HomeSort by relevance Sort by last modified time
    Searched refs:matrixT (Results 1 - 25 of 25) sorted by null

  /external/eigen/doc/snippets/
ComplexSchur_compute.cpp 4 cout << "The matrix T in the decomposition of A is:" << endl << schur.matrixT() << endl;
6 cout << "The matrix T in the decomposition of A^(-1) is:" << endl << schur.matrixT() << endl;
RealSchur_compute.cpp 4 cout << "The matrix T in the decomposition of A is:" << endl << schur.matrixT() << endl;
6 cout << "The matrix T in the decomposition of A^(-1) is:" << endl << schur.matrixT() << endl;
Tridiagonalization_compute.cpp 6 cout << tri.matrixT() << endl;
9 cout << tri.matrixT() << endl;
ComplexSchur_matrixT.cpp 4 cout << "The triangular matrix T is:" << endl << schurOfA.matrixT() << endl;
RealSchur_RealSchur_MatrixType.cpp 6 cout << "The quasi-triangular matrix T is:" << endl << schur.matrixT() << endl << endl;
9 MatrixXd T = schur.matrixT();
Tridiagonalization_packedMatrix.cpp 8 << endl << triOfA.matrixT() << endl;
RealQZ_compute.cpp 8 cout << "S:\n" << qz.matrixS() << "\n" << "T:\n" << qz.matrixT() << "\n";
14 << ", |B-QTZ|: " << (B-qz.matrixQ()*qz.matrixT()*qz.matrixZ()).norm()
Tridiagonalization_Tridiagonalization_MatrixType.cpp 7 MatrixXd T = triOfA.matrixT();
Tridiagonalization_diagonal.cpp 6 MatrixXd T = triOfA.matrixT();
  /external/eigen/test/
schur_complex.cpp 25 ComplexMatrixType T = schurOfA.matrixT();
36 VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
47 VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
54 VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT());
64 VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>());
70 VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT());
schur_real.cpp 48 MatrixType T = schurOfA.matrixT();
55 VERIFY_RAISES_ASSERT(rsUninitialized.matrixT());
66 VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT());
73 VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT());
85 VERIFY_IS_EQUAL(rs3.matrixT(), Atriangular);
91 VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT());
real_qz.cpp 51 if (abs(qz.matrixT()(i,j))!=Scalar(0.0))
60 VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B);
eigensolver_selfadjoint.cpp 115 VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
  /external/eigen/test/eigen2/
eigen2_qr.cpp 35 VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
40 VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH());
  /external/eigen/Eigen/src/Eigenvalues/
ComplexEigenSolver.h 271 m_eivalues = m_schur.matrixT().diagonal();
297 m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
299 m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
300 ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
GeneralizedEigenSolver.h 325 m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
335 m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
336 m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i);
ComplexSchur.h 44 * decomposition is computed, you can use the matrixU() and matrixT()
110 * \sa matrixT() and matrixU() for examples.
156 * \code schur.matrixT().triangularView<Upper>() \endcode
161 const ComplexMatrixType& matrixT() const
Tridiagonalization.h 53 * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the
236 * matrixT(), class HouseholderSequence
263 MatrixTReturnType matrixT() const
280 * \sa matrixT(), subDiagonal()
292 * \sa diagonal() for an example, matrixT()
522 * \brief Expression type for return value of Tridiagonalization::matrixT()
EigenSolver.h 385 m_matT = m_realSchur.matrixT();
RealSchur.h 43 * matrixT() functions to retrieve the matrices U and T in the decomposition.
143 const MatrixType& matrixT() const
RealQZ.h 43 * matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices
148 const MatrixType& matrixT() const {
  /external/eigen/unsupported/Eigen/src/IterativeSolvers/
DGMRES.h 404 return schurofH.matrixT().diagonal();
411 const DenseMatrix& T = schurofH.matrixT();
  /external/eigen/unsupported/Eigen/src/MatrixFunctions/
MatrixSquareRoot.h 354 const MatrixType& T = schurOfA.matrixT();
387 const MatrixType& T = schurOfA.matrixT();
MatrixFunction.h 220 m_T = schurOfA.matrixT();
MatrixPower.h 381 m_T = schurOfA.matrixT();

Completed in 924 milliseconds