HomeSort by relevance Sort by last modified time
    Searched refs:svd (Results 1 - 25 of 25) sorted by null

  /external/eigen/doc/snippets/
JacobiSVD_basic.cpp 3 JacobiSVD<MatrixXf> svd(m, ComputeThinU | ComputeThinV);
4 cout << "Its singular values are:" << endl << svd.singularValues() << endl;
5 cout << "Its left singular vectors are the columns of the thin U matrix:" << endl << svd.matrixU() << endl;
6 cout << "Its right singular vectors are the columns of the thin V matrix:" << endl << svd.matrixV() << endl;
9 cout << "A least-squares solution of m*x = rhs is:" << endl << svd.solve(rhs) << endl;
  /external/eigen/unsupported/test/
svd_common.h 21 #include <unsupported/Eigen/SVD>
25 // check if "svd" is the good image of "m"
26 template<typename MatrixType, typename SVD>
27 void svd_check_full(const MatrixType& m, const SVD& svd)
43 sigma.diagonal() = svd.singularValues().template cast<Scalar>();
44 MatrixUType u = svd.matrixU();
45 MatrixVType v = svd.matrixV();
54 template<typename MatrixType, typename SVD>
57 const SVD& referenceSvd
154 SVD svd; local
199 SVD svd; local
227 SVD svd; local
    [all...]
jacobisvd.cpp 14 void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
16 svd_check_full<MatrixType, JacobiSVD<MatrixType, QRPreconditioner > >(m, svd);
128 JacobiSVD<Matrix2d> svd; local
129 svd.compute(M); // just check we don't loop indefinitely
bdcsvd.cpp 17 // check if "svd" is the good image of "m"
19 void bdcsvd_check_full(const MatrixType& m, const BDCSVD<MatrixType>& svd)
21 svd_check_full< MatrixType, BDCSVD< MatrixType > >(m, svd);
  /external/eigen/test/eigen2/
eigen2_svd.cpp 11 #include <Eigen/SVD>
13 template<typename MatrixType> void svd(const MatrixType& m) function
16 SVD.h
33 SVD<MatrixType> svd(a);
36 sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal();
37 matU.block(0,0,rows,cols) = svd.matrixU();
38 VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose());
49 SVD<MatrixType> svd(a)
    [all...]
  /external/eigen/Eigen/src/SVD/
JacobiSVD.h 22 /*** QR preconditioners (R-SVD)
24 *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
25 *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
77 void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
79 if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
82 ::new (&m_qr) QRType(svd.rows(), svd.cols());
84 if (svd.m_computeFullU) m_workspace.resize(svd.rows())
    [all...]
  /external/eigen/unsupported/Eigen/src/SVD/
JacobiSVD.h 22 /*** QR preconditioners (R-SVD)
24 *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
25 *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
77 void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
79 if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
82 ::new (&m_qr) QRType(svd.rows(), svd.cols());
84 if (svd.m_computeFullU) m_workspace.resize(svd.rows())
    [all...]
  /external/eigen/test/
jacobisvd.cpp 15 #include <Eigen/SVD>
18 void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
34 sigma.diagonal() = svd.singularValues().template cast<Scalar>();
35 MatrixUType u = svd.matrixU();
36 MatrixVType v = svd.matrixV();
53 JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
55 VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
57 VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
59 VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
61 VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV())
    [all...]
  /external/eigen/Eigen/src/Geometry/
Umeyama.h 16 // * Eigen/SVD
74 * The analysis is involving the SVD having a complexity of \f$O(d^3)\f$
132 JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV);
142 const VectorType& d = svd.singularValues();
145 if ( svd.matrixU().determinant() * svd.matrixV().determinant() > Scalar(0) ) {
146 Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose();
149 Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose()
    [all...]
Transform.h     [all...]
Hyperplane.h 109 JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
110 result.normal() = svd.matrixV().col(2);
Quaternion.h 591 JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
592 Vector3 axis = svd.matrixV().col(2);
  /external/eigen/Eigen/src/Eigen2Support/Geometry/
Transform.h 594 * \sa computeRotationScaling(), computeScalingRotation(), class SVD
615 * \sa computeScalingRotation(), rotation(), class SVD
621 JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
622 Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
623 Matrix<Scalar, Dim, 1> sv(svd.singularValues());
627 scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint();
631 LinearMatrixType m(svd.matrixU());
633 rotation->noalias() = m * svd.matrixV().adjoint()
    [all...]
  /external/opencv3/modules/core/src/
lapack.cpp 813 SVD::compute(src, w, u, vt);
814 SVD::backSubst(w, u, vt, Mat(), _dst);
834 SVD::backSubst(w, u, vt, Mat(), _dst);
    [all...]
  /external/opencv3/modules/ml/src/
em.cpp 373 SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV);
377 double maxSingularVal = svd.w.at<double>(0);
382 covsEigenValues[clusterIndex] = svd.w;
386 covsEigenValues[clusterIndex] = svd.w;
387 covsRotateMats[clusterIndex] = svd.u;
731 SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV)
    [all...]
  /external/ceres-solver/internal/ceres/
covariance_impl.cc 60 #include "Eigen/SVD"
588 Eigen::JacobiSVD<Matrix> svd(dense_jacobian,
593 const Vector singular_values = svd.singularValues();
635 svd.matrixV() *
637 svd.matrixV().transpose();
  /external/opencv3/modules/stitching/src/
motion_estimators.cpp 285 SVD svd; local
293 svd(cameras[i].R, SVD::FULL_UV);
294 Mat R = svd.u * svd.vt;
466 SVD svd; local
471 svd(cameras[i].R, SVD::FULL_UV)
    [all...]
  /external/opencv3/modules/core/include/opencv2/core/
operations.hpp 287 ///////////////////////////////////////////// SVD /////////////////////////////////////////////
289 inline SVD::SVD() {}
290 inline SVD::SVD( InputArray m, int flags ) { operator ()(m, flags); }
291 inline void SVD::solveZ( InputArray m, OutputArray _dst )
294 SVD svd(mtx, (mtx.rows >= mtx.cols ? 0 : SVD::FULL_UV));
295 _dst.create(svd.vt.cols, 1, svd.vt.type())
    [all...]
  /external/opencv3/modules/calib3d/src/
fisheye.cpp     [all...]
  /external/opencv3/modules/videostab/src/
global_motion.cpp 255 SVD svd(A);
256 Mat_<float> R = svd.u * svd.vt;
  /cts/apps/CameraITS/tests/sensor_fusion/
test_sensor_fusion.py 403 U,s,Vt = numpy.linalg.svd(numpy.dot(X0.T, Y0),full_matrices=False)
  /external/opencv3/modules/calib3d/test/
test_fisheye.cpp 304 cv::SVD svd(covObjectPoints);
305 cv::Mat R(svd.vt);
  /external/eigen/Eigen/src/Core/
MatrixBase.h 377 /////////// SVD module ///////////
382 SVD<PlainObject> svd() const;
  /external/opencv3/modules/core/test/
test_operations.cpp     [all...]
  /external/eigen/Eigen/src/Eigen2Support/
SVD.h 18 * \class SVD
20 * \brief Standard SVD decomposition of a matrix and associated features
22 * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
24 * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N
28 * \sa MatrixBase::SVD()
30 template<typename MatrixType> class SVD
51 SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7
53 SVD(const MatrixType& matrix)
69 SVD& sort();
89 /** Computes / recomputes the SVD decomposition A = U S V^* of \a matri
    [all...]

Completed in 2104 milliseconds