/external/v8/test/webkit/ |
sparse-array.js | 25 'This tests some sparse array operations.' 41 // This tests oscillation between being sparse and dense.
|
/system/core/libsparse/ |
sparse_format.h | 28 __le32 total_blks; /* total blocks in the non-sparse output image */ 29 __le32 total_chunks; /* total chunks in the sparse input image */
|
/external/eigen/Eigen/src/CholmodSupport/ |
CholmodSupport.h | 48 /** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object. 105 /** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix. 139 /** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix. 211 /** Computes the sparse Cholesky decomposition of \a matrix */ 322 // note: cs stands for Cholmod Sparse 369 * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization 372 * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrice [all...] |
/system/extras/ext4_utils/ |
ext2simg.c | 28 #include <sparse/sparse.h> 53 fprintf(stderr, " -S don't use sparse output format\n"); 123 int sparse = 1; local 139 sparse = 0; 189 write_ext4_image(outfd, gzip, sparse, crc);
|
make_ext4fs_main.c | 74 int sparse = 0; local 141 sparse = 1; 214 if (wipe && sparse) { 215 fprintf(stderr, "Cannot specifiy both wipe and sparse\n"); 257 sparse, crc, wipe, real_uuid, sehnd, verbose, fixed_time,
|
/external/deqp/external/vulkancts/modules/vulkan/sparse_resources/ |
vktSparseResourcesImageSparseBinding.cpp | 21 * \brief Sparse fully resident images with mipmaps tests 50 namespace sparse namespace in namespace:vkt 119 // Check if device supports sparse binding 124 return tcu::TestStatus(QP_TEST_RESULT_NOT_SUPPORTED, "Device does not support sparse binding"); 139 // Create logical device supporting both sparse and compute queues 142 return tcu::TestStatus(QP_TEST_RESULT_FAIL, "Could not create device supporting sparse and compute queue"); 150 // Create queue supporting sparse binding operations 190 // Allow sharing of sparse image by two different queue families (if necessary) 200 // Create sparse image 203 // Get sparse image general memory requirement [all...] |
vktSparseResourcesBufferMemoryAliasing.cpp | 21 * \brief Sparse buffer memory aliasing tests 50 namespace sparse namespace in namespace:vkt 162 return tcu::TestStatus(QP_TEST_RESULT_NOT_SUPPORTED, "Sparse binding not supported"); 167 return tcu::TestStatus(QP_TEST_RESULT_NOT_SUPPORTED, "Sparse memory aliasing not supported"); 174 // Create logical device supporting both sparse and compute oprations 177 return tcu::TestStatus(QP_TEST_RESULT_FAIL, "Could not create device supporting sparse and compute queue"); 185 // Create queue supporting sparse binding operations 214 // Create sparse buffers 223 return tcu::TestStatus(QP_TEST_RESULT_NOT_SUPPORTED, "Required memory size for sparse resources exceeds device limits"); 290 // Submit sparse bind commands for executio [all...] |
vktSparseResourcesMipmapSparseResidency.cpp | 21 * \brief Sparse partially resident images with mipmaps tests 50 namespace sparse namespace in namespace:vkt 133 // Check if device support sparse operations for image type 139 return tcu::TestStatus(QP_TEST_RESULT_NOT_SUPPORTED, "Sparse residency for 2D Image not supported"); 145 return tcu::TestStatus(QP_TEST_RESULT_NOT_SUPPORTED, "Sparse residency for 3D Image not supported"); 153 // Check if device support sparse operations for image format 160 return tcu::TestStatus(QP_TEST_RESULT_NOT_SUPPORTED, "The image format does not support sparse operations"); 175 // Create logical device supporting both sparse and transfer queues 178 return tcu::TestStatus(QP_TEST_RESULT_FAIL, "Could not create device supporting sparse and compute queue"); 186 // Create queue supporting sparse binding operation [all...] |
vktSparseResourcesBase.hpp | 23 * \brief Sparse Resources Base Instance 44 namespace sparse namespace in namespace:vkt 99 } // sparse
|
/external/eigen/Eigen/src/SPQRSupport/ |
SuiteSparseQRSupport.h | 37 * \brief Sparse QR factorization based on SuiteSparseQR library 40 * of sparse matrices. The result is then used to solve linear leasts_square systems. 49 * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix. 52 * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<> 101 * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 181 /** \returns the sparse triangular factor R. It is a sparse matrix 232 * \c NumericalIssue if the sparse QR can not be computed 248 mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format 249 mutable MatrixType m_R; // The sparse matrix R in Eigen forma [all...] |
/external/eigen/unsupported/Eigen/src/SparseExtra/ |
RandomSetter.h | 96 * \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access 98 * \param SparseMatrixType the type of the sparse matrix we are updating 99 * \param MapTraits a traits class representing the map implementation used for the temporary sparse storage. 104 * This class temporarily represents a sparse matrix object using a generic map implementation allowing for 106 * in the RandomSetter constructor, while the sparse matrix is updated back at destruction time. This strategy 138 * - \#include <google/dense_hash_map> yourself \b before Eigen/Sparse header 175 /** Constructs a random setter object from the sparse matrix \a target 178 * a sparse matrix from scratch, then you must set it to zero first using the 208 /** Destructor updating back the sparse matrix target */ 274 // moreover those 2^OuterPacketBits coeffs are likely to be sparse, an so only [all...] |
/external/eigen/unsupported/Eigen/src/KroneckerProduct/ |
KroneckerTensorProduct.h | 67 * \brief Kronecker tensor product helper class for sparse matrices 69 * If at least one of the operands is a sparse matrix expression, 70 * then this class is returned and evaluates into a sparse matrix. 229 * which is sparse 231 * \param a Dense/sparse matrix a 232 * \param b Dense/sparse matrix b 233 * \return Kronecker tensor product of a and b, stored in a sparse
|
/system/extras/verity/ |
build_verity_tree.cpp | 3 #include <sparse/sparse.h> 121 " -S treat <data image> as a sparse file\n" 131 bool sparse = false; local 141 {"sparse", no_argument, 0, 'S'}, 179 sparse = true; 268 if (sparse) {
|
/external/ceres-solver/docs/source/ |
features.rst | 51 `Eigen`_ or `LAPACK`_) for dense problems, sparse Cholesky 52 factorization (`SuiteSparse`_ or `CXSparse`_) for large sparse 53 problems custom Schur complement based dense, sparse, and 87 .. _SuiteSparse: http://www.cise.ufl.edu/research/sparse/SuiteSparse/ 90 .. _CXSparse: https://www.cise.ufl.edu/research/sparse/CXSparse/
|
/external/ceres-solver/internal/ceres/ |
block_jacobian_writer.h | 31 // A jacobian writer that writes to block sparse matrices. The "writer" name is 34 // makes a jacobians array which has direct pointers into the block sparse 79 // The block sparse matrix that this writer writes to is stored as a set of 81 // "double* values_" member of the block sparse matrix contains all of these 85 // In the case of a block sparse jacobian, the jacobian writer needs a way to
|
block_sparse_matrix.h | 31 // Implementation of the SparseMatrix interface for block sparse 49 // manipulating block sparse matrices. The block structure is stored 58 // Construct a block sparse matrix with a fully initialized
|
sparse_normal_cholesky_solver.h | 31 // A solver for sparse linear least squares problem based on solving 32 // the normal equations via a sparse cholesky factorization. 54 // Solves the normal equations (A'A + D'D) x = A'b, using the CHOLMOD sparse
|
/external/eigen/Eigen/src/OrderingMethods/ |
Ordering.h | 56 /** Compute the permutation vector from a sparse matrix 99 /** Compute the permutation vector from a column-major sparse matrix */ 121 /** Compute the permutation vector \a perm form the sparse matrix \a mat 122 * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). 127 eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
|
/external/eigen/Eigen/src/SparseCore/ |
SparseProduct.h | 74 typedef Sparse StorageKind; 158 // sparse = sparse * sparse 167 /** \returns an expression of the product of two sparse matrices.
|
SparseSelfAdjointView.h | 18 * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. 72 /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs. 74 * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. 84 /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs. 86 * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. 96 /** Efficient sparse self-adjoint matrix times dense vector/matrix product * [all...] |
/external/eigen/bench/ |
sparse_cholesky.cpp | 4 #include <Eigen/Sparse> 74 // std::cout << "sparse\n" << chol.matrixL() << "%\n"; 93 std::cout << "Generate sparse matrix (might take a while)...\n"; 126 // eigen sparse matrices 127 doEigen<Eigen::DefaultBackend>("Eigen/Sparse", sm1, Eigen::IncompleteFactorization);
|
sparse_dense_product.cpp | 91 // eigen sparse matrices 93 std::cout << "Eigen sparse\t" << sm1.nonZeros()/float(sm1.rows()*sm1.cols())*100 << "%\n"; 106 // std::cout << "Eigen dyn-sparse\t" << m1.nonZeros()/float(m1.rows()*m1.cols())*100 << "%\n"; 118 std::cout << "GMM++ sparse\t" << density*100 << "%\n"; 137 std::cout << "ublas sparse\t" << density*100 << "%\n";
|
/external/bsdiff/ |
extents_file.h | 23 * implementation supports "sparse extents", which are assumed to contain zeros 29 * to a sparse extent has no effect and will not raise an error. 36 off_t off; // the extent offset; negative indicates a sparse extent.
|
/external/eigen/test/ |
sparse_solvers.cpp | 10 #include "sparse.h" 83 // lower - sparse 90 // upper - sparse
|
sparse_vector.cpp | 10 #include "sparse.h" 88 // sparse matrix to sparse vector
|