/frameworks/data-binding/integration-tests/App With Spaces/gradle/wrapper/ |
gradle-wrapper.properties | 19 distributionPath=wrapper/dists 21 zipStorePath=wrapper/dists
|
/frameworks/data-binding/integration-tests/IndependentLibrary/gradle/wrapper/ |
gradle-wrapper.properties | 18 distributionPath=wrapper/dists 20 zipStorePath=wrapper/dists
|
/frameworks/data-binding/integration-tests/MultiModuleTestApp/gradle/wrapper/ |
gradle-wrapper.properties | 19 distributionPath=wrapper/dists 21 zipStorePath=wrapper/dists
|
/external/opencv3/modules/flann/include/opencv2/flann/ |
ground_truth.h | 49 std::vector<DistanceType> dists(n); 51 dists[0] = distance(dataset[0], query, dataset.cols); 60 dists[dcnt++] = tmp; 62 else if (tmp < dists[dcnt-1]) { 63 dists[dcnt-1] = tmp; 69 while (j>=1 && dists[j]<dists[j-1]) { 70 std::swap(dists[j],dists[j-1]);
|
nn_index.h | 64 * \param[out] dists Distances to the nearest neighbors found 68 virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) 72 assert(dists.rows >= queries.rows); 74 assert(int(dists.cols) >= knn); 79 resultSet.init(indices[i], dists[i]); 87 if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn); 88 else resultSet.copy(indices[i], dists[i], knn); 97 * \param[out] dists The distances to the nearest neighbors found 102 virtual int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params) 109 assert(indices.cols == dists.cols) [all...] |
result_set.h | 88 DistanceType* dists; member in class:cvflann::KNNSimpleResultSet 101 dists = dists_; 104 dists[capacity-1] = worst_distance_; 124 if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) ) 126 if (dists[i-1]>dist) 130 dists[i] = dists[i-1]; 137 dists[i] = dist; 139 worst_distance_ = dists[capacity-1] 155 DistanceType* dists; member in class:cvflann::KNNResultSet 233 DistanceType* dists; member in class:cvflann::RadiusResultSet [all...] |
kdtree_single_index.h | 208 * \param[out] dists Distances to the nearest neighbors found 212 void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) 216 assert(dists.rows >= queries.rows); 218 assert(int(dists.cols) >= knn); 222 resultSet.init(indices[i], dists[i]); 245 std::vector<DistanceType> dists(dim_,0); 246 DistanceType distsq = computeInitialDistances(vec, dists); 247 searchLevel(result, vec, root_node_, distsq, dists, epsError); 521 DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists) 527 dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, (int)i) [all...] |
flann_base.hpp | 210 * \param[out] dists Distances to the nearest neighbors found 214 void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) 216 nnIndex_->knnSearch(queries, indices, dists, knn, params); 223 * \param[out] dists The distances to the nearest neighbors found 228 int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params) 230 return nnIndex_->radiusSearch(query, indices, dists, radius, params);
|
lsh_index.h | 186 * \param[out] dists Distances to the nearest neighbors found 190 virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) 194 assert(dists.rows >= queries.rows); 196 assert(int(dists.cols) >= knn); 203 std::fill_n(dists[i], knn, std::numeric_limits<DistanceType>::max()); 205 if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn); 206 else resultSet.copy(indices[i], dists[i], knn);
|
miniflann.hpp | 137 OutputArray dists, int knn, const SearchParams& params=SearchParams()); 140 OutputArray dists, double radius, int maxResults,
|
/external/opencv3/modules/flann/include/opencv2/ |
flann.hpp | 211 @param dists Vector that will contain the distances to the K-nearest neighbors found. It must have 217 std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params); 218 void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params); 221 std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params); 222 int radiusSearch(const Mat& query, Mat& indices, Mat& dists, 271 void GenericIndex<Distance>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) 275 ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); 284 void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) 294 CV_Assert(dists.type() == CvType<DistanceType>::type()) [all...] |
/external/zopfli/src/zopfli/ |
lz77.h | 37 Parameter dists: Contains the distances. A value is 0 to indicate that there is 39 Parameter size: The size of both the litlens and dists arrays. 46 unsigned short* dists; /* If 0: indicates literal in corresponding litlens, member in struct:ZopfliLZ77Store 106 dists: ll77 distances 107 start: where to begin counting in litlens and dists 108 end: where to stop counting in litlens and dists (not inclusive) 114 const unsigned short* dists,
|
blocksplitter.c | 102 dists: ll77 distances 107 const unsigned short* dists, 109 return ZopfliCalculateBlockSize(litlens, dists, lstart, lend, 2); 114 const unsigned short* dists; member in struct:SplitCostContext 128 return EstimateCost(c->litlens, c->dists, c->start, i) + 129 EstimateCost(c->litlens, c->dists, i, c->end); 151 const unsigned short* dists, 162 size_t length = dists[i] == 0 ? 1 : litlens[i]; 220 const unsigned short* dists, 246 c.dists = dists [all...] |
deflate.h | 74 dists: ll77 distances 79 const unsigned short* dists,
|
blocksplitter.h | 40 dists: lz77 distances 41 llsize: size of litlens and dists 46 const unsigned short* dists,
|
squeeze.c | 34 /* The 32 unique dist symbols, not the 32768 possible dists. */ 35 size_t dists[32]; member in struct:SymbolStats 44 memset(stats->dists, 0, 32 * sizeof(stats->dists[0])); 52 memcpy(dest->dists, source->dists, 32 * sizeof(dest->dists[0])); 69 result->dists[i] = 70 (size_t) (stats1->dists[i] * w1 + stats2->dists[i] * w2) [all...] |
lz77.c | 30 store->dists = 0; 35 free(store->dists); 44 dest->dists = (unsigned short*)malloc(sizeof(*dest->dists) * source->size); 46 if (!dest->litlens || !dest->dists) exit(-1); /* Allocation failed. */ 51 dest->dists[i] = source->dists[i]; 63 ZOPFLI_APPEND_DATA(dist, &store->dists, &size2); 460 const unsigned short* dists, 473 if (dists[i] == 0) [all...] |
deflate.c | 298 const unsigned short* dists, 309 unsigned dist = dists[i]; 351 const unsigned short* dists, 356 if (dists[i] == 0) { 360 result += d_lengths[ZopfliGetDistSymbol(dists[i])]; 362 result += ZopfliGetDistExtraBits(dists[i]); 474 const unsigned short* dists, 480 ZopfliLZ77Counts(litlens, dists, lstart, lend, ll_counts, d_counts); 489 const unsigned short* dists, 501 GetDynamicLengths(litlens, dists, lstart, lend, ll_lengths, d_lengths) [all...] |
/external/opencv3/modules/flann/src/ |
miniflann.cpp | 462 void runKnnSearch_(void* index, const Mat& query, Mat& indices, Mat& dists, 469 CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype); 470 CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous()); 474 ::cvflann::Matrix<DistanceType> _dists(dists.ptr<DistanceType>(), dists.rows, dists.cols); 481 void runKnnSearch(void* index, const Mat& query, Mat& indices, Mat& dists, 484 runKnnSearch_<Distance, ::cvflann::Index<Distance> >(index, query, indices, dists, knn, params); 488 int runRadiusSearch_(void* index, const Mat& query, Mat& indices, Mat& dists, 495 CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype) 554 Mat query = _query.getMat(), indices, dists; local 596 Mat query = _query.getMat(), indices, dists; local [all...] |
/external/opencv3/modules/features2d/src/ |
blobdetector.cpp | 281 std::vector<double> dists; local 285 dists.push_back(norm(center.location - pt)); 287 std::sort(dists.begin(), dists.end()); 288 center.radius = (dists[(dists.size() - 1) / 2] + dists[dists.size() / 2]) / 2.;
|
/cts/apps/CameraITS/tests/sensor_fusion/ |
test_sensor_fusion.py | 146 dists = [] 150 dists.append(scipy.spatial.distance.correlation(cam_rots, gyro_rots)) 151 best_corr_dist = min(dists) 152 best_shift = candidates[dists.index(best_corr_dist)] 160 i = len(dists)/2 + best_shift 162 dists = dists[i-20:i+21] 163 a,b,c = numpy.polyfit(candidates, dists, 2) 172 pylab.plot(candidates, dists, 'r', label="data")
|
/external/chromium-trace/catapult/third_party/gsutil/third_party/boto/bin/ |
cfadmin | 7 def _print_distributions(dists): 11 for d in dists:
|
/external/opencv3/modules/features2d/test/ |
test_nearestneighbors.cpp | 193 vector<float> dists( dist.cols, 0 ); 194 index->knnSearch( query, indices, dists, knn, SearchParams() ); 226 vector<float> dists( dist.cols, 0 ); 227 index->radiusSearch( query, indices, dists, radius, neighbors.cols, SearchParams() );
|
/external/chromium-trace/catapult/telemetry/telemetry/internal/image_processing/ |
cv_util_unittest.py | 107 dists = self.cv_util.SqDistance(p1, p2) 108 self.assertEqual(dists[0], 8) 109 self.assertEqual(dists[1], 13)
|
/external/opencv3/modules/ml/src/ |
knearest.cpp | 145 Mat* dists, float* presult ) const 222 if( dists ) 224 float* dptr = dists->ptr<float>(testidx + range.start);
|