/external/eigen/doc/snippets/ |
TopicAliasing_mult1.cpp | 1 MatrixXf matA(2,2); 2 matA << 2, 0, 0, 2; 3 matA = matA * matA; 4 cout << matA;
|
TopicAliasing_mult3.cpp | 1 MatrixXf matA(2,2); 2 matA << 2, 0, 0, 2; 3 matA.noalias() = matA * matA; 4 cout << matA;
|
TopicAliasing_mult2.cpp | 1 MatrixXf matA(2,2), matB(2,2); 2 matA << 2, 0, 0, 2; 5 matB = matA * matA; 9 matB.noalias() = matA * matA;
|
Tutorial_AdvancedInitialization_Block.cpp | 1 MatrixXf matA(2, 2); 2 matA << 1, 2, 3, 4; 4 matB << matA, matA/10, matA/10, matA;
|
/external/chromium-trace/catapult/tracing/third_party/gl-matrix/spec/gl-matrix/ |
mat2d-spec.js | 24 var out, matA, matB, identity, result; 27 matA = [1, 2, 58 beforeEach(function() { result = mat2d.clone(matA); }); 59 it("should return a 6 element array initialized to the values in matA", function() { expect(result).toBeEqualish(matA); }); 63 beforeEach(function() { result = mat2d.copy(out, matA); }); 64 it("should place values into out", function() { expect(out).toBeEqualish(matA); }); 76 beforeEach(function() { result = mat2d.invert(out, matA); }); 80 it("should not modify matA", function() { expect(matA).toBeEqualish(oldA); }) [all...] |
mat2-spec.js | 24 var out, matA, matB, identity, result; 27 matA = [1, 2, 46 beforeEach(function() { result = mat2.clone(matA); }); 47 it("should return a 4 element array initialized to the values in matA", function() { expect(result).toBeEqualish(matA); }); 51 beforeEach(function() { result = mat2.copy(out, matA); }); 52 it("should place values into out", function() { expect(out).toBeEqualish(matA); }); 64 beforeEach(function() { result = mat2.transpose(out, matA); }); 68 it("should not modify matA", function() { expect(matA).toBeEqualish([1, 2, 3, 4]); }) [all...] |
mat3-spec.js | 26 var out, matA, matB, identity, result; 29 matA = [1, 0, 0, 48 matA = [1, 0, 0, 0, 52 result = mat3.normalFromMat4(out, matA); 59 mat4.translate(matA, matA, [2, 4, 6]); 60 mat4.rotateX(matA, matA, Math.PI / 2); 62 result = mat3.normalFromMat4(out, matA); 73 mat4.scale(matA, matA, [2, 3, 4]) [all...] |
mat4-spec.js | 25 var out, matA, matB, identity, result; 29 matA = [1, 0, 0, 0, 56 beforeEach(function() { result = mat4.clone(matA); }); 57 it("should return a 16 element array initialized to the values in matA", function() { expect(result).toBeEqualish(matA); }); 61 beforeEach(function() { result = mat4.copy(out, matA); }); 62 it("should place values into out", function() { expect(out).toBeEqualish(matA); }); 74 beforeEach(function() { result = mat4.transpose(out, matA); }); 85 it("should not modify matA", function() { 86 expect(matA).toBeEqualish( [all...] |
vec2-spec.js | 405 var matA; 406 beforeEach(function() { matA = [1, 2, 3, 4]; }); 409 beforeEach(function() { result = vec2.transformMat2(out, vecA, matA); }); 414 it("should not modify matA", function() { expect(matA).toBeEqualish([1, 2, 3, 4]); }); 418 beforeEach(function() { result = vec2.transformMat2(vecA, vecA, matA); }); 422 it("should not modify matA", function() { expect(matA).toBeEqualish([1, 2, 3, 4]); }); 427 var matA; 428 beforeEach(function() { matA = [1, 2, 3, 4, 5, 6]; }) [all...] |
/external/eigen/Eigen/src/Eigenvalues/ |
GeneralizedSelfAdjointEigenSolver.h | 83 * \param[in] matA Selfadjoint matrix in matrix pencil. 92 * generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the 107 GeneralizedSelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, 109 : Base(matA.cols()) 111 compute(matA, matB, options); 116 * \param[in] matA Selfadjoint matrix in matrix pencil. 130 * with \a matA the selfadjoint matrix \f$ A \f$ and \a matB the positive definite 154 GeneralizedSelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB, 164 compute(const MatrixType& matA, const MatrixType& matB, int options) 166 eigen_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows()) [all...] |
HessenbergDecomposition.h | 270 static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp); 280 * Performs a tridiagonal decomposition of \a matA in place. 282 * \param matA the input selfadjoint matrix 285 * The result is written in the lower triangular part of \a matA. 292 void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp) 294 eigen_assert(matA.rows()==matA.cols()); 295 Index n = matA.rows(); 303 matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); 304 matA.col(i).coeffRef(i+1) = beta [all...] |
Tridiagonalization.h | 26 void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs); 323 * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place. 325 * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced. 331 * and lower sub-diagonal of the matrix \a matA. 339 * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$. 346 void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs) 352 Index n = matA.rows(); 353 eigen_assert(n==matA.cols()); 361 matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta) [all...] |
SelfAdjointEigenSolver.h | 333 SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true) 334 : m_eivec(matA.cols(), matA.cols()), 335 m_eivalues(matA.cols()), 336 m_subdiag(matA.cols() > 1 ? matA.cols() - 1 : 1), 339 static_cast<GeneralizedSelfAdjointEigenSolver<MatrixType>*>(this)->compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly); 347 void compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true) 349 compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly); 374 * \param matA the input selfadjoint matri [all...] |
/frameworks/rs/java/tests/RsBLAS_Benchmark/src/com/example/android/rs/blasbenchmark/ |
BNNMTest.java | 33 private Allocation matA; 227 matA = Allocation.createTyped(mRS, a_type); 230 matA.copyFrom(a_byte); 234 mBLAS.BNNM(matA, a_offset, matB, b_offset, matC, c_offset, c_mult_int); 297 matA = Allocation.createTyped(mRS, a_type); 301 matA.copyFrom(a_byte); 305 mBLAS.BNNM(matA, a_offset, matB, b_offset, matC, c_offset, c_mult_int); 346 matA = Allocation.createTyped(mRS, a_type); 350 matA.copyFrom(a_byte); 354 mBLAS.BNNM(matA, a_offset, matB, b_offset, matC, c_offset, c_mult_int) [all...] |
SGEMMTest.java | 33 private Allocation matA; 150 matA = Allocation.createTyped(mRS, a_type); 154 matA.copyFrom(a_float); 159 1.0f, matA, matB, 0.f, matC); 205 matA = Allocation.createTyped(mRS, a_type); 209 matA.copyFrom(a_float); 214 1.0f, matA, matB, 0.f, matC); 253 matA = Allocation.createTyped(mRS, a_type); 257 matA.copyFrom(a_float); 262 1.0f, matA, matB, 0.f, matC) [all...] |
/external/neven/Embedded/common/src/b_TensorEm/ |
Int32Mat.h | 106 * matA: the square matrix, array of size ( matWidthA * matWidthA ) 111 * tmpMatA: matrix of same size as matA 115 const int32* matA, 123 /** same as _solve(), but matA gets overwritten, and tmpMatA is not needed: 124 * saves memory when matA is large; 129 int32* matA,
|
Int32Mat.c | 210 const int32* matA, 218 bbs_memcpy32( tmpMatA, matA, ( matWidthA * matWidthA ) * bbs_SIZEOF32( int32 ) ); 232 int32* matA, 246 int32* matL = matA;
|
/frameworks/base/graphics/java/android/graphics/ |
ColorMatrix.java | 176 * as applying matB and then applying matA. 178 * It is legal for either matA or matB to be the same colormatrix as this. 181 public void setConcat(ColorMatrix matA, ColorMatrix matB) { 183 if (matA == this || matB == this) { 189 final float[] a = matA.mArray;
|
/cts/tests/tests/rsblas/src/android/renderscript/cts/ |
IntrinsicBLAS.java | 239 for (Allocation matA : mMatrix) { 248 Element elemA = matA.getType().getElement(); 249 if (validateGEMV(elemA, trans, matA, vecX, incX, vecY, incY)) { 252 mBLAS.SGEMV(trans, alphaS, matA, vecX, incX, betaS, vecY, incY); 254 mBLAS.DGEMV(trans, alphaD, matA, vecX, incX, betaD, vecY, incY); 256 mBLAS.CGEMV(trans, alphaC, matA, vecX, incX, betaC, vecY, incY); 258 mBLAS.ZGEMV(trans, alphaZ, matA, vecX, incX, betaZ, vecY, incY); 265 mBLAS.SGEMV(trans, alphaS, matA, vecX, incX, betaS, vecY, incY); 270 mBLAS.DGEMV(trans, alphaD, matA, vecX, incX, betaD, vecY, incY); 275 mBLAS.CGEMV(trans, alphaC, matA, vecX, incX, betaC, vecY, incY) [all...] |
/external/eigen/Eigen/src/Eigen2Support/ |
SVD.h | 109 MatrixType matA(matrix); 124 m_sigma[k] = matA.col(k).end(m-k).norm(); 127 if (matA(k,k) < 0.0) 129 matA.col(k).end(m-k) /= m_sigma[k]; 130 matA(k,k) += 1.0; 140 Scalar t = matA.col(k).end(m-k).eigen2_dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ?? 141 t = -t/matA(k,k); 142 matA.col(j).end(m-k) += t * matA.col(k).end(m-k) [all...] |
/external/opencv/cv/src/ |
cvcornersubpix.cpp | 233 CvMat matA, matInvA; 239 cvInitMatHeader( &matA, 2, 2, CV_64F, A ); 242 cvInvert( &matA, &matInvA, CV_SVD );
|
/external/skia/src/effects/ |
SkColorMatrix.cpp | 132 void SkColorMatrix::setConcat(const SkColorMatrix& matA, const SkColorMatrix& matB) { 133 SetConcat(fMat, matA.fMat, matB.fMat);
|
/external/eigen/test/ |
cholesky.cpp | 308 MatrixType matA; 309 matA << 1, 1, 1, 1; 312 VectorType vecX = matA.ldlt().solve(vecB); 313 VERIFY_IS_APPROX(matA * vecX, vecB);
|
/external/opencv3/modules/video/src/ |
compat_video.cpp | 307 cv::Mat matA = cv::cvarrToMat(arrA), matB = cv::cvarrToMat(arrB); 310 cv::Mat matM = cv::estimateRigidTransform(matA, matB, full_affine != 0);
|
/external/eigen/blas/ |
level3_impl.h | 272 Matrix<Scalar,Dynamic,Dynamic,ColMajor> matA(size,size); 275 matA.triangularView<Upper>() = matrix(a,size,size,*lda); 276 matA.triangularView<Lower>() = matrix(a,size,size,*lda).transpose(); 280 matA.triangularView<Lower>() = matrix(a,size,size,*lda); 281 matA.triangularView<Upper>() = matrix(a,size,size,*lda).transpose(); 284 matrix(c, *m, *n, *ldc) += alpha * matA * matrix(b, *m, *n, *ldb); 286 matrix(c, *m, *n, *ldc) += alpha * matrix(b, *m, *n, *ldb) * matA; [all...] |