Home | History | Annotate | Download | only in es6
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // Flags: --no-fast-math
      6 
      7 assertTrue(isNaN(Math.expm1(NaN)));
      8 assertTrue(isNaN(Math.expm1(function() {})));
      9 assertTrue(isNaN(Math.expm1({ toString: function() { return NaN; } })));
     10 assertTrue(isNaN(Math.expm1({ valueOf: function() { return "abc"; } })));
     11 assertEquals(Infinity, 1/Math.expm1(0));
     12 assertEquals(-Infinity, 1/Math.expm1(-0));
     13 assertEquals(Infinity, Math.expm1(Infinity));
     14 assertEquals(-1, Math.expm1(-Infinity));
     15 
     16 
     17 // Sanity check:
     18 // Math.expm1(x) stays reasonably close to Math.exp(x) - 1 for large values.
     19 for (var x = 1; x < 700; x += 0.25) {
     20   var expected = Math.exp(x) - 1;
     21   assertEqualsDelta(expected, Math.expm1(x), expected * 1E-15);
     22   expected = Math.exp(-x) - 1;
     23   assertEqualsDelta(expected, Math.expm1(-x), -expected * 1E-15);
     24 }
     25 
     26 // Approximation for values close to 0:
     27 // Use six terms of Taylor expansion at 0 for exp(x) as test expectation:
     28 // exp(x) - 1 == exp(0) + exp(0) * x + x * x / 2 + ... - 1
     29 //            == x + x * x / 2 + x * x * x / 6 + ...
     30 function expm1(x) {
     31   return x * (1 + x * (1/2 + x * (
     32               1/6 + x * (1/24 + x * (
     33               1/120 + x * (1/720 + x * (
     34               1/5040 + x * (1/40320 + x*(
     35               1/362880 + x * (1/3628800))))))))));
     36 }
     37 
     38 // Sanity check:
     39 // Math.expm1(x) stays reasonabliy close to the Taylor series for small values.
     40 for (var x = 1E-1; x > 1E-300; x *= 0.8) {
     41   var expected = expm1(x);
     42   assertEqualsDelta(expected, Math.expm1(x), expected * 1E-15);
     43 }
     44 
     45 
     46 // Tests related to the fdlibm implementation.
     47 // Test overflow.
     48 assertEquals(Infinity, Math.expm1(709.8));
     49 // Test largest double value.
     50 assertEquals(Infinity, Math.exp(1.7976931348623157e308));
     51 // Cover various code paths.
     52 assertEquals(-1, Math.expm1(-56 * Math.LN2));
     53 assertEquals(-1, Math.expm1(-50));
     54 // Test most negative double value.
     55 assertEquals(-1, Math.expm1(-1.7976931348623157e308));
     56 // Test argument reduction.
     57 // Cases for 0.5*log(2) < |x| < 1.5*log(2).
     58 assertEquals(Math.E - 1, Math.expm1(1));
     59 assertEquals(1/Math.E - 1, Math.expm1(-1));
     60 // Cases for 1.5*log(2) < |x|.
     61 assertEquals(6.38905609893065, Math.expm1(2));
     62 assertEquals(-0.8646647167633873, Math.expm1(-2));
     63 // Cases where Math.expm1(x) = x.
     64 assertEquals(0, Math.expm1(0));
     65 assertEquals(Math.pow(2,-55), Math.expm1(Math.pow(2,-55)));
     66 // Tests for the case where argument reduction has x in the primary range.
     67 // Test branch for k = 0.
     68 assertEquals(0.18920711500272105, Math.expm1(0.25 * Math.LN2));
     69 // Test branch for k = -1.
     70 assertEquals(-0.5, Math.expm1(-Math.LN2));
     71 // Test branch for k = 1.
     72 assertEquals(1, Math.expm1(Math.LN2));
     73 // Test branch for k <= -2 || k > 56. k = -3.
     74 assertEquals(1.4411518807585582e17, Math.expm1(57 * Math.LN2));
     75 // Test last branch for k < 20, k = 19.
     76 assertEquals(524286.99999999994, Math.expm1(19 * Math.LN2));
     77 // Test the else branch, k = 20.
     78 assertEquals(1048575, Math.expm1(20 * Math.LN2));
     79