Lines Matching full:coefficients
60 3) [coefficients] is an empty, zero length vector
67 10) concatenate [temp_vector] onto the end of the [coefficients] vector
68 11) if (length of vector [coefficients] is less than [floor0_order], continue at step 6
89 \item The number of scalars read into the vector \varname{[coefficients]}
95 scalars in \varname{[coefficients]} is to to read a total of twelve
106 Given an \varname{[amplitude]} integer and \varname{[coefficients]}
157 p & = & (1 - \cos^2\omega)\prod_{j=0}^{\frac{\mathtt{floor0\_order}-3}{2}} 4 (\cos([\mathtt{coefficients}]_{2j+1}) - \cos \omega)^2 \\
158 q & = & \frac{1}{4} \prod_{j=0}^{\frac{\mathtt{floor0\_order}-1}{2}} 4 (\cos([\mathtt{coefficients}]_{2j}) - \cos \omega)^2
166 p & = & \frac{(1 - \cos^2\omega)}{2} \prod_{j=0}^{\frac{\mathtt{floor0\_order}-2}{2}} 4 (\cos([\mathtt{coefficients}]_{2j+1}) - \cos \omega)^2 \\
167 q & = & \frac{(1 + \cos^2\omega)}{2} \prod_{j=0}^{\frac{\mathtt{floor0\_order}-2}{2}} 4 (\cos([\mathtt{coefficients}]_{2j}) - \cos \omega)^2