(x); 122 } 123 } 124 125 public static final float abs(final float x) { 126 if (Settings.FAST_ABS) { 127 return x > 0 ? x : -x; 128 } else { 129 return StrictMath.abs(x); 130 } 131 } 132 133 public static final float fastAbs(final float x) { 134 return x > 0 ? x : -x; 135 } 136 137 public static final int abs(int x) { 138 int y = x >> 31; 139 return (x ^ y) - y; 140 } 141 142 public static final int floor(final float x) { 143 if (Settings.FAST_FLOOR) { 144 return fastFloor(x); 145 } else { 146 return (int) StrictMath.floor(x); 147 } 148 } 149 150 public static final int fastFloor(final float x) { 151 int y = (int) x; 152 if (x < y) { 153 return y - 1; 154 } 155 return y; 156 } 157 158 public static final int ceil(final float x) { 159 if (Settings.FAST_CEIL) { 160 return fastCeil(x); 161 } else { 162 return (int) StrictMath.ceil(x); 163 } 164 } 165 166 public static final int fastCeil(final float x) { 167 int y = (int) x; 168 if (x > y) { 169 return y + 1; 170 } 171 return y; 172 } 173 174 public static final int round(final float x) { 175 if (Settings.FAST_ROUND) { 176 return floor(x + .5f); 177 } else { 178 return StrictMath.round(x); 179 } 180 } 181 182 /** 183 * Rounds up the value to the nearest higher power^2 value. 184 * 185 * @param x 186 * @return power^2 value 187 */ 188 public static final int ceilPowerOf2(int x) { 189 int pow2 = 1; 190 while (pow2 < x) { 191 pow2 <<= 1; 192 } 193 return pow2; 194 } 195 196 public final static float max(final float a, final float b) { 197 return a > b ? a : b; 198 } 199 200 public final static int max(final int a, final int b) { 201 return a > b ? a : b; 202 } 203 204 public final static float min(final float a, final float b) { 205 return a < b ? a : b; 206 } 207 208 public final static int min(final int a, final int b) { 209 return a < b ? a : b; 210 } 211 212 public final static float map(final float val, final float fromMin, final float fromMax, 213 final float toMin, final float toMax) { 214 final float mult = (val - fromMin) / (fromMax - fromMin); 215 final float res = toMin + mult * (toMax - toMin); 216 return res; 217 } 218 219 /** Returns the closest value to 'a' that is in between 'low' and 'high' */ 220 public final static float clamp(final float a, final float low, final float high) { 221 return max(low, min(a, high)); 222 } 223 224 public final static Vec2 clamp(final Vec2 a, final Vec2 low, final Vec2 high) { 225 final Vec2 min = new Vec2(); 226 min.x = a.x < high.x ? a.x : high.x; 227 min.y = a.y < high.y ? a.y : high.y; 228 min.x = low.x > min.x ? low.x : min.x; 229 min.y = low.y > min.y ? low.y : min.y; 230 return min; 231 } 232 233 public final static void clampToOut(final Vec2 a, final Vec2 low, final Vec2 high, final Vec2 dest) { 234 dest.x = a.x < high.x ? a.x : high.x; 235 dest.y = a.y < high.y ? a.y : high.y; 236 dest.x = low.x > dest.x ? low.x : dest.x; 237 dest.y = low.y > dest.y ? low.y : dest.y; 238 } 239 240 /** 241 * Next Largest Power of 2: Given a binary integer value x, the next largest power of 2 can be 242 * computed by a SWAR algorithm that recursively "folds" the upper bits into the lower bits. This 243 * process yields a bit vector with the same most significant 1 as x, but all 1's below it. Adding 244 * 1 to that value yields the next largest power of 2. 245 */ 246 public final static int nextPowerOfTwo(int x) { 247 x |= x >> 1; 248 x |= x >> 2; 249 x |= x >> 4; 250 x |= x >> 8; 251 x |= x >> 16; 252 return x + 1; 253 } 254 255 public final static boolean isPowerOfTwo(final int x) { 256 return x > 0 && (x & x - 1) == 0; 257 } 258 259 public static final float pow(float a, float b) { 260 if (Settings.FAST_POW) { 261 return fastPow(a, b); 262 } else { 263 return (float) StrictMath.pow(a, b); 264 } 265 } 266 267 public static final float atan2(final float y, final float x) { 268 if (Settings.FAST_ATAN2) { 269 return fastAtan2(y, x); 270 } else { 271 return (float) StrictMath.atan2(y, x); 272 } 273 } 274 275 public static final float fastAtan2(float y, float x) { 276 if (x == 0.0f) { 277 if (y > 0.0f) return HALF_PI; 278 if (y == 0.0f) return 0.0f; 279 return -HALF_PI; 280 } 281 float atan; 282 final float z = y / x; 283 if (abs(z) < 1.0f) { 284 atan = z / (1.0f + 0.28f * z * z); 285 if (x < 0.0f) { 286 if (y < 0.0f) return atan - PI; 287 return atan + PI; 288 } 289 } else { 290 atan = HALF_PI - z / (z * z + 0.28f); 291 if (y < 0.0f) return atan - PI; 292 } 293 return atan; 294 } 295 296 public static final float reduceAngle(float theta) { 297 theta %= TWOPI; 298 if (abs(theta) > PI) { 299 theta = theta - TWOPI; 300 } 301 if (abs(theta) > HALF_PI) { 302 theta = PI - theta; 303 } 304 return theta; 305 } 306 307 public static final float randomFloat(float argLow, float argHigh) { 308 return (float) Math.random() * (argHigh - argLow) + argLow; 309 } 310 311 public static final float randomFloat(Random r, float argLow, float argHigh) { 312 return r.nextFloat() * (argHigh - argLow) + argLow; 313 } 314 315 public static final float sqrt(float x) { 316 return (float) StrictMath.sqrt(x); 317 } 318 319 public final static float distanceSquared(Vec2 v1, Vec2 v2) { 320 float dx = (v1.x - v2.x); 321 float dy = (v1.y - v2.y); 322 return dx * dx + dy * dy; 323 } 324 325 public final static float distance(Vec2 v1, Vec2 v2) { 326 return sqrt(distanceSquared(v1, v2)); 327 } 328 }