/external/eigen/doc/snippets/ |
JacobiSVD_basic.cpp | 3 JacobiSVD<MatrixXf> svd(m, ComputeThinU | ComputeThinV); 4 cout << "Its singular values are:" << endl << svd.singularValues() << endl; 5 cout << "Its left singular vectors are the columns of the thin U matrix:" << endl << svd.matrixU() << endl; 6 cout << "Its right singular vectors are the columns of the thin V matrix:" << endl << svd.matrixV() << endl; 9 cout << "A least-squares solution of m*x = rhs is:" << endl << svd.solve(rhs) << endl;
|
/external/eigen/unsupported/test/ |
svd_common.h | 21 #include <unsupported/Eigen/SVD> 25 // check if "svd" is the good image of "m" 26 template<typename MatrixType, typename SVD> 27 void svd_check_full(const MatrixType& m, const SVD& svd) 43 sigma.diagonal() = svd.singularValues().template cast<Scalar>(); 44 MatrixUType u = svd.matrixU(); 45 MatrixVType v = svd.matrixV(); 54 template<typename MatrixType, typename SVD> 57 const SVD& referenceSvd 154 SVD svd; local 199 SVD svd; local 227 SVD svd; local [all...] |
jacobisvd.cpp | 14 void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd) 16 svd_check_full<MatrixType, JacobiSVD<MatrixType, QRPreconditioner > >(m, svd); 128 JacobiSVD<Matrix2d> svd; local 129 svd.compute(M); // just check we don't loop indefinitely
|
bdcsvd.cpp | 17 // check if "svd" is the good image of "m" 19 void bdcsvd_check_full(const MatrixType& m, const BDCSVD<MatrixType>& svd) 21 svd_check_full< MatrixType, BDCSVD< MatrixType > >(m, svd);
|
/external/eigen/test/eigen2/ |
eigen2_svd.cpp | 11 #include <Eigen/SVD> 13 template<typename MatrixType> void svd(const MatrixType& m) function 16 SVD.h 33 SVD<MatrixType> svd(a); 36 sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal(); 37 matU.block(0,0,rows,cols) = svd.matrixU(); 38 VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose()); 49 SVD<MatrixType> svd(a) [all...] |
/external/eigen/Eigen/src/SVD/ |
JacobiSVD.h | 22 /*** QR preconditioners (R-SVD) 24 *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. 25 *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for 77 void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) 79 if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) 82 ::new (&m_qr) QRType(svd.rows(), svd.cols()); 84 if (svd.m_computeFullU) m_workspace.resize(svd.rows()) [all...] |
/external/eigen/unsupported/Eigen/src/SVD/ |
JacobiSVD.h | 22 /*** QR preconditioners (R-SVD) 24 *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. 25 *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for 77 void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) 79 if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) 82 ::new (&m_qr) QRType(svd.rows(), svd.cols()); 84 if (svd.m_computeFullU) m_workspace.resize(svd.rows()) [all...] |
/external/eigen/test/ |
jacobisvd.cpp | 15 #include <Eigen/SVD> 18 void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd) 34 sigma.diagonal() = svd.singularValues().template cast<Scalar>(); 35 MatrixUType u = svd.matrixU(); 36 MatrixVType v = svd.matrixV(); 53 JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions); 55 VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues()); 57 VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU()); 59 VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize)); 61 VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV()) [all...] |
/external/eigen/Eigen/src/Geometry/ |
Umeyama.h | 16 // * Eigen/SVD 74 * The analysis is involving the SVD having a complexity of \f$O(d^3)\f$ 132 JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV); 142 const VectorType& d = svd.singularValues(); 145 if ( svd.matrixU().determinant() * svd.matrixV().determinant() > Scalar(0) ) { 146 Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose(); 149 Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose() [all...] |
Transform.h | [all...] |
Hyperplane.h | 109 JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV); 110 result.normal() = svd.matrixV().col(2);
|
Quaternion.h | 591 JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV); 592 Vector3 axis = svd.matrixV().col(2);
|
/external/eigen/Eigen/src/Eigen2Support/Geometry/ |
Transform.h | 594 * \sa computeRotationScaling(), computeScalingRotation(), class SVD 615 * \sa computeScalingRotation(), rotation(), class SVD 621 JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV); 622 Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 623 Matrix<Scalar, Dim, 1> sv(svd.singularValues()); 627 scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint(); 631 LinearMatrixType m(svd.matrixU()); 633 rotation->noalias() = m * svd.matrixV().adjoint() [all...] |
/external/opencv3/modules/core/src/ |
lapack.cpp | 813 SVD::compute(src, w, u, vt); 814 SVD::backSubst(w, u, vt, Mat(), _dst); 834 SVD::backSubst(w, u, vt, Mat(), _dst); [all...] |
/external/opencv3/modules/ml/src/ |
em.cpp | 373 SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV); 377 double maxSingularVal = svd.w.at<double>(0); 382 covsEigenValues[clusterIndex] = svd.w; 386 covsEigenValues[clusterIndex] = svd.w; 387 covsRotateMats[clusterIndex] = svd.u; 731 SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV) [all...] |
/external/ceres-solver/internal/ceres/ |
covariance_impl.cc | 60 #include "Eigen/SVD" 588 Eigen::JacobiSVD<Matrix> svd(dense_jacobian, 593 const Vector singular_values = svd.singularValues(); 635 svd.matrixV() * 637 svd.matrixV().transpose();
|
/external/opencv3/modules/stitching/src/ |
motion_estimators.cpp | 285 SVD svd; local 293 svd(cameras[i].R, SVD::FULL_UV); 294 Mat R = svd.u * svd.vt; 466 SVD svd; local 471 svd(cameras[i].R, SVD::FULL_UV) [all...] |
/external/opencv3/modules/core/include/opencv2/core/ |
operations.hpp | 287 ///////////////////////////////////////////// SVD ///////////////////////////////////////////// 289 inline SVD::SVD() {} 290 inline SVD::SVD( InputArray m, int flags ) { operator ()(m, flags); } 291 inline void SVD::solveZ( InputArray m, OutputArray _dst ) 294 SVD svd(mtx, (mtx.rows >= mtx.cols ? 0 : SVD::FULL_UV)); 295 _dst.create(svd.vt.cols, 1, svd.vt.type()) [all...] |
/external/opencv3/modules/calib3d/src/ |
fisheye.cpp | [all...] |
/external/opencv3/modules/videostab/src/ |
global_motion.cpp | 255 SVD svd(A); 256 Mat_<float> R = svd.u * svd.vt;
|
/cts/apps/CameraITS/tests/sensor_fusion/ |
test_sensor_fusion.py | 403 U,s,Vt = numpy.linalg.svd(numpy.dot(X0.T, Y0),full_matrices=False)
|
/external/opencv3/modules/calib3d/test/ |
test_fisheye.cpp | 304 cv::SVD svd(covObjectPoints); 305 cv::Mat R(svd.vt);
|
/external/eigen/Eigen/src/Core/ |
MatrixBase.h | 377 /////////// SVD module /////////// 382 SVD<PlainObject> svd() const;
|
/external/opencv3/modules/core/test/ |
test_operations.cpp | [all...] |
/external/eigen/Eigen/src/Eigen2Support/ |
SVD.h | 18 * \class SVD 20 * \brief Standard SVD decomposition of a matrix and associated features 22 * \param MatrixType the type of the matrix of which we are computing the SVD decomposition 24 * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N 28 * \sa MatrixBase::SVD() 30 template<typename MatrixType> class SVD 51 SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7 53 SVD(const MatrixType& matrix) 69 SVD& sort(); 89 /** Computes / recomputes the SVD decomposition A = U S V^* of \a matri [all...] |