HomeSort by relevance Sort by last modified time
    Searched full:key_length (Results 1 - 25 of 47) sorted by null

1 2

  /external/wpa_supplicant_8/src/common/
eapol_common.h 66 /* Note: key_length is unaligned */
67 u8 key_length[2]; member in struct:ieee802_1x_eapol_key
81 * key field (of key_length bytes) contains the key in encrypted form;
82 * if packet body length = 44, key field is absent and key_length
wpa_common.h 174 /* Note: key_info, key_length, and key_data_length are unaligned */
176 u8 key_length[2]; /* big endian */ member in struct:wpa_eapol_key
189 /* Note: key_info, key_length, and key_data_length are unaligned */
191 u8 key_length[2]; /* big endian */ member in struct:wpa_eapol_key_192
  /external/libchrome/crypto/
hmac_openssl.cc 29 bool HMAC::Init(const unsigned char* key, size_t key_length) {
33 plat_->key.assign(key, key + key_length);
hmac_win.cc 113 bool HMAC::Init(const unsigned char* key, size_t key_length) {
121 plat_->raw_key_.assign(key, key + key_length);
143 size_t key_blob_size = std::max(offsetof(KeyBlob, key_data) + key_length,
151 key_blob->key_size = static_cast<DWORD>(key_length);
152 memcpy(key_blob->key_data, key, key_length);
162 SecureZeroMemory(key_blob->key_data, key_length);
hmac_nss.cc 43 bool HMAC::Init(const unsigned char *key, size_t key_length) {
61 key_item.len = key_length;
hmac.h 41 // Initializes this instance using |key| of the length |key_length|. Call Init
51 bool Init(const unsigned char* key, size_t key_length) WARN_UNUSED_RESULT;
  /system/keymaster/
openssl_utils.cpp 82 keymaster_error_t convert_pkcs8_blob_to_evp(const uint8_t* key_data, size_t key_length,
85 if (key_data == NULL || key_length <= 0)
89 d2i_PKCS8_PRIV_KEY_INFO(NULL, &key_data, key_length));
hmac.h 34 bool Init(const uint8_t* key, size_t key_length);
openssl_utils.h 85 keymaster_error_t convert_pkcs8_blob_to_evp(const uint8_t* key_data, size_t key_length,
android_keymaster_test_utils.h 305 void set_key_blob(const uint8_t* key, size_t key_length) {
308 blob_.key_material_size = key_length;
397 const size_t key_length, uint8_t** key_blob,
401 device(dev)->import_keypair(device(dev), key, key_length, key_blob, key_blob_length);
  /libcore/luni/src/test/java/libcore/javax/crypto/
SecretKeyFactoryTest.java 43 private static final int KEY_LENGTH = 128;
93 KeySpec ks = new PBEKeySpec(null, SALT, ITERATIONS, KEY_LENGTH);
100 KeySpec ks = new PBEKeySpec(new char[0], SALT, ITERATIONS, KEY_LENGTH);
106 KeySpec ks = new PBEKeySpec(PASSWORD, SALT, ITERATIONS, KEY_LENGTH);
117 test_PBKDF2_UTF8(PASSWORD, SALT, ITERATIONS, KEY_LENGTH, expected);
118 test_PBKDF2_8BIT(PASSWORD, SALT, ITERATIONS, KEY_LENGTH, expected);
  /external/curl/lib/
hash.h 33 size_t key_length,
87 size_t Curl_hash_str(void* key, size_t key_length, size_t slots_num);
hash.c 272 size_t Curl_hash_str(void* key, size_t key_length, size_t slots_num)
275 const char *end = key_str + key_length;
  /system/security/softkeymaster/include/keymaster/
softkeymaster.h 26 const size_t key_length, uint8_t** key_blob, size_t* key_blob_length);
  /system/bt/btif/include/
btif_storage.h 281 uint8_t key_length);
285 int key_length);
289 uint8_t key_length);
  /system/gatekeeper/include/gatekeeper/
gatekeeper.h 90 const uint8_t *key, uint32_t key_length, const uint8_t *password,
107 const uint8_t *key, uint32_t key_length, const uint8_t *message,
  /external/webrtc/talk/session/media/
externalhmac.h 66 int key_length; member in struct:__anon27556
  /hardware/libhardware/include/hardware/
keymaster0.h 68 const uint8_t* key, const size_t key_length,
  /system/bt/btif/src/
btif_storage.c     [all...]
  /external/jemalloc/test/src/
SFMT.c 636 * @param key_length the length of init_key.
638 sfmt_t *init_by_array(uint32_t *init_key, int key_length) {
666 if (key_length + 1 > N32) {
667 count = key_length + 1;
674 r += key_length;
679 for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
  /external/wpa_supplicant_8/src/rsn_supp/
peerkey.c 90 WPA_PUT_BE16(err->key_length, 0);
152 WPA_PUT_BE16(reply->key_length, 0);
350 WPA_PUT_BE16(msg->key_length, 16);
352 WPA_PUT_BE16(msg->key_length, 32);
410 WPA_PUT_BE16(msg->key_length, 16);
412 WPA_PUT_BE16(msg->key_length, 32);
1061 WPA_PUT_BE16(req->key_length, 0);
    [all...]
  /external/srtp/doc/
draft-irtf-cfrg-icm-00.txt 98 Crypto Forum Research Group David A. McGrew Internet Draft Cisco Systems, Inc. Expires April, 2003 October, 2002 Integer Counter Mode <draft-irtf-cfrg-icm-00.txt> Status of this Memo This document is an Internet Draft and is in full conformance with all provisions of Section 10 of RFC-2026. Internet Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and working groups. Note that other groups may also distribute working documents as Internet Drafts. Internet Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. 1. Abstract This document specifies Integer Counter Mode (ICM), a mode of operation of a block cipher which defines an indexed keystream generator (which generates a keystream segment given an index). This mode is efficient, parallelizable, and has been proven secure given realistic assumptions about the block cipher. Test vectors are provided for AES. Counter Mode admits many variations. The variant specified in this document is secure and flexible, yet it enables a single implementation of a keystream generator to suffice in different application domains. McGrew [Page 1] Internet Draft Integer Counter Mode October, 2002 2. Notational Conventions The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [B97]. 3. Introduction Counter Mode is a way to define a pseudorandom keystream generator using a block cipher [CTR]. The keystream can be used for additive encryption, key derivation, or any other application requiring pseudorandom data. In ICM, the keystream is logically broken into segments. Each segment is identified with a segment index, and the segments have equal lengths. This segmentation makes ICM especially appropriate for securing packet-based protocols. 4. ICM In this section, ICM keystream generation and encryption are defined. 4.1. ICM Parameters The following parameters are used in ICM. These parameters MUST remain fixed for any given use of a key. Parameter Meaning ----------------------------------------------------------------- BLOCK_LENGTH the number of octets in the cipher block KEY_LENGTH the number of octets in the cipher key OFFSET_LENGTH the number of octets in the offset SEGMENT_INDEX_LENGTH the number of octets in the segment index BLOCK_INDEX_LENGTH the number of octets in the block index 4.2. Keystream Segments Conceptually, ICM is a keystream generator that takes a secret key and a segment index as an input and then outputs a keystream segment. The segmentation lends itself to packet encryption, as each keystream segment can be used to encrypt a distinct packet. A counter is a value containing BLOCK_LENGTH octets which is McGrew [Page 2] Internet Draft Integer Counter Mode October, 2002 incremented using an increment function based on integer addition, to produce a sequence of distinct values which are used as inputs to the block cipher. (In the context of this specification, an integer is an octet string, the most significant of which is the first.) The output blocks of the cipher are concatenated to form the keystream segment. The first octet of the segment is the first octet of the first output block, and so on. A schematic of this process is shown in Figure 1. Figure 1. The generation of a keystream segment given a segment index and a block cipher key K. Here C[i] and S[i] denote the ith counter and keystream block, respectively. segment index | v C[0] -----> C[1] -----> C[2] -----> ... | | | v v v +---+ +---+ +---+ K->| E | K->| E | K->| E | ... +---+ +---+ +---+ | | | v v v S[0] S[1] S[2] ... The ith counter C[i] of the keystream segment with segment index s is defined as C[i] = (i + s * (256^BLOCK_INDEX_LENGTH)) (+) r where r denotes the shifted Offset, which is defined as the Offset times 256^(BLOCK_LENGTH - OFFSET_LENGTH). (This multiplication left-shifts the Offset so that it is aligned with the leftmost edge of the block.) Here ^ denotes exponentiation and (+) denotes the bitwise exclusive-or operation. The number of blocks in any segment MUST NOT exceed 256^BLOCK_INDEX_LENGTH. The number of segments MUST NOT exceed 256^SEGMENT_INDEX_LENGTH. These restrictions ensure the uniqueness of each block cipher input. They also imply that each segment contains no more than (256^BLOCK_INDEX_LENGTH)*BLOCK_LENGTH octets. The sum of SEGMENT_INDEX_LENGTH and BLOCK_INDEX_LENGTH MUST NOT exceed BLOCK_LENGTH / 2. This requirement protects the ICM keystream generator from potentially failing to be pseudorandom (see McGrew [Page 3] Internet Draft Integer Counter Mode October, 2002 the rationale). Figure 2. An illustration of the structure of a counter with BLOCK_LENGTH = 8, SEGMENT_INDEX_LENGTH = 2, and BLOCK_INDEX_LENGTH = 2. The field marked `null' is not part of either the block or segment indices. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | null | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | segment index | block index | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 4.3. ICM Encryption Unless otherwise specified, ICM encryption consists of bitwise exclusive-oring the keystream into the plaintext to produce the ciphertext. 4.4 ICM KEY An ICM key consists of the block cipher key and an Offset. The Offset is an integer with OFFSET_LENGTH octets, which is used to `randomize' the logical starting point of keystream. The Offset is crucial to providing security; see the rationale. The value of OFFSET_LENGTH SHOULD be at least half that of BLOCK_LENGTH. For the purposes of transporting an ICM key, e.g. in a signaling protocol, that key SHOULD be considered a sequence of octets in which the block cipher key precedes the Offset. 5. Implementation Considerations Implementation of the `add one modulo 2^m' operation is simple. For example, with BLOCK_LENGTH = 8 (m=64), it can be implemented in C as if (!++x) ++y; where x and y are 32-bit unsigned integers in network byte order. The implementation of general purpose addition modulo 2^m is slightly more complicated. The fact that the Offset is left-aligned enables an implementation McGrew [Page 4] Internet Draft Integer Counter Mode October, 2002 to avoid propagating carry values outside of the block index and/or the segment index. Choosing an OFFSET_LENGTH value equal to half that of BLOCK_LENGTH avoids all of these carries, since the Offset is then shifted so that it occupies the most significant octets of the block, while the block and segment indices occupy the least significant ones. 6. Parameters and Test Vectors for AES This section provides ICM parameters and test vectors for AES with a 128 bit block size and 128 bit key (that is, with a BLOCK_LENGTH and KEY_LENGTH of 16). All integers are expressed in hexadecimal. Each consecutive pair of hex digits corresponds to an octet, so that the integer 000102030405060708090A0B0C0D0E0F corresponds to the octet sequence { 00, 01, 02, 02 ... }. BLOCK_LENGTH 16 KEY_LENGTH 16 OFFSET_LENGTH 14 SEGMENT_INDEX_LENGTH 6 BLOCK_INDEX_LENGTH (…)
  /external/webrtc/webrtc/base/
opensslidentity.cc 50 int key_length = key_params.rsa_params().mod_size; local
55 !RSA_generate_key_ex(rsa, key_length, exponent, NULL) ||
  /external/icu/icu4j/perf-tests/
collationperf.pl 108 # doKeyGenTimes($Command_to_run, $time, $key_length)
  /external/jemalloc/test/include/test/
SFMT.h 78 sfmt_t *init_by_array(uint32_t *init_key, int key_length);

Completed in 402 milliseconds

1 2