/external/apache-commons-math/src/main/java/org/apache/commons/math/genetics/ |
SelectionPolicy.java | 20 * Algorithm used to select a chromosome pair from a population. 27 * Select two chromosomes from the population. 28 * @param population the population from which the chromosomes are choosen. 31 ChromosomePair select(Population population);
|
StoppingCondition.java | 27 * Determine whether or not the given population satisfies the stopping 30 * @param population the population to test. 32 * given population. <code>false</code> otherwise. 34 boolean isSatisfied(Population population);
|
TournamentSelection.java | 25 * chromosomes without replacement from the population, and then selecting the 47 * Select two chromosomes from the population. Each of the two selected 50 * population, and then selecting the fittest chromosome among them. 52 * @param population 53 * the population from which the chromosomes are choosen. 56 public ChromosomePair select(Population population) { 58 tournament((ListPopulation) population), 59 tournament((ListPopulation)population) 64 * Helper for {@link #select(Population)}. Draw {@link #arity} rando [all...] |
Chromosome.java | 20 * Individual in a population. Chromosomes are compared based on their fitness. 80 * Searches the <code>population</code> for another chromosome with the same 84 * @param population 85 * Population to search 89 protected Chromosome findSameChromosome(Population population) { 90 for (Chromosome anotherChr : population) { 98 * Searches the population for a chromosome representing the same solution, 101 * @param population 102 * Population to searc [all...] |
FixedGenerationCount.java | 21 * {@link #isSatisfied(Population)} is invoked, a generation counter is 23 * <code>maxGenerations</code> value, {@link #isSatisfied(Population)} returns 52 * @param population ignored (no impact on result) 55 public boolean isSatisfied(Population population) {
|
/external/icu/icu4j/samples/src/com/ibm/icu/samples/iuc/ |
PopulationData.java | 24 * Entry in the population list 28 private double population; field in class:PopulationData.TerritoryEntry 29 public TerritoryEntry(String displayCountry, double population) { 31 this.population = population; 36 public double population() { method in class:PopulationData.TerritoryEntry 37 return population; 45 if (rc==0) rc = ((Double)population).compareTo(o.population()); 60 // territoryF = { gdp, literacy, population } [all...] |
Sample40_PopMsg.java | 53 // Population roll call 58 infoArgs.put("population", entry.population());
|
Sample50_PopSort.java | 65 // Population roll call 70 infoArgs.put("population", entry.population());
|
/external/opencv3/3rdparty/libwebp/enc/ |
histogram.c | 154 static double HuffmanCost(const int* const population, int length) { 164 if (population[i] == population[i + 1]) { 168 // population[i] points now to the symbol in the streak of same values. 170 if (population[i] == 0) { 176 if (population[i] == 0) { 191 static double PopulationCost(const int* const population, int length) { 192 return BitsEntropy(population, length) + HuffmanCost(population, length); 195 static double ExtraCost(const int* const population, int length) [all...] |
/prebuilts/gdb/darwin-x86/lib/python2.7/ |
random.py | 267 "enough bits to choose from a population range this large") 290 def sample(self, population, k): 291 """Chooses k unique random elements from a population sequence. 293 Returns a new list containing elements from the population while 294 leaving the original population unchanged. The resulting list is 299 Members of the population need not be hashable or unique. If the 300 population contains repeats, then each occurrence is a possible 305 large population: sample(xrange(10000000), 60) 312 # population, then tracking selections is efficient, requiring 318 n = len(population) [all...] |
/prebuilts/gdb/linux-x86/lib/python2.7/ |
random.py | 267 "enough bits to choose from a population range this large") 290 def sample(self, population, k): 291 """Chooses k unique random elements from a population sequence. 293 Returns a new list containing elements from the population while 294 leaving the original population unchanged. The resulting list is 299 Members of the population need not be hashable or unique. If the 300 population contains repeats, then each occurrence is a possible 305 large population: sample(xrange(10000000), 60) 312 # population, then tracking selections is efficient, requiring 318 n = len(population) [all...] |
/prebuilts/python/darwin-x86/2.7.5/lib/python2.7/ |
random.py | 267 "enough bits to choose from a population range this large") 290 def sample(self, population, k): 291 """Chooses k unique random elements from a population sequence. 293 Returns a new list containing elements from the population while 294 leaving the original population unchanged. The resulting list is 299 Members of the population need not be hashable or unique. If the 300 population contains repeats, then each occurrence is a possible 305 large population: sample(xrange(10000000), 60) 312 # population, then tracking selections is efficient, requiring 318 n = len(population) [all...] |
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/ |
random.py | 267 "enough bits to choose from a population range this large") 290 def sample(self, population, k): 291 """Chooses k unique random elements from a population sequence. 293 Returns a new list containing elements from the population while 294 leaving the original population unchanged. The resulting list is 299 Members of the population need not be hashable or unique. If the 300 population contains repeats, then each occurrence is a possible 305 large population: sample(xrange(10000000), 60) 312 # population, then tracking selections is efficient, requiring 318 n = len(population) [all...] |
/frameworks/support/v7/palette/src/main/java/android/support/v7/graphics/ |
Palette.java | 329 * <p>The dominant swatch is defined as the swatch with the greatest population (frequency) 453 public Swatch(@ColorInt int color, int population) { 458 mPopulation = population; 461 Swatch(int red, int green, int blue, int population) { 466 mPopulation = population; 469 Swatch(float[] hsl, int population) { 470 this(ColorUtils.HSLToColor(hsl), population); 569 .append(" [Population: ").append(mPopulation).append(']') [all...] |
/external/webp/src/dsp/ |
lossless_enc_mips32.c | 97 // const uint32_t* pop = &population[4]; 98 // const uint32_t* LoopEnd = &population[length]; 106 static double ExtraCost(const uint32_t* const population, int length) { 108 const uint32_t* pop = &population[4]; 109 const uint32_t* const LoopEnd = &population[length];
|
lossless.h | 204 typedef double (*VP8LCostFunc)(const uint32_t* population, int length); 226 uint32_t sum; // sum of the population 227 int nonzeros; // number of non-zero elements in the population 228 uint32_t max_val; // maximum value in the population 229 uint32_t nonzero_code; // index of the last non-zero in the population
|
lossless_enc.c | [all...] |
/prebuilts/sdk/current/support/v7/palette/libs/ |
android-support-v7-palette.jar | |
/external/harfbuzz_ng/test/shaping/ |
hb_test_tools.py | 196 def zscore (self, population): 198 Population is the Stats for population. 204 return (self.mean () - population.mean ()) / population.stddev ()
|
/prebuilts/gdb/darwin-x86/lib/python2.7/test/ |
test_random.py | 72 population = xrange(N) 74 s = self.gen.sample(population, k) 78 self.assertTrue(uniq <= set(population)) 100 # SF bug #801342 -- population can be any iterable defining __len__()
|
/prebuilts/gdb/linux-x86/lib/python2.7/test/ |
test_random.py | 72 population = xrange(N) 74 s = self.gen.sample(population, k) 78 self.assertTrue(uniq <= set(population)) 100 # SF bug #801342 -- population can be any iterable defining __len__()
|
/prebuilts/python/darwin-x86/2.7.5/lib/python2.7/test/ |
test_random.py | 72 population = xrange(N) 74 s = self.gen.sample(population, k) 78 self.assertTrue(uniq <= set(population)) 100 # SF bug #801342 -- population can be any iterable defining __len__()
|
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/test/ |
test_random.py | 72 population = xrange(N) 74 s = self.gen.sample(population, k) 78 self.assertTrue(uniq <= set(population)) 100 # SF bug #801342 -- population can be any iterable defining __len__()
|
/external/webp/src/enc/ |
histogram.c | 224 // Get the symbol entropy for the distribution 'population'. 226 static double PopulationCost(const uint32_t* const population, int length, 230 VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats); [all...] |
/external/llvm/test/MC/PowerPC/ |
ppc64-encoding-vmx.s | [all...] |