HomeSort by relevance Sort by last modified time
    Searched full:sparse (Results 101 - 125 of 835) sorted by null

1 2 3 45 6 7 8 91011>>

  /external/v8/test/webkit/
sparse-array.js 25 'This tests some sparse array operations.'
41 // This tests oscillation between being sparse and dense.
  /system/core/libsparse/
sparse_format.h 28 __le32 total_blks; /* total blocks in the non-sparse output image */
29 __le32 total_chunks; /* total chunks in the sparse input image */
  /external/eigen/Eigen/src/CholmodSupport/
CholmodSupport.h 48 /** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
105 /** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
139 /** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
211 /** Computes the sparse Cholesky decomposition of \a matrix */
322 // note: cs stands for Cholmod Sparse
369 * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
372 * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrice
    [all...]
  /system/extras/ext4_utils/
ext2simg.c 28 #include <sparse/sparse.h>
53 fprintf(stderr, " -S don't use sparse output format\n");
123 int sparse = 1; local
139 sparse = 0;
189 write_ext4_image(outfd, gzip, sparse, crc);
make_ext4fs_main.c 74 int sparse = 0; local
141 sparse = 1;
214 if (wipe && sparse) {
215 fprintf(stderr, "Cannot specifiy both wipe and sparse\n");
257 sparse, crc, wipe, real_uuid, sehnd, verbose, fixed_time,
  /external/deqp/external/vulkancts/modules/vulkan/sparse_resources/
vktSparseResourcesImageSparseBinding.cpp 21 * \brief Sparse fully resident images with mipmaps tests
50 namespace sparse namespace in namespace:vkt
119 // Check if device supports sparse binding
124 return tcu::TestStatus(QP_TEST_RESULT_NOT_SUPPORTED, "Device does not support sparse binding");
139 // Create logical device supporting both sparse and compute queues
142 return tcu::TestStatus(QP_TEST_RESULT_FAIL, "Could not create device supporting sparse and compute queue");
150 // Create queue supporting sparse binding operations
190 // Allow sharing of sparse image by two different queue families (if necessary)
200 // Create sparse image
203 // Get sparse image general memory requirement
    [all...]
vktSparseResourcesBufferMemoryAliasing.cpp 21 * \brief Sparse buffer memory aliasing tests
50 namespace sparse namespace in namespace:vkt
162 return tcu::TestStatus(QP_TEST_RESULT_NOT_SUPPORTED, "Sparse binding not supported");
167 return tcu::TestStatus(QP_TEST_RESULT_NOT_SUPPORTED, "Sparse memory aliasing not supported");
174 // Create logical device supporting both sparse and compute oprations
177 return tcu::TestStatus(QP_TEST_RESULT_FAIL, "Could not create device supporting sparse and compute queue");
185 // Create queue supporting sparse binding operations
214 // Create sparse buffers
223 return tcu::TestStatus(QP_TEST_RESULT_NOT_SUPPORTED, "Required memory size for sparse resources exceeds device limits");
290 // Submit sparse bind commands for executio
    [all...]
vktSparseResourcesMipmapSparseResidency.cpp 21 * \brief Sparse partially resident images with mipmaps tests
50 namespace sparse namespace in namespace:vkt
133 // Check if device support sparse operations for image type
139 return tcu::TestStatus(QP_TEST_RESULT_NOT_SUPPORTED, "Sparse residency for 2D Image not supported");
145 return tcu::TestStatus(QP_TEST_RESULT_NOT_SUPPORTED, "Sparse residency for 3D Image not supported");
153 // Check if device support sparse operations for image format
160 return tcu::TestStatus(QP_TEST_RESULT_NOT_SUPPORTED, "The image format does not support sparse operations");
175 // Create logical device supporting both sparse and transfer queues
178 return tcu::TestStatus(QP_TEST_RESULT_FAIL, "Could not create device supporting sparse and compute queue");
186 // Create queue supporting sparse binding operation
    [all...]
vktSparseResourcesBase.hpp 23 * \brief Sparse Resources Base Instance
44 namespace sparse namespace in namespace:vkt
99 } // sparse
  /external/eigen/Eigen/src/SPQRSupport/
SuiteSparseQRSupport.h 37 * \brief Sparse QR factorization based on SuiteSparseQR library
40 * of sparse matrices. The result is then used to solve linear leasts_square systems.
49 * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
52 * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
101 * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
181 /** \returns the sparse triangular factor R. It is a sparse matrix
232 * \c NumericalIssue if the sparse QR can not be computed
248 mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
249 mutable MatrixType m_R; // The sparse matrix R in Eigen forma
    [all...]
  /external/eigen/unsupported/Eigen/src/SparseExtra/
RandomSetter.h 96 * \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access
98 * \param SparseMatrixType the type of the sparse matrix we are updating
99 * \param MapTraits a traits class representing the map implementation used for the temporary sparse storage.
104 * This class temporarily represents a sparse matrix object using a generic map implementation allowing for
106 * in the RandomSetter constructor, while the sparse matrix is updated back at destruction time. This strategy
138 * - \#include <google/dense_hash_map> yourself \b before Eigen/Sparse header
175 /** Constructs a random setter object from the sparse matrix \a target
178 * a sparse matrix from scratch, then you must set it to zero first using the
208 /** Destructor updating back the sparse matrix target */
274 // moreover those 2^OuterPacketBits coeffs are likely to be sparse, an so only
    [all...]
  /external/eigen/unsupported/Eigen/src/KroneckerProduct/
KroneckerTensorProduct.h 67 * \brief Kronecker tensor product helper class for sparse matrices
69 * If at least one of the operands is a sparse matrix expression,
70 * then this class is returned and evaluates into a sparse matrix.
229 * which is sparse
231 * \param a Dense/sparse matrix a
232 * \param b Dense/sparse matrix b
233 * \return Kronecker tensor product of a and b, stored in a sparse
  /system/extras/verity/
build_verity_tree.cpp 3 #include <sparse/sparse.h>
121 " -S treat <data image> as a sparse file\n"
131 bool sparse = false; local
141 {"sparse", no_argument, 0, 'S'},
179 sparse = true;
268 if (sparse) {
  /external/ceres-solver/docs/source/
features.rst 51 `Eigen`_ or `LAPACK`_) for dense problems, sparse Cholesky
52 factorization (`SuiteSparse`_ or `CXSparse`_) for large sparse
53 problems custom Schur complement based dense, sparse, and
87 .. _SuiteSparse: http://www.cise.ufl.edu/research/sparse/SuiteSparse/
90 .. _CXSparse: https://www.cise.ufl.edu/research/sparse/CXSparse/
  /external/ceres-solver/internal/ceres/
block_jacobian_writer.h 31 // A jacobian writer that writes to block sparse matrices. The "writer" name is
34 // makes a jacobians array which has direct pointers into the block sparse
79 // The block sparse matrix that this writer writes to is stored as a set of
81 // "double* values_" member of the block sparse matrix contains all of these
85 // In the case of a block sparse jacobian, the jacobian writer needs a way to
block_sparse_matrix.h 31 // Implementation of the SparseMatrix interface for block sparse
49 // manipulating block sparse matrices. The block structure is stored
58 // Construct a block sparse matrix with a fully initialized
sparse_normal_cholesky_solver.h 31 // A solver for sparse linear least squares problem based on solving
32 // the normal equations via a sparse cholesky factorization.
54 // Solves the normal equations (A'A + D'D) x = A'b, using the CHOLMOD sparse
  /external/eigen/Eigen/src/OrderingMethods/
Ordering.h 56 /** Compute the permutation vector from a sparse matrix
99 /** Compute the permutation vector from a column-major sparse matrix */
121 /** Compute the permutation vector \a perm form the sparse matrix \a mat
122 * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
127 eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
  /external/eigen/Eigen/src/SparseCore/
SparseProduct.h 74 typedef Sparse StorageKind;
158 // sparse = sparse * sparse
167 /** \returns an expression of the product of two sparse matrices.
SparseSelfAdjointView.h 18 * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
72 /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs.
74 * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
84 /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
86 * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
96 /** Efficient sparse self-adjoint matrix times dense vector/matrix product *
    [all...]
  /external/eigen/bench/
sparse_cholesky.cpp 4 #include <Eigen/Sparse>
74 // std::cout << "sparse\n" << chol.matrixL() << "%\n";
93 std::cout << "Generate sparse matrix (might take a while)...\n";
126 // eigen sparse matrices
127 doEigen<Eigen::DefaultBackend>("Eigen/Sparse", sm1, Eigen::IncompleteFactorization);
sparse_dense_product.cpp 91 // eigen sparse matrices
93 std::cout << "Eigen sparse\t" << sm1.nonZeros()/float(sm1.rows()*sm1.cols())*100 << "%\n";
106 // std::cout << "Eigen dyn-sparse\t" << m1.nonZeros()/float(m1.rows()*m1.cols())*100 << "%\n";
118 std::cout << "GMM++ sparse\t" << density*100 << "%\n";
137 std::cout << "ublas sparse\t" << density*100 << "%\n";
  /external/bsdiff/
extents_file.h 23 * implementation supports "sparse extents", which are assumed to contain zeros
29 * to a sparse extent has no effect and will not raise an error.
36 off_t off; // the extent offset; negative indicates a sparse extent.
  /external/eigen/test/
sparse_solvers.cpp 10 #include "sparse.h"
83 // lower - sparse
90 // upper - sparse
sparse_vector.cpp 10 #include "sparse.h"
88 // sparse matrix to sparse vector

Completed in 2025 milliseconds

1 2 3 45 6 7 8 91011>>