OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
full:x_mean
(Results
51 - 66
of
66
) sorted by null
1
2
3
/external/libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bernoulli/
eval.pass.cpp
58
double
x_mean
= d.p();
local
62
assert(std::abs((mean -
x_mean
) /
x_mean
) < 0.01);
94
double
x_mean
= d.p();
local
98
assert(std::abs((mean -
x_mean
) /
x_mean
) < 0.01);
eval_param.pass.cpp
60
double
x_mean
= p.p();
local
64
assert(std::abs((mean -
x_mean
) /
x_mean
) < 0.01);
98
double
x_mean
= p.p();
local
102
assert(std::abs((mean -
x_mean
) /
x_mean
) < 0.01);
/external/libcxx/test/std/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.t/
eval.pass.cpp
61
double
x_mean
= 0;
local
65
assert(std::abs(mean -
x_mean
) < 0.01);
97
double
x_mean
= 0;
101
assert(std::abs(mean -
x_mean
) < 0.01);
133
double
x_mean
= 0;
137
assert(std::abs(mean -
x_mean
) < 0.01);
eval_param.pass.cpp
62
double
x_mean
= 0;
local
66
assert(std::abs(mean -
x_mean
) < 0.01);
99
double
x_mean
= 0;
103
assert(std::abs(mean -
x_mean
) < 0.01);
136
double
x_mean
= 0;
140
assert(std::abs(mean -
x_mean
) < 0.01);
/ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bernoulli/
eval.pass.cpp
58
double
x_mean
= d.p();
local
62
assert(std::abs((mean -
x_mean
) /
x_mean
) < 0.01);
94
double
x_mean
= d.p();
local
98
assert(std::abs((mean -
x_mean
) /
x_mean
) < 0.01);
eval_param.pass.cpp
60
double
x_mean
= p.p();
local
64
assert(std::abs((mean -
x_mean
) /
x_mean
) < 0.01);
98
double
x_mean
= p.p();
local
102
assert(std::abs((mean -
x_mean
) /
x_mean
) < 0.01);
/ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.t/
eval.pass.cpp
59
double
x_mean
= 0;
local
63
assert(std::abs(mean -
x_mean
) < 0.01);
95
double
x_mean
= 0;
99
assert(std::abs(mean -
x_mean
) < 0.01);
131
double
x_mean
= 0;
135
assert(std::abs(mean -
x_mean
) < 0.01);
eval_param.pass.cpp
60
double
x_mean
= 0;
local
64
assert(std::abs(mean -
x_mean
) < 0.01);
97
double
x_mean
= 0;
101
assert(std::abs(mean -
x_mean
) < 0.01);
134
double
x_mean
= 0;
138
assert(std::abs(mean -
x_mean
) < 0.01);
/external/libcxx/test/std/numerics/rand/rand.dis/rand.dist.samp/rand.dist.samp.pconst/
eval_param.pass.cpp
86
double
x_mean
= (b[i+1] + b[i]) / 2;
90
assert(std::abs((mean -
x_mean
) /
x_mean
) < 0.01);
/external/libcxx/test/std/numerics/rand/rand.dis/rand.dist.uni/rand.dist.uni.int/
eval_param.pass.cpp
65
double
x_mean
= ((double)p.a() + p.b()) / 2;
local
70
assert(std::abs((mean -
x_mean
) /
x_mean
) < 0.01);
/external/libcxx/test/std/numerics/rand/rand.dis/rand.dist.uni/rand.dist.uni.real/
eval_param.pass.cpp
65
D::result_type
x_mean
= (p.a() + p.b()) / 2;
local
69
assert(std::abs((mean -
x_mean
) /
x_mean
) < 0.01);
/ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/rand/rand.dis/rand.dist.samp/rand.dist.samp.pconst/
eval_param.pass.cpp
84
double
x_mean
= (b[i+1] + b[i]) / 2;
88
assert(std::abs((mean -
x_mean
) /
x_mean
) < 0.01);
/ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/rand/rand.dis/rand.dist.uni/rand.dist.uni.int/
eval_param.pass.cpp
65
double
x_mean
= ((double)p.a() + p.b()) / 2;
local
70
assert(std::abs((mean -
x_mean
) /
x_mean
) < 0.01);
/ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/rand/rand.dis/rand.dist.uni/rand.dist.uni.real/
eval_param.pass.cpp
65
D::result_type
x_mean
= (p.a() + p.b()) / 2;
local
69
assert(std::abs((mean -
x_mean
) /
x_mean
) < 0.01);
/external/eigen/doc/
FunctionsTakingEigenTypes.dox
99
const RowVectorXf
x_mean
= x.colwise().sum() / num_observations;
101
C = (x.rowwise() -
x_mean
).transpose() * (y.rowwise() - y_mean) / num_observations;
119
const RowVectorXf
x_mean
= x.colwise().sum() / num_observations;
121
return (x.rowwise() -
x_mean
).transpose() * (y.rowwise() - y_mean) / num_observations;
142
const RowVectorXf
x_mean
= x.colwise().sum() / num_observations;
144
C = (x.rowwise() -
x_mean
).transpose() * (y.rowwise() - y_mean) / num_observations;
164
const RowVectorType
x_mean
= x.colwise().sum() / num_observations;
168
(x.rowwise() -
x_mean
).transpose() * (y.rowwise() - y_mean) / num_observations;
196
const RowVectorType
x_mean
= x.colwise().sum() / num_observations;
202
C = (x.rowwise() -
x_mean
).transpose() * (y.rowwise() - y_mean) / num_observations
[
all
...]
/external/ceres-solver/examples/
robot_pose_mle.cc
110
// p(x) \propto \exp{-((x -
x_mean
) / x_stddev)^2}
112
// where x refers to either the MLE odometry u* or range reading y, and
x_mean
117
// x* = \arg\min{((x -
x_mean
) / x_stddev)^2}
120
// The non-linear component arise from the computation of
x_mean
. The residuals
121
// ((x -
x_mean
) / x_stddev) for the residuals that Ceres will optimize. As
Completed in 286 milliseconds
1
2
3